140

JOURNAL OF HYDROMETEOROLOGY

Uncertainty Propagation of Regional Climate Model Precipitation
Forecasts to Hydrologic Impact Assessment

PHAEDON C. KYRIAKIDIS,* NORMAN L. MILLER, AND JINWON KM

Regional Climate Center, Lawrence Berkeley National Laboratory, Berkeley, California

(Manuscript received 26 April 2000, in final form 6 December 2000)

ABSTRACT

A Monte Carlo framework is adopted for propagating uncertainty in dynamically downscaled seasonal forecasts
of area-averaged daily precipitation to associated streamflow response calculations. Daily precipitation is modeled
as a mixture of two stochastic processes: a binary occurrence process and a continuous intensity process, both
exhibiting serial correlation. The parameters of these processes (e.g., the proportion of wet days and the average
wet-day precipitation intensity in a month) are derived from the forecast record. Parameter uncertainty is char-
acterized via an empirical Bayesian model, whereby such parameters are modeled as random with a specific
joint probability distribution. The hyperparameters specifying this probability distribution are derived from
historical precipitation records at the study basin. Simulated parameter values are then generated using the
Bayesian model, leading to alternative synthetic daily precipitation records simulated via the stochastic precip-
itation model. The set of such synthetic precipitation records is finally input to a physically based deterministic
hydrologic model for propagating uncertainty in forecasted precipitation to hydrologic impact assessment studies.

The stochastic simulation approach is applied for generating an ensemble (set) of synthetic area-averaged
daily precipitation records at the Hopland basin in the northern California Coast Range for the winter months
(December through February: DJF) of 1997/98. The parameters of the stochastic precipitation model are derived
from a seasonal precipitation forecast based on the Regional Climate System Model (RCSM), available at a 36-
km? grid spacing. The large-scale forcing input to RCSM for dynamical downscaling was a seasonal prediction
of the University of California, Los Angeles, Atmospheric General Circulation Model. A semidistributed de-
terministic hydrologic model (‘“TOPMODEL”) is then used for calculating the streamflow response for each
member of the area-averaged precipitation ensemble set. Uncertainty in the parameters of the stochastic pre-
cipitation model is finally propagated to associated streamflow response, by considering parameter values derived
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from historical (DJF 1958-92) area-averaged precipitation records at Hopland.

1. Introduction

The use of downscaled climate .projections has be-
come increasingly important for hydrologic impact as-
sessment studies, such as streamflow prediction at sea-
sonal or interannual timescales (Leung et al. 1996, 1999,
Miller and Kim 1996; Kim et al. 1998, 2000; Miller et
al. 1999). One of the critical tasks in hydrologic fore-
casting is predicting the probability that extreme events,
for example, droughts or floods, will occur during the
forecast period. Accurate prediction of such hydrologic
events, however, is extremely difficult, because their
occurrence over complex terrain depends not only on
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the amount of precipitation, but also on its temporal
sequence, both affecting feedbacks in the form of an-
tecedent soil moisture -conditions. Understanding the
mechanisms and interactions involved in such a com-
plex hydroclimatic system poses a challenging funda-
mental research theme in hydrology (Entekhabi et al.
1999).

Flood forecasting utilizing deterministic hydrologic
models requires input precipitation forcing on daily, or
shorter, timescales. Daily sequences of precipitation
events from regional climate forecasts, however, are not
as accurate as their average values over monthly or sea-
sonal timescales (Kim et al. 2000). In addition, uncer-
tainties in the parameterization and accurate description
of variables affecting predictions of global atmospheric
models, which in turn drive any dynamical downscaling
procedure as initial and time-varying boundary condi-
tions, propagate to regional climate forecasts at monthly
or seasonal timescales. Consequently, there is a need
for modeling uncertainty in projected daily precipitation
records and evaluating its impact to hydrologic studies
(e.g., Lettenmaier 1994).






ApriL 2001

It should be stressed that any uncertainty assessment
is necessarily subjective: one almost always decides to
“freeze” specific sources of uncertainty affecting the
problem at hand. In a hydrologic modeling context, for
example, one might decide to adopt a semidistributed
framework instead of a fully distributed one. Conse-
quently, projected uncertainty intervals are specific to
the model structure (or modeling framework) used to
evaluate them. In the context of uncertainty assessment
in streamflow predictions, one of the most dominant
components of uncertainty is that of input precipitation
forcing. In this paper, we focus on such precipitation-
induced uncertainty, thus ignoring uncertainty in other
hydrologic variables, for example, parameter uncertain-
ty in deterministic hydrologic models and/or measure-~
ment errors. In particular, we study the impact of area-
averaged precipitation forcing to associated streamflow
response, thus also ignoring the effects of precipitation
spatial variability. A spatially explicit modeling frame-
work, which accounts for precipitation spatial variabil-
ity, is currently in development and will be reported in
the near future.

In this paper, we use “TOPMODEL” (Beven and
Kirkby 1979), a semidistributed rainfall-runoff model,
for evaluating streamflow response to input precipitation
forcing. TOPMODEL may be viewed as a system of
vertical reservoirs (interception zone storage, unsatu-
rated infiltration zone storage, and saturated zone stor-
age) controlled by Darcy’s law and water mass conti-
nuity. Soil moisture accounting and lateral transport in
TOPMODEL are based on two assumptions: 1) the sat-
urated zone dynamics are approximated by successive
steady-state representations and 2) the hydraulic gra-
dient of the saturated zone is parallel to the surface
topography. In the current study, we use the semidis-
tributed version of TOPMODEL with topographic pa-
rameters derived from 50-m digital elevation model
data. The advantage of this model is the low number of
parameters required for optimization while maintaining
an adequate physical process description. The primary
disadvantages are the above two assumptions, which are
not always valid.

In a Monte Carlo simulation context, multiple alter-
native simulated realizations of daily precipitation can
be processed by a deterministic rainfall-runoff model,
for example, to yield multiple forecasts of riverflow for
uncertainty characterization and hydrologic design (Sa-
las 1993; Krzysztofowicz 1998). The critical task is to
ensure that both synthetic and observed precipitation
records exhibit similar characteristics, such as serial cor-
relation (persistence) and seasonality in temporal vari-
ability. In the context of stochastic temporal downscal-
ing of monthly or seasonal climate projections, an ad-
ditional constraint is that of reproduction of statistics
on the larger levels of aggregation (Wilby et al. 1998).

For long-term (seasonal) streamflow forecasting, we
use a dynamically downscaled seasonal forecast of area-
averaged daily precipitation (Kim et al. 2000) to infer
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parameters of a stochastic precipitation model. From this
stochastic model, we generate a set of alternative syn-
thetic area-averaged daily precipitation records, which
share certain characteristics with the forecast record.
Such characteristics include serial autocorrelation in
both daily precipitation intermittence and intensity, as
well as monthly statistics derived from that record, such
as wet-day proportions and average wet-day precipita-
tion intensity values in any month. The synthetic pre-
cipitation records are subsequently input to TOPMO-
DEL for generating the corresponding streamflow re-
alizations. The set of these alternative, TOPMODEL-
derived, synthetic streamflow records constitutes a
model of uncertainty regarding important streamflow
characteristics, for example, flood probabilities. Such a
Monte Carlo procedure allows propagation of uncer-
tainty in the forecasted precipitation to associated hy-
drologic predictions.

The parameters of the stochastic precipitation model,
however, are themselves uncertain given that they are
derived from an uncertain forecasted precipitation re-
cord. We adopt a Bayesian framework (Box and Tiao
1973; Gelman et al. 1995) for characterizing such pa-
rameter uncertainty and propagating it to associated
streamflow calculations. For a Bayesian treatment of
most uncertainty components inherent in streamflow
forecasts the reader is referred to Krzysztofowicz
(1999); classical applications of Bayesian analysis in
stochastic hydrology can be found in Valdés et al. (1977)
and Kitanidis (1986). In this paper, we develop an em-
pirical Bayesian model (Carlin and Louis 2000), that is,
an approximation to a full hierarchical Bayesian model
(Gelman et al. 1995), whereby precipitation values for
the forecast period are viewed as outcomes of the sto-
chastic precipitation model, conditional to a set of pa-
rameter values derived from a dynamically downscaled
precipitation forecast. Climatological parameter uncer-
tainty (prior to any forecast information) is modeled
using historical precipitation records at the study basin;
the Bayesian paradigm is then adopted for updating this
prior uncertainty model to account for the forecast pa-
rameter set.

