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Enhancements in Epilepsy Forewarning Via Phase-Spadissimilarity

We extend the recent application of phase spacesdimilarity measures for scalp EEG data
in two directions. First, we use a forewarning widow of up to eight hours, thereby providing more
forewarning time of the seizure event. This windowvas limited to a maximum of one hour in our
previous work. Second, we combine information fromiwo channels via a multi-channel phase-space
to improve the quality and confidence limits of the forewarning. Combining these two
enhancements, we obtain two-channel results that arsuperior to the single-channel ones.

Index Terms— dynamical systems, epileptic seizure forewarningjonlinear analysis, phase-
space dissimilarity measures, multi-channel analysi

Epilepsy afflicts about 1% of the world’s populatjoor more than 50 million people. Typical
seizures are not serious medical events in themsebut may become life-threatening while the péatie
is pursuing hazardous activities (e.g., drivingssimming alone). However, extreme epileptic events
require immediate medical intervention to avoid derd unexplained death, which is characterized by
fatal cardiac arrhythmia and/or breathing cessatmlong with concomitant injuries. Two-thirds of
patients have events that are controllable by epmiteptic drugs, but the medications frequently ehav
debilitating side effects (e.qg., sleepiness, futtagking, and disorientation). Another 7-8% candoeed
by epilepsy surgery, which may result in cognitimgpairments. For the remaining 25% though, no
available therapy is effective. Reliable seizureefearning would allow preventive action, reduce
morbidity and mortality, and improve patients’ gtyabf life.

Early work on prediction of epileptic seizuresgae in the 1970s (Viglione and Walsh, 1975),
expanding rapidly over the last decade, due totaligilectroencephalographic (EEG) technology and
advances in nonlinear dynamics (Eckmann and RUEN®S5; Jackson, 1989; Strogatz, 1994; Abarbanel,

1996; Kantz and Schreiber, 1999). Babloyantz ansté&xte(1986) and Babloyantz (1990a,b) suggested



that EEG data have noisy deterministic featuresphaduce diverse behaviors, including chaos, algho
some investigators have challenged this idea ¢vaet al., 1996; Jeong et al., 1999; Gribkov and
Gribkova, 2000). Thdournal of Clinical Neurophysiologyublished a recent focus issue (May 2001) on
epilepsy prediction (Jerger et al., 2001; Lehnettal., 2001; Le Van Quyen et al., 2001; Osorialet
2001; Protopopescu et al., 2001; Savit et al., 280hderam et al., 2001). Litt and Echauz reviethés
research in May 2002, including time- and frequedognain analysis, nonlinear dynamics and chaos, as
well as neural networks and other artificial intghce approachetEEE Transactions on Biomedical
Engineering published a focus issue (May 2003) on predictidnepilepsy (Chavez et al., 2003;
D’Alessandro et al., 2003; Hively and Protopope2€03; lasemidis, 2003; lasemidis et al., 2003;ds0p
da Silva et al., 2003; McSharry et al., 2003; No#ad Elliott, 2003; Paul et al., 2003; Rieke et 2003;
Slutzky et al., 2003; Witte et al., 2003). Typicakasures for prediction include the largest Lyapuno
exponent (lasemidis, 2003), synchrony (Chaveal.e2003), correlation integral (Notley and &iij
2003), and various time- and frequency-domain featwf EEG energy (D’Alessandro et al., 2003).
These results are mostly based on analysistigicranial EEG.

We usescalp EEG, which is non-invasive, but has resisted jmevianalyses due to signal
attenuation through bone and soft tissue, and nungdion from eye blinks and other muscular artgac
Our initial analysis of scalp EEG (Hively et al99b) used traditional nonlinear measures (TNM)hsag
Kolmogorov entropy and correlation dimension, yieddinconsistent forewarning. In our subsequent
work (Hively et al., 1999; Hively, Clapp et al., @D Hively, Gailey et al., 2000; Hively, Protopopet
al., 2000; Gailey et al., 2001; Protopopescu et28l01; Hively and Protopopescu, 2003), we develope
and implemented the phase-space dissimilarity meag@SDM). We also showed by direct comparison
that these measures provide consistently bettemwimming than TNM, independent of patients’ agg, se
event onset time, pre-event activity, or awake-sugr asleep-state baseline state. The improved
discrimination by PSDM is a direct result of thdefinition and calculation by summing the absolute

value of differences, while TNM are based on aedédhce of averages.