Section 2 briefly presents the stochastic precipitation
model used in this work. In section 3, the empirical
Bayesian model for characterizing uncertainty in the
parameters of the stochastic precipitation model is de-
veloped. In section 4, a case study is undertaken: a
dynamically downscaled seasonal forecast of (area av-
eraged) daily precipitation for the Hopland basin in the
northern California Coast Range is first used to infer
the parameters of the stochastic precipitation model. Pa-
rameter uncertainty is then characterized via the Bayes-
ian model, using as prior information a set of historical
parameters derived from historical area-averaged pre-
cipitation records for the same basin. Uncertainty prop-
agation to streamflow response is achieved by first gen-
erating a set of alternative synthetic precipitation records
and then using TOPMODEL to calculate the associated
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streamflow for each synthetic record. Last, in section 5,
some conclusions regarding the proposed uncertainty
propagation procedure and its application to hydrologic
impact assessments are drawn.

2. Stochastic daily precipitation model

Stochastic models for characterizing daily precipita-
tion compose a dominant component of the literature of
stochastic hydrology (Bras and Rodriguez-Iturbe 1985;
Woolhiser 1992; Foufoula-Georgiou and Krajewski
1995). In this paper, we focus on mixture processes, one
of the most frequently used stochastic frameworks for
modeling daily precipitation (Woolhiser 1992; Salas
1993; Wilks 1995). Within the framework of mixture
processes, precipitation modeling is decomposed into
two separate tasks: (a) modeling of precipitation inter-
mittence (occurrence/nonoccurrence of wet days) and
(b) modeling of precipitation intensity (nonzero precip-
itation amounts on wet days). The model presented here-
inafter is a generalization of the mixture models pro-
posed by Chebaane et al. (1995), and Katz and Parlange
(1995).

Let ¢, denote a time step (day) in a forecast period
composed of K days {t,, k=1, ..., K}. Under mixture
models, the true unknown precipitation levels {z(¢,), k
=1, ..., K} at the respective time steps are modeled
as outcomes of a stochastic process:

{Z(n),t e K} = {I(HX(®), t € K}, 1)

where {I(z), t € K} is a binary (two state) stochastic
process modeling the temporal intermittence of precip-
itation, {X(#), t € K} is a continuous stochastic process
modeling precipitation intensity, and the two processes
are uncorrelated: Cov{I(z), X(¢')} = 0, for every ¢ and
t'. For simplicity, the dependence of all processes on
the spatial coordinates is dropped from the notation.

The objective is to generate a set (ensemble) of S
alternative synthetic realizations of daily precipitation
{z(), k=1,..., K}, s =1,..., S, from the sto-
chastic process {Z(¢), t € K}, where s denotes the sth
member of the ensemble. This task is decomposed to
the generation of S synthetic realizations of precipitation
occurrence {i¥(t), k=1,...,K},s=1,...,S§ and
precipitation intensity {x“(z,), k= 1,..., K}, s =1,
..., S. These realizations must share important char-
acteristics of the observed precipitation records, such as
statistics at the monthly level of aggregation (Wilks
1992) and daily persistence in both precipitation oc-
currence and intensity.

a. Precipitation occurrence

Precipitation occurrences {i(z,), k=1, ..., K} over
the time span of K days are modeled as outcomes of a
binary stochastic process {I(¢), t € K}, that is, a col-
lection of serially correlated random variables (RV) I(r)
defined as
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if Z(t) > z
if not,

Yte K

min?

1
1) = {0

where z,,, denotes a minimum precipitation threshold
value, below which a day is considered as dry, for ex-
ample, 0.1 mm day~'.

Let i® = {i®(t,), n = 1, ..., N} denote the set of
N occurrence values simulated at N randomly visited
time steps {t,, » = 1, ..., N}, which have been visited
prior to visiting step #, (with 0 = N < K). A realization
{i®(t), k=1, ..., K} of the binary precipitation oc-
currence process {I(f), t € K} can be generated se-
quentially (Chang et al. 1984; Ripley 1987; Journel
1989) as

i19(t) = j{te p*[1 101} )

where j{t,; p*[t, |i®]} is the indicator function of a ran-
dom number u®(¢,) uniformly distributed in [0, 1], de-
fined as j{f,; p*[t, |i®]} = 1if u®(z,) > p*[1,|i¥], zero
if not.

Term p*[z,|1®] in Eq. (2) denotes an estimate of the
unknown conditional probability density function
(cpdf) plt,]i®] of precipitation occurrence at any time
step t,, given the N previously simulated occurrence
outcomes i®:

plt,|i®] = Prob{I(t,) = 1[i®} = E{I(,)]|i®}, (3)

which is a Bernoulli distribution with parameter
plz, |i©].

The least squares estimate p*[t, | 1®] of the unknown
cpdf p[t, |i®] is written as

Yi, € K,

P01 = pt) + 2 n0LOG) = p, @), (4)

where p_ (#,) is the proportion of wet days of month c,
in which day ¢, belongs.

Evidently, p_ (z,) need not be equal to p,_(z,); this
allows consideration of nonstationary (monthly vary-
ing) wet-day proportions over the period of interest. In
northern California, for example, the proportion of wet
days in summer months (June, July, and August: JJA)
is expected to be smaller than that in winter months
(December, January, and February: DJF). Such nonsta-
tionary wet-day proportions within any given month can
be derived from climate projections available for the
forecast period {t,, k = 1, ..., K}.

The N weights v, (k) in Eq. (4) are determined per
solution of a system of normal equations [simple kriging
(SK) system]:

N

2 Vn‘(k)CR,(tn - tn’) =

n'=1

CR,(tu - tk)s

n=1...,N (5

where Cp(t =1t —1¢) = E{U® - pOIUC) —
p-(t)]} denotes the covariance of the residual random
process {R,(1) = [I(t) — p. (D], t € K}.
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In practice, covariance values Cg (1) for various lag
intervals 7 are modeled via a parametric function
Cr,(7; 8), where 6 denotes the correlation period (char-
acteristic time) of the covariance model. In this paper,
we assume for simplicity that the parametric covariance
model Cg (7; ) is defined by its functional form, for
example, exponential, and a single parameter &; more
complex models can also be defined.

The system in Eq. (5) is a version of the Yule-Walker
equations, widely used in hydrologic time series mod-
eling [for example, Bras and Rodriguez-Iturbe (1985)].
The procedure of Eq. (4) can be seen as that of imposing
a pr.or likelihood of precipitation occurrence at each
time step #,. Such prior likelihood acts in conjunction
with the residual serial correlation modeled by
Cpg,(7; 6). For example, if in a wet month [i.e., a month
with relatively high prior probability p, (z,)] a precipi-
tation event is simulated at day ¢,, then the next day
ty+: 18 likely to be simulated as wet; this result is due
to the high prior probability p_ (¢,) and the serial cor-
relation Cp (7; ) quantifying the memory of the resid-
ual process.

It can be shown (Journel 1999) that synthetic reali-
zations from this process reproduce the imposed auto-
covariance model C, (7; 8) no matter its type, for ex-
ample, exponential or spherical. This reproduction of a
wider class of covariance models comes from the fact
that N previously simulated values i are used for de-
termining the cpdf in Eq. (4). The procedure in Eq. (2)
can be viewed as an Nth-order discrete autoregressive
representation with a random order for visiting the K
time steps, or as an approximation of higher-order two-
state Markov chains.

In all rigor, a synthetic precipitation occurrence record

{i®@,), k =1, ..., K} generated via the procedure
described in this section should be denoted as {i®(z,),
k=1,...,K; a}, where a is a (L, X 1) vector of

parameter values a = [a,, ..., a,]" characterizing the
binary occurrence process {I(¢), t € K} (note that su-
perscript * denotes transposition). For the case of a sea-
son-long forecast period, L, = 4, there are three entries
in a, one for each monthly proportion of wet days
p.(t), and one last entry for the correlation period 6.
For simplicity, the correlation period 6 is considered to
be constant within the season.

b. Precipitation intensity

Precipitation intensity is defined as the (positive) pre-
cipitation amount in a wet day f,. Precipitation intensity
outcomes {x(¢,), k = 1, ..., K} over the time span of
K days are modeled as outcomes of a continuous sto-
chastic process {X(t), t € K}, that is, a collection of
serially correlated RVs X(¢) defined as

X() = {Z(t)

undefined

if Z(H) > Z,0»
if not.

Vie K
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Let x© = {x¥(t,), n = 1, ..., N} denote the set of
N intensity values simulated at N randomly visited time
steps {t,, n = 1, ..., N}, visited prior to visiting step
t, (with 0 = N < K). A realization {x®(t,), k= 1,...,
K} of the intensity process {X(¢¥), t € K} can be gen-
erated as

x9(t) = m*[1,|x9] + oF[1,|xOIwO(z,),
Vi, € K, (6)

where each term in the above equation is defined as
follows.

Term m*(z, | x®] of Eq. (6) denotes an estimate of the
conditional mean of the RV X(r,) given the vector x®
of N previously simulated intensity values for the sth
realization, that is, m*[z, |x®] = E{X(z,) |x®}. This es-
timate is expressed as a weighted linear combination of
the N previously simulated values,

Mt | x0T = m, () + 2, E,RXOE,) — m, @), (7)

where m, (z,) denotes the average precipitation intensity
of month ¢, in which time step 7, belongs.

The N weights £,(k) of Eq. (7) are determined per
solution of a system of normal equations (SK system):

N
> EOCK(E, — 1,) = Colt, — 1),
n'=1

n=1,...,N, (8

with CR(1) = E{R(f)R(r + 1)} being the covariance of
the zero-mean, unit-variance, residual process {R(f) =
[X(®) — m())/s(¥), t € K}, where s (f) denotes the stan-
dard deviation of the precipitation intensity for month
¢ to which time step ¢ belongs.

In practice, covariance values C(7) for various lag
intervals 7 are modeled via a parametric function
Cr(7; ), where m denotes the correlation period (char-
acteristic time) of the covariance model.

Term o*[z, | x®] of Eq. (6) denotes an estimate of the
conditional standard deviation of the RV X(z,) given the
vector X, that is, o[z, | x®] = \/Var{X(z,) [x®}. This

estimate is written as

1/2

N
a1 |x0] = |s2(t) = 2 EOCx(, — 1| . ()
n=1
Term w®(z,) of Eq. (6) is a simulated realization from
a zero-mean, unit-variance, RV W(z,), which is gener-
ated independently from one time step to another:

w(t) = Fy'lv@()], (10)

where v®(t,) is a random number uniformly distributed
in the interval [0, 1], and F3!() denotes the quantile
function, that is, the inverse cumulative distribution
function (cdf) of W(z,).

It can be seen that the only random term in Eq. (6)
is the simulated quantile w®(t,) = F3! [v@9 ()] If Fyp()
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is the standard normal (zero mean, unit variance) Gauss-
ian cdf, then the resulting simulated realization {x®(t,),
k=1,...,K} isarealization of a multivariate Gaussian
stochastic process. In essence, certain properties of the
simulated realizations, for example, their histogram, are
controlled by the cdf F,( ), or equivalently its quantile
function Fy!'(). The distributional type of F() does
not affect the covariance of the simulated realizations,
which can be of any type (not only exponential as in
first-order autoregressive processes). The only require-
ment is that F,( ) has mean zero and variance one, and
that SK [Egs. (7) through (9)] is used to derive
m*[t,|x®] and o*[t, | x®] (Journel 1999; Caers 2000).

In this paper, the distributional type of F\,( ) is iden-
tified in a nonparametric way to that of forecast intensity
values for the month ¢, in which day ¢, belongs. In other
words, the cdf of forecast intensity values is rescaled
to a zero-mean, unit-variance, cdf whose quantile func-
tion is then used in place of F3!() in Eq. (10). In this
way, the shape of the histogram of simulated intensity
values closely approximates that of the forecasted pre-
cipitation. Similar to the binary case of Eq. (2), Eq. (6)
can be viewed as an Nth-order autoregressive represen-
tation with a random order for visiting the K time steps.

A set of § simulated precipitation intensity realiza-
tions {x“ (), k=1,...,K;b},s=1,..., S canthen
be generated, where b denotes an (L, X 1) vector of
parameter values b = [b,, ..., b, ] characterizing the
continuous occurrence process {X(f), t € K}. For the
case of a season-long forecast period, L, = 7, there are
seven entries in b: six for the mean and variance of wet-
day precipitation intensity within each month, and one
last entry for the correlation period n. For simplicity,
the correlation period of precipitation intensity is again
considered to be constant within the season.

Simulated realizations of precipitation occurrence and
intensity are finally combined via Eq. (1) to yield S
synthetic precipitation records {z®(r,), k = 1, , K;
q}. s =1, , S. These S realizations are 1ndexed by
a (L X 1) parameter vector ¢ = [a'b']’, with L = L,
+ L, which has as entries the L parameters character-
izing the temporal distribution of combined precipita-
tion values {z(z,), k = 1 , K}. Such parameters
include the proportion of wet days p,(f), mean
m,,(t,), and variance s (t,) of precipitation intensity in
any month in which day r, belongs, as well as the cor-
relation period & and m of the covariance models
Cr, (15 6) and Cr(T; m).

It should be noted that we do not impose exact re-
production of monthiy aggregated precipitation statis-
tics, for example, p_, m., and s,. Consequently, we do
not impose exact conservation of the total precipitation
given by the forecast (or the observed) record. Repro-
duction of such monthly aggregated statistics is
achieved on average, that is, in expected value over a
large number of simulated realizations. Exact conser-
vation of total precipitation can be achieved by ac-
counting for this total value in the system of normal
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equations in Eq. (8), similar to Valencia and Schaake
(1973); variations of this approach are known as dis-
aggregation procedures in stochastic hydrology, and the
reader is referred to Salas (1993) for further details.

3. Parameter uncertainty: Bayesian analysis

In the context of propagating uncertainty in dynam-
ically downscaled seasonal forecasts of daily precipi-
tation to hydrologic response studies, the parameters of
the stochastic precipitation model can be determined
from the forecasted daily precipitation record {y(t,), k
=1, , K} obtained from a regional climate model
(see Fig. 1). In this case, the synthetic precipitation re-
cords reproduce important characteristics of the forecast
record {y(¢,), k = 1 , K}, such as serial correlation
and seasonality in both intermittence and precipitation
intensity.

By arranging the L forecast-based parameters of the
stochastic precipitation model in an L X 1 column vector
q;. the corresponding synthetic precipitation series can
be denoted as {z“(t,), k= 1,...,K; q,}, to explicate
their dependence on the parameter vector ¢. If the true
(unknown) precipitation record {z(r,), k = 1 , K}
for the forecast time period can be adequately repre-
sented by the stochastic precipitation model described
in this section, then the true record can be regarded as
a realization from that model, with a specific (but un-
known) parameter vector q:

{z(t), k=1 , Ky ={z90¢), k= 1,..., K, q}.

The procedure of using the forecast-based parameter
vector , to generate synthetic realizations of daily pre-
cipitation via the stochastic model, entails

{z(t), k=1, K} = {z9@), k = 1,

or, equivalently, q = ¢;.

The forecast parameter vector q,, however, is itself
uncertain given that it is derived from a set of uncertain
forecast values {y(z,), k = 1 , K'}. The objective is
then to provide a model of uncertainty regarding the
true parameter vector q and to propagate such uncer-
tainty to hydrologic response variables, for example,
streamflow calculated via a deterministic model.

We adopt the Bayesian framework (Box and Tiao
1973; Gelman et al. 1995) for characterizing uncertainty
in the parameters of the stochastic precipitation model,
that is, for providing a model of uncertainty regarding
the true (unknown) parameter vector q. Bayesian anal-
ysis allows for modeling this parameter uncertainty and
evaluating its consequences on related hydrologic re-
sponse calculations. The true parameter vector q is re-
garded as a random vector with a specified joint prob-
ability distribution. In other words, the L elements of g
are viewed as a joint outcome of a collection of L RVs
Q=1[0,1=1,..., L] modeling uncertainty in the
L parameters of the stochastic precipitation model. A
prior (climatological) joint probability distribution is
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RCSM
dynamical downscaling

Stochastic model

#

Statistically generated
ensemble precipitation forecast

¢

TOPMODEL

|

Statistically generated
ensemble streamflow forecast

FiG. 1. Schematic representation of climate state forecasts used in the uncertainty propagation
procedure.

first established from a set of corresponding parameter
vectors derived from historical precipitation data.
Bayes’s relation is then used for updating (revising) the
prior distribution to account for new information; prior
knowledge is thus modified in light of the forecast pa-
rameter vector ;.