Previously, we limited the forewarning Bs&é to no more than one hour before the clinycall
characterized seizure. This forewarning window yasivated by two reasons, namely: (i) we wanted to
see whether any forewarning can be obtained ataal; (i) forewarnings longer than one hour were
generally considered too long and/or too uncertaibe of clinical value. However, recent work bytLi
and Echauz (2002) demonstrated forewarning of séWeurs before the epileptic events. Consequently,
the present work extends the time window to thelémgth of the data, yielding forewarning<# hours,
which is consistent with Litt and Echauz (2002) .

In our previous work (Hively et al., 1999; Hivelglapp et al., 2000; Hively, Gailey et al., 2000;
Hively, Protopopescu et al., 2000; Gailey et al002 Protopopescu et al., 2001; Hively and
Protopopescu, 2003), we used forewarning indicatiwriack thereof in non-event datasets) in any one
channel, regardless of the results in other chanr@becifically, instances of a true positive (true
negative) in one channel are sometimes accompadnjed false negative (or false positive) in other
channel(s) for an event (non-event) dataset. Caestly, the any-one channel criterion is rather kvea
and clearly needs improvement. In the present wask,abandon the any-one channel criterion, and
instead usesimultaneous information from a combination of tWiged channels with a resultant
forewarning that is consistently more robust tham forewarning from either of the individual chalsne
alone. This result is consistent with our intuiteepectation that the use of two channels shoukase
the amount of information in comparison to the Enghannel analysis, thereby providing a stronger
forewarning for all patients.

The remainder of this paper is organized d®vis. The Methods section describes the data
acquisition, artifact filtering, PSDM methodolognd approach for channel-consistent forewarning. Th
Results section explains our analysis and presimsresults. The Discussion section presents our
concluding remarks.

METHODS

We retrospectively analyzed 60 scalp EEG datadétsvith at least one electrographic temporal-



lobe event, plus 20 datasets without epileptic &ssas controls. The data were obtained from 4 kifft
patients with ages between 4 and 57 years. Hati@patients have only a single dataset. The @@er
datasets are from 11 different patients with midtgatasets: 7 patients with 2 datasets, one patitm 3
datasets, 2 patients with 4 datasets, and onenpatith 5 datasets. Our analysis begins at thé¢ sfaach
dataset, and ends with the last full window of datawith the window that includes the first event
(whichever comes first). The dataset lengths ated®en 5,016 s (1 h and 23 min) and 29,656 s (8dh an
14 min), with an average of 15,668 s (4 h and 23)niihe cumulative period of the analysis is 948,40
(261 h and 8 min). If we split these 60 datasetis ayjually-sized training and test sets, then igadte
statistics would result. Specifically, the resuttémaining (and test) sets would then have onlyrien-
event datasets. Moreover, only fifteen datasets fitwe patients with multiple datasets would be latée
for the channel-consistency analysis for the trajn{and test) sets. Consequently, we use all of the
datasets as a training set, which clearly limiesgtrength of our conclusions.
Acquisition and preparation of EEG data

EEG data were acquired from each patient overrakdays to two weeks under standard clinical
protocols. Recordings came from 32-channel instnimméNicolet-BMSI, Madison, Wisconsin) with 19
scalp electrodes in the International 10-20 sysiéplacement (see Fig. 1). Each channel was areglifi
separately, band-pass filtered between 0.5-99 I{gtiz¢d at 250Hz, and stored on VHS tape. The
physicians independently selected data from thikiae, as “representative” of the patients’ corudfifi
without regard to the presence (or absence) dhatsi or other noise. To ensure adequate dataufor o
analysis, we further require that: (i) event daiageclude a baseline period of at least two hglus the
entire event segment, and (ii) non-event datasetsldmger than one hour. The physician’s
characterization covered only the dataset, whiphesents a fraction of the total monitoring perjcaisd
in principle limits the generality of our result&nalysis of the full monitoring periods is beyorfiet
scope of this work. The characterization of eactagi includes: patient’'s sex and age; start aog st

time of the data recording; seizure event onseg;tseizure type; and the patient’s activity atdteat of



the recording and immediately prior to the eveatslaown in Table 1 of our earlier work (Protopapes
et al., 2001).

We first divide the stream of time-serial dateinontiguous, non-overlapping windows (cutsets)
of N data points. The artifact signal is removed framhecutset with a novel zero-phase quadratic filter
(Hively et al., 1995), using a moving window of @gtoints,g, with the same number of data poims,
on either side of a central point. We fit a quadratrve in the least-squares sense over this windo
taking the central point of the fit as the low-foeqcy artifactfi. The residual valugg, = ¢ —f, has
essentially no low-frequency artifact activity.