In the context of precipitation forecasting, prior in-
formation regarding the random vector q can be derived
from historical precipitation records at the particular
study basin. Consider the case where a historical pre-
cipitation record of length N years is available. A set
of N (L dimensional) historical parameter vectors
{q,(n), n = 1, ..., N}, one for each year n, can be
then constructed. Each parameter vector q,(n) can be
regarded as a realization from a common parameter dis-
tribution for the N years.

The decision of what constitutes relevant historical
information for arriving at prior parameter vectors
{q,(n), n = 1, ..., N} should be guided by scientific
knowledge. For example, if it is postulated that the fore-
cast period is affected by a strong El Nifio—Southern
Oscillation (ENSO) event, then one could consider as
prior information only historical data in those N’ years

(out of the total of N) for which the ENSO signal was
particularly strong. Alternatively, if the precipitation
forecast constitutes a perturbed climate projection, for
example, under doubled carbon dioxide conditions, then
the prior parameter distribution could be modified to
account for possible time trends. These latter modifi-
cations of the prior distribution, however, would make
the forecast and the prior distribution dependent; in this
case more complex Bayesian models are required.

Let f(q; 8) denote the multivariate (L dimensional)
joint probability density function (pdf) modeling un-
certainty regarding the parameter vector q:

f(q; 0) =Prob{Q,€ q, £ dq,, ..., Q, € q, = dq;; 0},
(1)

fully specified by a hyperparameter vector . The term
hyperparameter implies that @ characterizes the uncer-
tainty in the stochastic precipitation model parameter
vector q.

The exact value of this hyperparameter vector @ is
unknown; instead, it is estimated from N historical pa-
rameter vectors {q,(n),n = 1, ..., N} and the forecast
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parameter vector ¢,. Similar to the case of the true pa-
rameter vector ¢, the hyperparameter vector 0 is treated
as random.

Let f(@) denote the prior density function modeling
uncertainty regarding the true hyperparameter vector 6.
The term prior implies that the hyperparameters of this
density are derived from historical parameter vectors
{q, (n), n =1, ..., N} prior to including the infor-
mation brought by the forecast vector q,. Bayes’s re-
lation allows updating this prior uncertainty model 7(8)
to a posterior one, when a forecast parameter vector g,
becomes available:

fla,| 0)f(0)
flap)

where f(0]|q;,) denotes the posterior pdf of the hyper-
parameters @, that is, their joint pdf after the forecast
parameter vector (, has been taken into account. The
density f(q,|6) is the pdf of the forecast parameter
vector g, given the hyperparameters 8, and it is termed
a likelihood function in Bayesian analysis. The density
f(q,) is the marginal density of q;, evaluated as f(q;)
= [ f(q,10)1(0) do.

In this paper, we adopt a specific form of the density
functions involved in Eq. (12), which allows for a con-
venient analytical derivation of the posterior density
f(8]q,). We then examine two situations: (a) the case
of an ensemble forecast setting and (b) the case of a
single forecast record.

f(0lqy = (12)

a. The ensemble forecast case

Let {y“"(t), k=1,...,K},s' =1,...,5, denote
the S’ members of an ensemble daily precipitation fore-
cast (Barnett 1995), which are derived from dynamical
downscaling based on different large-scale forcing (ini-
tial and time-varying conditions) or even on alternative
model formulations. We use the superscript s’ to dis-
tinguish members of ensemble forecasts based on dy-
namical downscaling from those based on stochastic
simulation. From this set of S’ alternative ensemble fore-
cast records {y“"(z), k=1,...,K},s"=1,...,5,
one can construct a corresponding set of S’ alternative
forecast parameter vectors {q,(s'), s’ = 1,..., S"}.

In what follows, we assume that the alternative fore-
cast parameter vectors {q,(s'), s" = 1, ..., §'} are
realizations from an L-variate normal (Gaussian) pdf;
see, for example, Mardia et al. (1979):

fla (1), ..., q,(8")]

=g(p, 2)
— (zﬂ)—L/zlzl—s'/z

1 &
X exp{~5 Z,l la,(s") — pl' 27 (s") — M]},
(13)
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where g(pm, %) denotes the multi-Gaussian pdf with hy-
perparameters g and 2, and |Z| and %! denote the
determinant and inverse of matrix X, respectively.

The L-variate normal pdf [Eq. (13)] is fully spec-
ified by two hyperparameters, that is, the L X 1 mean
vector pu,

n = E{Q}, (14)
and its L X L covariance matrix 3,
2 =Cov(Q, 0/} = E{(Q — m)(Q — w'}, (15)

where the diagonal entries of % quantify the variance
Var{Q,} of the Ith parameter Q,, and the off-diagonal
entries of 3, quantify the linear correlation between pa-
rameters g, and g,. In an ensemble forecast setting, the
hyperparameters s and X can be regarded as the en-
semble average and covariance values of a large number
of §" alternative forecast parameter sets {q,(s'), s’ = 1,
oL ST

Because the true values of the above hyperparameters
are unknown, the goal of Bayesian analysis, as ex-
pressed in Eq. (12), is to provide a model of uncertainty
regarding the hyperparameters g and 3 of the multi-
Gaussian density [Eq. (13)], based on prior (historical)
parameters q, and the forecast parameter vector q,:

f[l‘l" Equ(1)7 ey qf(S,)]
_ fla D), - g 8D s 21 f (s X) 16)
Flagl), ..., qx(S")] '

where f[m, 2|q,(1), ..., q,(S")] denotes the posterior
density of the hyperparameters g and X given the S’
forecast vectors {q,(s'), s" = 1,...,8"}; flg,(D), ...,
q,(S") | m, 2] denotes the likelihood function of the fore-
cast vectors; f(u, %) denotes the prior density of the
hyperparameters; and f[q,(1), ..., q,(S")] denotes the
joint density of the forecast vectors.

Consider the case whereby the analyst has full con-
fidence in a measure of variability among the members
of the ensemble forecast vectors {q,(s"), s' = 1, ...,
S’} and suspects a possible bias of unknown magnitude,
common in all the members of the ensemble. In this
case, the covariance matrix %, is fixed (known) and the
mean vector g is random (unknown), entailing that the
posterior density [Eq. (16)] becomes flu|q (1), ...,
q,(5"), 21

A suitable prior density for the single random hy-
perparameter g is the multivariate normal density

() = g(p,, X)), (17)

where u, is the prior (climatological) mean vector
"!’h = E{Qh}’ (18)
and 3, is the prior (climatological) covariance matrix

2/1 = E{Q, — p)Q, — 1)}, (19)

both estimated from the historical parameter vectors q,,.
If a multivariate normal density is not appropriate for
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the joint density of the historical parameters, a first ap-
proximation can be obtained by transforming the N his-
torical values {g}(n), n = 1, ..., N} of each parameter
q', so that they follow a normal density with the same
mean and variance. The one-to-one, invertible, trans-
formation used is termed normal scores transform
(Deutsch and Journel 1998). A multivariate normal dis-
tribution can then be postulated for the resulting normal
score transformed values. Simulated parameter reali-
zations can be drawn from this multivariate normal dis-
tribution with specified mean and covariance matrix; the
latter is calculated from the normal score transformed
data. The simulated parameter realizations can be finally
back-transformed to approximate the original (non-
Gaussian) distribution of historical parameters; the
transformation used is the inverse normal scores trans-
form. In this way, the histogram of historical parameter
values for any I/th parameter is reproduced by construc-
tion, as well as the correlation coefficient between val-
ues of any two historical parameters ¢} and g}, (in the
Gaussian space). '

Bayesian techniques also exist for explicit treatment
of non-Gaussian distributions, such as those followed
by proportions and variances (Gelman et al. 1995). Re-
call, however, that our goal is to model the posterior
multivariate distribution, that is, the joint distribution
of the L parameters, not a single univariate distribution.
Nonparametric kernel density estimation methods and
other statistical techniques can be used for modeling
such posterior distributions, but they require heavy in-
ference effort and various approximations (Tanner
1996). On the other hand, the multivariate Gaussian
distribution is also a (first) approximation, but it calls
for a low number of parameters and can be modeled
straightforwardly. In addition, a multivariate normal pri-
or density for g [Eq. (17)] allows deriving analytically
the posterior density for p (see below). In this multi-
variate normal case, the prior density is conjugate with
respect to the posterior density, in that they both have
the same parametric form (multi-Gaussian in this case).
It should be noted, however, that a univariate transfor-
mation, such as the normal scores transform, does not
entail that the joint distribution of the L sets of trans-
formed variables is multivariate normal. Additional di-
agnostic checks can be conducted for investigating the
appropriateness of the bivariate Gaussian hypothesis, for
example, for the normal score variables (Deutsch and
Journel 1998).

It can be shown (e.g., Box and Tiao 1973) that the
posterior density of the mean vector u given a set of
S’ forecast parameter vectors {q.(s'), s' = 1,..., 5}
(and the fixed covariance matrix Ef) is multivariate nor-
mal,

flrlg (D), ..., g8, 2] = g(m,, X,), (20)
with posterior mean g,
p, = G+ SE)TIE  + S22
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where ¢, denotes the average forecast parameter vector,
and posterior inverse covariance matrix %'

2;1 = 2;1 + S’Ef—_l.

The posterior precision matrix 3 ', thatis, the inverse
of the posterior covariance matrix 3 »» 18 the sum of the
prior precision matrix %; ' and the data precision matrix
S'%71. The posterior mean vector u, is the weighted
average of the prior mean vector g, and the average
forecast parameter vector q;, the weights being deter-
mined by the precision matrices %;' and §'% 7.

Two limiting cases can be distinguished.

(22)

1) The prior (historical) information is infinitely more
precise than the forecast data, that is, 2;' > 271
Then, from Egs. (22) and (21),

o=
= [, = M,
= fllg D), ..., q, (8", 2] = g(p, %),

entailing that the posterior density equals the prior
density derived from historical data.

2) The forecast data dominate the prior information,
that is, 27! > !, or equivalently %! = 0; this is
the case of diffuse (completely uncertain) prior in-
formation. Then, from Egs. (22) and (21),

2 =3
= ""p = _q_f
= flrlg (D), ..., q,8), 2] = g(q; %)),

entailing that the posterior density has mean equal
to average forecast parameter vector  itself.

A special case of this second scenario is that of a
quasi-zero forecast covariance matrix, that is, Ef =
0. In this situation, the posterior density collapses
into a set of L spikes at the L entries of the forecast
vector ¢, which corresponds to an infinitely precise
(certain) forecast. In an ensemble forecast setting,
this would amount to an ensemble of nearly identical

forecasts {y“" (¢,),k=1,...,K}, s =1,..., 5,
that is, a set of nearly identical forecast parameter
vectors {q, (s'),s" = 1,..., 5}

The above results call for knowledge of the forecast
covariance matrix %,. In an ensemble forecast setting,
even if such a covariance matrix can be estimated from
the various members of the ensemble, it could be still
regarded as unknown, in that its exact value cannot be
determined with certainty. Worse, in the case of a single
member forecast, the forecast covariance matrix Ef is
unobservable, that is, it cannot be estimated from mul-
tiple members of the ensemble. Bayesian analysis, how-
ever, can be applied in the multivariate normal case with
both mean vector g and covariance matrix % unknown.
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b. The case of a single forecast record

Consider the case of a single forecast precipitation

record {y(t,), k = 1, ..., K}, that is, a single forecast
parameter vector ;. The historical precipitation records
{z(), k=1,..., K}, n =1, ..., N at the study

basin can still be used to derived a set of N historical
parameter vectors {q,(n), n = 1, ..., N}. The only
difference with the previous case of ensemble fore-
casting (section 3a) is that both the mean vector g and
the covariance matrix 3, are unknown. In a multivariate
normal setting, one has to assign a suitable joint prior
density f(u, %) based on the (possibly normal score
transformed) historical parameters.

If a multivariate Gaussian density is postulated for
these (transformed) historical parameters, then their co-
variance matrix %, follows a Wishart density, that is, a
multivariate generalization of the scaled y? density
(Mardia et al. 1979). Consequently, we can adopt the
inverse Wishart density for modeling the prior density
of the L X L covariance matrix X:

f(Z) = Wishart;'(2;1)

-1

=1 2

X |2hlu,,/zlzl—(u,,+L+1)/2 exp

-3 u-(z,,z—n},

(23)
where Wishart,!( ) denotes the inverse Wishart density
with v, = L the degrees of freedom, tr() denotes the
trace of a matrix, and I'() denotes the gamma function
(Abramovitz and Stegun 1972).

Conditional on outcomes of X from this inverse Wis-
hart density [Eq. (23)], the density of u is multivariate
normal:

f|2) = g(py, ZIN). (24)

Equations (23) and (24) correspond to the joint prior
density for g and 3:

Flpn 3 B0 Dexpl — (5,5

N
- E(M — ) 7 (e — )|

with the values v,, %,, N, and u, being inferred from
historical parameter vectors {g,(n),n = 1, ..., N}.
The posterior density f(pu, % |q;,), conditional on the
forecast parameter vector q;, has the same form as the
prior density (e.g., Gelman et al. 1995) with », + 1
degrees of freedom. The posterior mean vector m, is

N
N+t TN

and the posterior covariance matrix X, is

Mp qf’ (25)
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Ep =32, + (q; — I‘l’h)(qf = M) (26)

N
N+1

It can be seen from Eqgs. (25) and (26) that the pos-
terior hyperparameters in this case are derived by pool-
ing the forecast parameter vector g, with the historical
parameters q, in a common dataset and calculating its
multivariate mean u, and covariance matrix 2.

In summary, under the multivariate normal model
with unknown mean vector g and covariance matrix
3, the Bayesian paradigm for characterizing uncer-
tainty in the single forecast parameter vector q, proceeds
as follows.

1) Establish the prior mean vector u, and the prior
covariance matrix %, from the historical data using
Egs. (18) and (19).

2) Compute the posterior mean vector u, and the pos-
terior covariance matrix % , from Eqgs. (25) and (26).

3) Draw a realization from the joint posterior density
f(m, Z|q,) in two steps:

(a) draw a realization of the posterior covariance
matrix % from

f(X|q, = Wishart;,, (2>,

(b) and, conditional on X, draw a realization of the
posterior mean vector g from

fnl%, q) = glp,, Z/N + D).

4) Draw a realization of the parameter vector q from a
multivariate normal density with mean and covari-
ance the previously simulated mean g and covari-
ance 3:

q~ glp, 2),

where the symbol ~ implies that vector q is a re-
alization from g(u, ).

5) Repeat steps 3—4 S times to generate S simulated
parameter vectors {q(s), s = 1, ..., S}. For details
regarding the procedure of drawing realizations from
(inverse) Wishart and multivariate normal densities,
see Ripley (1987).

6) Back-transform all simulated parameter values to
their respective original (non-Gaussian) marginal
distributions.

We now proceed with demonstrating the application
of the described uncertainty propagation procedure to a
real-world dataset.

4. Case study

The objective is to provide a model of uncertainty
regarding forecasted daily streamflow at the Hopland
basin in the northern California Coast Range for the
winter months (DJF) of 1997/98. The area-averaged dai-
ly precipitation forecast used in this case study is a
seasonal prediction derived from the Regional Climate
System Model (RCSM) (see Kim et al. 2000), and it
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spans a period from 1 December 1997 to 28 February
1998, leading to K = 90 days. This seasonal forecast
was derived using dynamical downscaling nested within
a global forecast of the University of California, Los
Angeles, (UCLA) Atmospheric General Circulation
Model (AGCM), which was in turn forced by a forecast
of equatorial sea surface temperature (SST) anomaly
made by the National Centers for Environmental Pre-
diction (NCEP); see Fig. 1. The reference area-averaged
precipitation record for the same period at Hopland was
computed as the weighted average of precipitation val-
ues recorded at four nearby rain gauges, namely at Wil-
lits, Ukiah, Yorkville, and Lake Mendocino (Miller and
Kim 1996). The particular weighting scheme adopted
is season specific and is used by the California—Nevada
River Forecast Center to derive area-averaged precipi-
tation forcing for operational streamflow predictions.

a. Forecasted daily precipitation and streamflow
response

The forecasted and reference (unknown in practice)
precipitation records are denoted as {y(¢,), k=1, ...,
K} and {z(¢), k = 1, ..., K}, respectively, and are
shown in Figs. 2a,c. It can be seen that the forecasted
record misses the heavy precipitation event during Jan-
vary (days 32—-63). Kim et al. (2000) attributed this
mismatch to a poor global forecast of the large-scale
forcing, which was used as initial and time-varying lat-
eral boundary conditions to run the RCSM (Fig. 1).
Clearly, the statistics of the daily forecasted record are
different from those of the corresponding reference re-
cord, as indicated by their quantile—quantile plot shown
in Fig. 2e; a perfect match in distribution would be
depicted by a straight line close to the 45° bisector in
this plot. Note the severe underestimation of the low-
valued quantiles, indicating that there are many more
wet days with precipitation intensity less than about 40
mm day~! in the reference precipitation record than in
the forecasted one.