Phase-space methodology

We convert each artifact-filtered point into aaiete symbols, as one oE different integers, &

s < S - 1. We use contiguous, non-overlapping partititmsobtain uniform symbols between the
minimum, gmin, @and Maximumgmas, in the data of the first base case cutset &ithINT[S(gi — Omin)/( Omax

- gmin)]- The functionINT converts a decimal number to the next lower integey.,INT(3.14) = 3.
Alternatively, one can use equiprobable symbolspiglering allN baseline data points from the smallest
to largest value. The resultant symbolizatiorsis: O forgmn< g <gi;s=1forgi<gi <@ ...;§=S-
2forgs2< g <gsgy ands = S—1forgs:< g < gmnax The firstN/S of these ordered data values
correspond to the first symbol, 0, by an approprigioice ofg;. Ordered data valuedlfS+1 through
2N/S correspond to the second symbol, 1, and so o tipet last symbolS — 1. Equiprobable symbols
have non-uniform partitions in signal amplitude lwdynamical structure arising only from the phase
space (PS) reconstruction of Egs. (1)-(2). Larggatiee and/or positive values gf have little effect on
equiprobable symbolization, but significantly charige partitions for uniform symbols.

We assume that the complex, high-dimensionahbdginamics are confined to a bounded, low-
dimensional region, called an “attractor.” There 8ymbolized data can be converted into a phase spa
representation by standard reconstruction of theadycs via time-delay vectors (Eckmann and Ruelle,

1985). The single-channel form is:



(1) y(i) =[S, Sen s - - - +Se@an]
The symbolization discretizes the PS representatimrs’ bins to extract event forewarning on the basis
of a local time delay), and dimensionalityd. In addition, information exchange in the braimeects
local processes, implying that a multi-channel B&aor ofC channels (Boccaletti et al., 2002) could
contain more information. Here, the underlying agstion is that additional channels add more
information about the dynamics that are conneciadhe overall process. The resultant multi-cham|
form is:
2) y(i) = [S(L), S(Lisr s «ov s S(L)ix@aprs -+ (C)iy AC)isn s +++ » ACix (@],
where,s(k) denotes symbols from theh channel, k k< C. Symbolization divides the multi-channel PS
into S° bins. We count the number of points that occueach PS bin, thus forming a discrete DF that
accounts for the geometry and visitation frequenicythe attractor. We denote the population ofithe
bin of the DF,Q;, for the base case, aiflfor a test case, respectively. An (un)changingimtfcates
(un)altered dynamics.

We compare the test case to the base dasdissimilarity measures (DM) betweé) and R

(Protopopescu et al., 2001):

@ X =Z(Qi -R)/(Q +R),

@ L=2IQ-R|.

These sums run over all populated PS cells. Fhmeasure is a powerful, robust, and widely used
comparison between observed and expected freqseftiex’is arelativemeasure (Hively et al., 1999)
of dissimilarity in this context, rather than a heatical distance or an unbiased statistic foeidtg

or rejecting a null statistical hypothesis. Thedistance is the natural metric for DFs by its clirelation

to the total invariant measure on the attractor defihes abona fidedistance. Consistent calculations
require the same number of points in b@hand R, identically sampled; otherwise the DFs must be

properly rescaled. We also capture the dynamical fl(Abarbanel, 1996) between PS states,



y(i) - y(i + 1), as a connected PS (CPS) vecir) = [y(i), y(i + 1)], with corresponding DFs and
dissimilarity measures (denoted below by the subisar) that have the same form as the PS measures
(Protopopescu et al., 2001; Hively and Protopopea@03).

We use the DFs from the fiBtcutsets to represent non-seizure (baseline) dysamithB=10 to
capture sufficient variability. The baseline DFg @&xhaustively compared to one another in pair-wise
fashion via Egs. (3) - (4) to obtain the mean basalissimilarity,V, as well as a corresponding standard
deviationg; for each DM from the se¥ = {L, L., X2 Xc’}. The disparate range and variability of these
measures are difficult to interpret, particularlyr fnoisy data, so we need a consistent criterian fo
comparison. For this purpose, we renormalize thesimiilarity measures (Protopopescu et al., 2001;
Hively and Protopopescu, 2003) by comparing eadheB baseline cutsets to eadthf test case cutset,
and then computing the corresponding average dissity value,V;, of theith cutset. The renormalized
dissimilarity is:U(V) = VM, —V|/g, as the number of standard deviations that thects® deviates from the
baseline mean. We use these renormalized dissityilareasures to test for statistically significant
change.