Both daily precipitation records are input into TOP-
MODEL (Beven and Kirkby 1979) for calculating the
associated streamflow response. Calibration of TOP-
MODEL was based on sensitivity analysis to individual
model parameters (Beven and Binley 1992; Kim et al.
1998; Miller et al. 1999). Calibration and verification
were performed for two 5-yr time periods that include
the 1983 El Nifio season (Miller and Kim 1996). In
essence, all TOPMODEL parameters are held spatially
constant, apart from the topographic index, which takes
into account the spatially varying gradient and upstream
area of each individual grid node (Miller and Kim 1996;
Kim et al. 1998). Kim et al. (2000) reported very good
reproduction of observed streamflow from a TOPMO-
DEL-derived response based on hindcasted precipitation
forcing, in which the RCSM was forced by the NCEP
reanalysis. This result indicates that a correct specifi-
cation of the input precipitation forcing is the most im-
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portant factor in reproducing the observed streamflow
via TOPMODEL. Consequently, in what follows we
will ignore any uncertainty or error in the physics of
the streamflow calculation due to intrinsic nonunique-
ness of TOPMODEL parameters, as well as any uncer-
tainty due to the spatial variability of precipitation. In
other words, TOPMODEL and its calibrated parameters
are viewed as a fixed transfer function for evaluating
streamflow response to area-averaged precipitation forc-
ing.

The spatial variability of precipitation can be signif-
icant when dealing with large basins with strong ele-
vation gradients. The area of Hopland basin is 658 km?,
and although precipitation rates vary spatially during a
given storm event, we are modeling this (low elevation)
small-to-medium-sized basin with uniform spatial pre-
cipitation as a first approximation. We are focusing on
effective properties throughout this study in a semidis-
tributed framework. In addition, spatially uniform pre-
cipitation is in agreement with the National Weather
Service mean area precipitation, which was used for
calibrating TOPMODEL. An ongoing study takes into
account the spatial variability of precipitation, as well
as hydrologic-scale sensitivity to response times.

The TOPMODEL-derived streamflow response, cor-
responding to the forecasted and reference precipitation
records, and the observed streamflow at Hopland for
DJF 1997/98, are shown in Figs. 2b,d. Note the simi-
larity of the observed streamflow to the TOPMODEL-
derived response based on the reference precipitation
record. This indicates that TOPMODEL-related errors
are small when compared with any misspecification of
precipitation forcing characteristics. Indeed, this fact is
also confirmed by the mismatch between observed and
TOPMODEL-derived streamflow, when the latter is
based on a misspecified forecasted precipitation record
such as the seasonal forecast. This latter misspecified
forcing also results in a poor reproduction of the dis-
tribution of the observed streamflow record, as indicated
by the quantile—quantile plot of Fig. 2f.

Even if the mismatch between forecasted and ob-
served precipitation forcing is small for high values,
above 40 mm day~! (Fig. 2e), the corresponding mis-
match for high streamflow values is amplified (Fig. 2f).
This result is due to the fact that the forecasted precip-
itation record (Fig. 2a) has different persistence prop-
erties from the reference record (Fig. 2c), as well as
from nonlinearities in the TOPMODEL formulation.
Such a difference in persistence is revealed as a severe
underestimation of high flow stage from the forecast-
based streamflow. Note that a comparison of observed
and forecasted streamflow in terms of distribution char-
acteristics does not inform the performance of the fore-
cast in pinpointing the actual time of high precipitation
and corresponding streamflow. Evaluation of such per-
formance is accomplished by examining bivariate sta-
tistics, such as the correlation coefficient between the
forecasted and observed records. In this case, such cor-



150 JOURNAL OF HYDROMETEOROLOGY VOLUME 2

I

80.0_Forecasted precipitation for DJF 97-98 (RCSM) 60.0_Forecasted streamflow DJF 97-98
70.0_: ] ~—— forecasted precip -> TOPMODEL
50.0 — — observed streamfiow
60.0.] - *
= ] % 40.0]
8 500 g - !‘
E £ \
T 400 £ 0] l
§ z 5
w ] &=
.§ 3040__ g
a 3 ®
20.0.1
100
0. 20. 40. 60. 80.
day day
c D
80.0_Observed precipitation for DJF 97-98 60.0_TOPMODEL-derived reference streamflow
70,0 1 — observed precip -> TOPMODEL
E 50.0] —— observed streamflow
60.0_] E P
= 3 -
o >
T 50.03 o
€ ] :
£ ] 3
c 40.03 RS
ksl E z
g ] g
= _
§ £
a E 7]
20.07
10,0
(LR VAR NS VAR V| G 1
0. 20. 40. 60. 80.
day
80.0_Q-Q plot: Forecasted vs observed precipitation 60.0_Q-Q plot: Forecasted vs observed streamflow
70.0 ]
] 50.0]
60.0 ] ]

40.0_]

[¢]
[
<]

forcasted precip (mm/day)
o
(=]
o
S W e
forecasted streamflow (mm/day)
w
o
e

30.0 ]

20.0]

20.0] ]

‘0 ] 10.0.]
AO_: 1 g P
0.0 00 Jommeme * :

0.0 10.0 20.0 30.0 40.0 500 60.0 70.0 80.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0
observed precip (mm/day} observed streamflow (mm/day)

FiG. 2. Streamflow response to precipitation forcing at Hopland basin. (a) Forecasted precipitation from RCSM; (b)
corresponding forecast streamflow derived via TOPMODEL (solid line) and observed streamflow record (dashed line);
(c) reference precipitation record; (d) corresponding reference streamflow derived via TOPMODEL (solid line) and
observed streamflow record (dashed line); (e) and (f) quantile—quantile plots of distributions of forecasted versus
reference precipitation, and forecasted versus observed streamflow.
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TABLE 1. Parameters of stochastic precipitation model based on forecasted and reference precipitation records: {p,, p, p,} denote the
proportions of wet days for DJF 1997/98, {m,, m,, m,} denote the corresponding mean wet-day precipitation intensities (mm day~"), {sp,
s;, Sp} denote the corresponding standard deviations of wet-day precipitation intensity (mm day~!), and & and 7 denote the seasonal correlation

time of the occurrence and intensity anomalies.

Parameter Po )7 Dr np my, My Sp s, Sp 8
Forecast 0.42 0.10 0.57 7.93 1.10 18.45 11.20 1.50 19.38 4 0
Reference 0.45 0.87 0.93 9.14 15.94 19.95 11.47 13.41 16.99 3 1

relation coefficient values are close to zero for both
precipitation and streamflow records.

The mismatch between forecasted and reference pre-
cipitation and associated streamflow documented above
renders the task of uncertainty assessment regarding
forecasted forcing and its propagation to associated
streamflow a necessity. In the next section, we postulate
that the values of the forecast record themselves are not
reliable, yet their averages over appropriate timescales
and their serial correlation characteristics constitute use-
ful pieces of information.

b. Stochastic simulation based on forecast
parameters

The stochastic precipitation model described in sec-
tion 2 is employed for generating synthetic precipitation
records using parameters derived from the forecast re-
cord (Fig. 2a). The set of L = 11 forecast-based param-
eters (vector q;) for the three winter months (DJF) of
1997/98 is shown in Table 1. These parameters include
three proportions of wet days {p,, p,, pr}, three mean
and standard deviation values of wet-day precipitation
intensity {m,, m,;, m;} and {s,, s,, s}, and the cor-
relation periods & and 7 for the precipitation occurrence
and wet-day intensity anomalies, respectively. For the
Hopland basin, it was found that the covariance func-
tions for both these processes are well approximated by
the exponential family, for example, Cp(1) =
exp(—37/6). Similar parameters (vector q) are derived
from the reference precipitation record {z(z,), k = 1,
..., K} for subsequent comparison (see Table 1). Note
the mismatch between the forecasted proportion of wet
days in January (0.10) versus that actually observed
(0.87). A similar severe mismatch is evident for the
mean wet-day precipitation intensity in January (fore-
cast = 1.10 mm day~'; observed = 15.94 mm day~!).

Two (out of S = 100) synthetic precipitation records
{z9 (@), k=1,..., K; q,}, generated using forecast-
based parameters are shown in Figs. 3a,c. The TOP-
MODEL-derived streamflow responses corresponding
to the two synthetic precipitation records of Figs. 3a
and 3c are shown in Figs. 3b and 3d. Figure 3e gives
the 95% streamflow intervals calculated from 100 TOP-
MODEL runs on the 100 synthetic precipitation records.
The upper and lower probability intervals at any single
time step #, represent the streamflow values that bracket
the unknown streamflow response for the same time step
t, in 95 out of 100 simulated realizations. Such prob-

ability intervals, and all subsequent ones presented in
this study, are therefore pointwise intervals, that is, they
pertain to a single time step; they should not be inter-
preted as joint intervals involving more than one time
step. The simulated precipitation and streamflow records
(Figs. 3a—d) have similar characteristics with the cor-
responding forecast records (Figs. 2a,b), and the 95%
probability intervals for streamflow bracket the forecast
streamflow record (Fig. 3e).

Because the parameters of the stochastic precipitation
model are monthly aggregate statistics, one should not
expect the simulated realizations to pinpoint (reproduce
exactly) the timing of forecasted high or low stage. The
time of peak of daily streamflow cannot be captured by
a model with monthly aggregated parameters. The only
statistics at the daily level are those provided by the
correlation times & and 7, which characterize persistence
patterns within the entire season and do not provide any
information on the actual time of peak of precipitation.
This is the reason why the streamflow probability in-
tervals (Fig. 3e) are very similar within each month and
differ significantly from one month to another.

The reproduction of input forecast parameter values
from the stochastic precipitation model is shown for
selected parameters in Fig. 4. The boxplots describe the
range of variability of the statistics of the § = 100
simulated precipitation records: outside whiskers cor-
respond to the 95% probability intervals, inside boxes
to the 50% probability intervals, and the vertical solid
line in the box to the median value. It can be seen that
the simulated parameter values are centered on the fore-
cast parameter value, indicated with a bullet. Similar
reproduction was also obtained for the other parameters
(not shown), including the correlation periods & and 7
of the covariance models C, (7; 8) and Cr(1; 7). As
noted in section 2a, reproduction of monthly aggregated
statistics, that is, reproduction of the stochastic precip-
itation model parameters, is achieved on average over
a large number of simulated realizations.

Clearly, the forecast parameters, used to generate the
synthetic precipitation records for arriving at the stream-
flow probability intervals of Fig. 3e, are uncertain; even
worse, they are different from the parameters of the
reference precipitation record. The task is now (a) to
provide a model of uncertainty regarding the stochastic
precipitation model parameters using parameter values
derived from historical daily precipitation records at
Hopland and (b) to propagate such parameter uncer-



152

precipitation (mm/day)

precipitation (mm/day)

JOURNAL OF HYDROMETEOROLOGY
80.0_Simulated precipitation realization #4 60.0_Simulated streamflow realization #4
70.0_:. ]
3 50.0
60.0. ]
] = 40.0]
50.0.3 :E ]
f E ]
40.03 € 300]
0 > 300
3 2
30.0.] § ]
p 2 200]
- @« 4
20.0 h
3 10.0]
10.03 M g
0. 20. 40 60. 80 0. 20 40 60. 80
day day
C D
80.0_Simulated precipitation realization #22 60.0_Simulated streamflow reali. n #22
70.0 ]
50.0
60.0 ]
= 400]
50.0 g ]
E ]
AOO é 30 0 ]
40, > 3007
“‘é ]
30.0 & ]
£ 2007
@ R
200 1
10.0]
10.0 J
0. 20, 40, 60. 80. 0. 20 40. 60 80
day day

streamflow (mm/day)

_95% probability intervals for streamflow

——— probability intervals
- = forecast

day

VOLUME 2

FiG. 3. Streamflow response to simulated precipitation forcing based on forecast parameters (diffuse prior information).
(a) and (b) Two (out of 100) synthetic precipitation records; (c) and (d) corresponding simulated streamflow realizations
derived via TOPMODEL; (e) 95% probability intervals (solid lines) calculated from 100 streamflow realizations, and
forecasted streamflow record (dashed line).
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FiG. 4. Histograms of monthly aggregated statistics from simulated realizations of area-averaged daily precipitation, based on the forecast
parameter vector. (a), (c), and (e) Simulated wet-day proportions for DJF; (b), (d), and (f) simulated mean intensities (mm day~') for DIE
The bullet (@) indicates the corresponding monthly aggregated statistics obtained from the forecast daily precipitation record.
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tainty to streamflow response calculations via TOP-
MODEL.

c. Stochastic simulation based on historical
parameters

We first investigate streamflow uncertainty bounds at
Hopland for the case of a diffuse (uninformative) fore-
cast parameter vector g, (see section 3a). This scenario
corresponds to a forecast with very low skill, whereby
the analyst has resorted to the climatological informa-
tion available at the study basin. In the context of Bayes-
ian analysis, a diffuse forecast implies that the clima-
tological (prior) parameter vectors {q,(n),n =1, ...,
N} constitute the most reliable piece of information.

Historical parameter vectors {q,(n),n =1, ..., N}
for Hopland are derived from daily (area averaged) pre-
cipitation records during a period of 34 yr from 1958
to 1992. The histograms of selected parameters are
shown in Figs. 5a—{. Again, boxplots describe the range
of variability of the statistics of the 34 parameter values:
outside whiskers correspond to the 95% probability in-
tervals, inside boxes to the 50% probability intervals,
and the vertical solid line in the box to the median
parameter value. Symbols (O) and (X) depict the cor-
responding parameters derived from the forecasted and
reference precipitation records, respectively. From Fig.
Sc, it can be seen that the historical wet-day proportions
in January do not include the corresponding reference
and forecasted proportions. The same is also true for
the wet-day proportion in February (Fig. 5e), although
in this case the reference parameter lies within the range
of variability of the corresponding historical propor-
tions. Clearly, the specific forecast period (DJF 1987/
98) was an unusual one in terms of precipitation, in that
it was affected by a strong historical ENSO event.

A set of § = 100 correlated realizations of L = 11
parameters was drawn from the joint density of histor-
ical parameters. First, the N = 34 historical values
{gt(m),n =1, ..., N} of each parameter ¢} were trans-
formed to follow a normal distribution with the same
mean and variance as the historical ones [see Eqgs. (18)
and (19)] via the normal scores transform. Then, a set
of § = 100 parameter vectors {q,(s), s = 1, ..., S}
were drawn from a multivariate normal distribution with
mean u, and covariance 2, (the off-diagonal entries of
this covariance matrix were calculated from the normal
score transformed data). The simulated parameter re-
alizations were finally back-transformed to approximate
the original (non-Gaussian) distribution of historical pa-
rameters; the transformation used is the inverse normal
scores transform. In this way, the histogram of historical
parameters is reproduced by construction, as well as the
correlation coefficient between any pair of historical pa-
rameters (in the Gaussian space). This histogram repro-
duction is shown for selected parameters via the quan-
tile—quantile plots of Fig. 6. A similar reproduction was
also obtained for the case of the correlation coefficient
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between any two pairs of historical parameters (not
shown).

These correlated parameter realizations were subse-
quently used by the stochastic precipitation model (de-
scribed in section 2) to generate S = 100 synthetic pre-
cipitation records. Two of these records are shown in
Figs. 7a,c, along with the corresponding TOPMODEL-
derived streamflow response (Figs. 7b,d). The 95%
pointwise probability intervals based on the full set of
100 streamflow realizations are shown in Fig. 7e, along
with the observed streamflow record. These latter prob-
ability intervals are wider in comparison with those
shown in Fig. 3e, because of the introduction of the
additional parameter uncertainty.

d. Stochastic simulation based on forecast and
historical parameters

We now investigate streamflow uncertainty bounds at
Hopland for the case of a nondiffuse (informative) fore-
cast parameter vector ¢, in a single member ensemble
forecast setting (see section 3b). In a multivariate normal
framework, this implies that both the mean vector u
and the covariance matrix % are unknown. The addi-
tional uncertainty due to the unknown covariance matrix
3, is expected to lead to wider uncertainty bounds for
the streamflow response at Hopland.

First, the posterior mean vector g, and covariance
matrix %, are computed from Egs. (25) and (26), using
the N historical parameter vectors {q,(n),n = 1, ...,
N} and the single forecast parameter vector q,. Then,
a set of § = 100 realizations of parameter vectors {q,(s),
s =1,...,S} is drawn from the posterior multivariate
normal distribution using the procedure described in
section 3b.

The simulated parameter vectors were used by the
stochastic precipitation model to generate a new set of
S = 100 synthetic precipitation records, which then were
input to TOPMODEL for calculating the corresponding
streamflow response. The 95% probability intervals for
streamflow are shown in Fig. 8a, along with the ob-
served streamflow record. The probability intervals are
much wider in comparison with those shown in Figs.
3e and 7e, because of the introduction of additional
parameter uncertainty (unknown covariance matrix).
Figure 8b gives the corresponding streamflow proba-
bility intervals calculated from 100 TOPMODEL-de-
rived streamflow responses to 100 synthetic precipita-
tion records generated using the reference parameters
obtained from the reference precipitation record (see
Fig. 2c and Table 1).

Figure 8 indicates that a correct specification of the
stochastic precipitation model parameters leads to a
more accurate and precise streamflow uncertainty model
for Hopland during DJF 1997/98, when compared with
the one shown in Fig. 8a. Here, the term accurate implies
that the probability intervals bracket the observed
streamflow record, and the term precise implies that
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Fia. 5. Histograms of selected stochastic precipitation model parameters derived from historical (1958-92) DJF data at Hopland, along with
the corresponding forecast (O) and reference (X) parameters (average wet-day precipitation intensity is expressed in millimeters per day).
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Q-Q plot: wet-day proportion for January
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30.0_Q-Q plot: mean intensity for January
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FiG. 6. Reproduction of histograms of historical parameter values from the corresponding simulated realizations. Quantile—quantile plots
of distributions of simulated versus historical values for (a) wet-day proportion in Jan, (b) mean intensity in Jan, (c) standard deviation of
intensity in Jan, and (d) correlation length of the covariance model C,(7; 8).

these intervals are narrow. Simultaneous achievement
of accuracy and precision in uncertainty modeling is the
ultimate, but unfortunately conflicting, objective: the
more confidence one places in a forecast record, the
more precise is the uncertainty model and the larger the
risk for it to be inaccurate.

e. Uncertainty in forecasted flood probabilities

Last, we investigate uncertainty regarding a flood
forecast at Hopland, itself a probability value. For each
member of the ensemble sets of simulated streamflow
realizations corresponding to different parameter vec-
tors (see sections 4b through 4d), we calculated the

percentage of days with simulated stage above the
threshold value of 40 mm day~' (also termed crossing
rate). The histograms of such crossing rates, which can
also be interpreted as flood probabilities, are shown in
Figs. 9a—c. We also calculated the corresponding cross-
ing rates from 100 streamflow realizations based on the
reference precipitation parameters (see Table 1), and
their histogram is shown in Fig. 9d. The crossing rate
calculated from the reference TOPMODEL-derived
streamflow record of Fig. 2d (solid line) is 1.1% and is
depicted in Figs. 9a—d with a bullet; the corresponding
forecast-based crossing rate is 0.0%.

Simulation based on forecast parameters (Fig. 9a)
leads to a small variability in the simulated rates, with
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F1G. 7. Streamflow response to simulated precipitation forcing based on historical parameters (diffuse forecast
information). (a) and (c) Two (out of 100) synthetic precipitation records; (b) and (d) corresponding simulated streamflow
realizations derived via TOPMODEL; (e) 95% probability intervals (solid lines) calculated from 100 streamflow
realizations, and observed streamflow record (dashed line).
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F1G. 8. 95% probability intervals for TOPMODEL-calculated streamflow response to simulated precipitation forcing based on (a) simulated
parameters derived from the historical and forecast precipitation records and (b) reference parameters derived from the reference precipitation

record.

the reference of 1.1% being underestimated (the mean
simulated crossing rate is 0.14%). Simulation based on
historical parameters (Fig. 9b) leads to an increased var-
iability in the simulated crossing rates, with the refer-
ence rate of 1.1% being now less underestimated (the
mean simulated crossing rate is 0.51%). The reference
rate of 1.1% is still not reproduced, because of the de-
viation of the reference precipitation model parameters
from the range of variability of the corresponding his-
torical parameters. Simulation based on both forecast
and historical parameters (Fig. 9¢) leads to an even larg-
er variability in the simulated crossing rates, with the
reference rate of 1.1% being now even less underesti-
mated (the mean simulated crossing rate is now 1.01%).
Last, the simulated crossing rates for the case of stream-
flow simulation based on the reference precipitation
model parameters (Fig. 9d) bracket the reference rate
of 1.1%, and the mean simulated rate is now 1.12%.
This latter exercise indicates that a correct specification
of the parameters of the stochastic precipitation model,
based on the reference parameter set, leads to relatively
more accurate and precise bounds for the crossing rates.

5. Conclusions

A stochastic simulation procedure for propagating un-
certainty in dynamically downscaled seasonal forecasts
of area-averaged daily precipitation to associated hy-
drologic response studies is presented in this paper. Syn-
thetic area-averaged daily precipitation records are gen-
erated from a stochastic precipitation model whose pa-
rameters (e.g., proportion of wet days in a month, mean
and variance of wet-day precipitation intensity in a
month) are derived from the dynamically downscaled

seasonal forecast. Parameter uncertainty is characterized
via an empirical Bayesian model, using as prior infor-
mation a set of similar climatological parameter values
derived from historical precipitation records at the study
basin. The impact of uncertain daily precipitation forc-
ing on the associated streamflow response is evaluated
by running a deterministic hydrologic model (in this
case TOPMODEL) on each member of the ensemble.
The stochastic simulation procedure is applied for
assessing uncertainty in forecasted daily streamflow due
to uncertain area-averaged daily precipitation forcing at
the Hopland basin in the northern California Coast
Range for the winter months (DJF) of 1997/98. In the
case of correct parameter identification, that is, when
stochastic precipitation model parameters are derived
from the reference (but unknown in practice) precipi-
tation record at Hopland, it is demonstrated that the
developed model leads to realistic uncertainty bounds
for the observed streamflow response. When the sto-
chastic precipitation model is driven by the forecast pa-
rameter vector only, the uncertainty bounds for the
streamflow response bracket the forecasted streamflow
response but are too narrow. The risk of incorrect pa-
rameter identification, that is, the risk of a poor forecast
precipitation record, is mitigated by accounting for his-
torical data at Hopland, leading to much wider proba-
bility intervals for streamflow response. Bayesian anal-
ysis simply explicates the trade-off between uncertainty
bounds from a single, but possible wrong, forecast ver-
sus much wider, but more likely to include the true
response, uncertainty bounds from historical records.
Although precipitation spatial variability is not ac-
counted for in this study, simulated streamflow closely
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Fic. 9. Histograms of percentage of days over the forecast period for which simulated streamflow exceeds the 40 mm day~! threshold
value (also termed crossings), based on different parameter vectors used in the stochastic precipitation model. Such parameters were derived
from (a) the forecast precipitation record, (b) the historical precipitation data, (c) both forecast and historical records, and (d) the reference
precipitation at Hopland. The bullet (@) indicates the reference (TOPMODEL based) percentage of 1.11%; the corresponding forecast-based

percentage is zero.

approximates the observed record in the case of correct
parameter identification. Further developments for ex-
plicit handling of precipitation spatial variability will
be reported in the near future.

Stochastic simulation could also be used for arriving
at ensemble daily forecasts in a perturbed climate pro-
jection setting. Such daily ensemble forecasts could be
used for probabilistic inference in impact assessment
studies, for example, for calculating flood probabilities
in a doubled carbon dioxide scenario. In such extrap-
olative scenarios, however, additional sources of un-
certainty, for example, the impact of unknown soil mois-
ture on streamflow, should be also investigated along
with uncertainty in precipitation forcing. Parameter un-

certainty and system feedbacks, not addressed in this
study, could be of critical importance in a climate
change context.

Last, it should be stressed that probabilistic analysis
provides a much richer input to risk-based decisions,
instead of a single projected answer. Probabilistic anal-
ysis allows investigation and selection of alternative sce-
narios based on their corresponding environmental or
societal consequences. The uncertainty propagation pro-
cedure proposed in this paper allows for such a prob-
abilistic analysis in hydrologic impact assessment stud-
ies.
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