Data analysis

The analysis starts at the beginning of the eatasd proceeds forward in time until a forewarning
occurs, as defined next. We define a true pos{fi®e= 1 in the sum below) as a forewarning in any one
channel when a number of simultaneous PSDW],, exceed a threshold) = U¢, for a number of
sequential occurrenceldocc, within a preset forewarning window, 1 mingt; < Tsz — Trw < T, before
the seizure onset timé&gz The corresponding forewarning timeTisy. The value off; was chosen, based
on input from a physician collaborator that eventhwione minute of forewarning,
useful things could be done to help the patienticadigt’. A false positive (FP) occurs Tz — Tew < T2

or Tsz; — Tew > T, in an event dataset, dor a forewarning in a non-event dataset. A true

! Private Communication from M. L. Eisenstadt, M.Bh.D.



negative TN = 1) corresponds to no forewarning in a non-ewdataset. No forewarning in an event
dataset is a false negative (FN). The number @ imstances of channel-consistent forewarning (Mive
and Protopopescu, 2003) for tjib channel of théth patient isTy = % [TPy + TNy], where the sum
over datasets runs froml to M(k) = number of datasets for tikeh patient. The occurrence of = 2
indicates consistency in more than one dataseth®rsame patient, whil§ < 1 means that thgh
channel provides no such consistency. The bestneha@onsistency is, = max (), for Ty = 2 andk
fixed; ¢« = 0, if T < 1; ¢ = 1 for patients with only one dataset. The chanoektstent total-true rate
then become$; = [Z« cl/[Zk M(K)]. Here,k runs over allP of the patients, which weights each dataset
equally.
To maximizefr, we searched over parameters in the followingean§ 00& N < 100 000, X w
<1000, < S< 200, 2< d < 26 (single channel via Eg. 1) ol < 13 (two-channel via Eq. 2), anckl
A < 100. We use double-precision b&earithmetic to represent the PS state, thus ligitthe
combination of values & andd. A huge reduction in the computational effort isadbed by varying one
parameter at a time, while holding the others fixgus approach avoids an exhaustive multi-dimeredio
search at the expense of sub-optimal, but quitepable results (Protopopescu et al., 2001). The
forewarning analysis of the previous paragraph egtineely searches over other parametersNky < 4,
1 < Noce < 100, 0.00X U < 2. After determining the best parameters, theyaimis much faster than
the data-recording time.
RESULTS

As explained in the introduction, our previousrkvo (Protopopescu et al, 2001; Hively and
Protopopescu, 2003) restricted the forewarning aind, < 1 hour, for artifact-filtered, monopolar data.
Here, we first examine the effect of opening thefearning window td, < 8 hours, for combinations of
unfiltered and artifact-filtered, monopolar anddigr data. Figure 1 shows the electrode locatidable
1 (rows 1-8) shows monopolar results (M in columrwith artifact filtering on (column 2) for various

values of T, (column 3), and corresponding values by (column 4), Nocc (column 5),



andUc (column 6). This analysis uses the best set @maters\=54,N=22000,d=2, S=20,A=17) from
our most recent work (Hively and Protopopescu,3200r equiprobable symbols and single-channel
analysis via Eqg. (1). Statistical measures of tewarning times (in seconds) include the minimum
(MIN in column 7), maximum (MAX in column 8), avgga (AVG in column 9), and sample standard
deviation (SD in column 10). Columns 11-17 displlag distribution ofTry in one hour increments, from
<1 hour, 1-2 hours, and so on up to 6-7 hours. Thgnitude off; depends in this case on the (weak)
any-one-channel criterion, and always rises moncatly as T, increases. Consequently, we cite only
changes it for each increase if,, Afr = x/60. For monopolar analysis with artifact filteringe obtainx

= 3 and 2 as the maximum forewarning time increfrees T, < 1 hour toT, < 2 hours, and front, < 2
hour toT, > 2 hours, respectively. Rows 9-16 show monopaaults without artifact filtering. Here, we
obtainx = 12, 1, 1, 1 when the maximum forewarning timgréases fronT, < 1 hour toT, < 2 hours,T,

< 2 hours toT, < 3 hours,T, < 3 hours toT, < 4 hours, and fronT, < 4 hours toT, > 4 hours,
respectively. Thesg-values are smaller than the artifact-filtered dewparts forT, < 4 hours, and then
are the same fdr, > 4 hours. However, the distribution &, without artifact filtering extends beyond 6
hours, which is not sufficiently conclusive forratial use. Rows 17-24 show results with artifaéefing

for 18 bipolar channels (B in column 1). A chaniwlthis case is the difference between adjacent
monopolar channels, removing most locally-measaréitacts, while retaining a differential measufe o
the brain dynamics. Table 2 includes the defingiofthe bipolar channels. Here, we obtam 10 and 1
as the maximum forewarning time increases fiigrg 1 hour toT, < 2 hours, and front, < 2 hour toT,

> 2 hours, respectively. Thekevalues are below the counterpart monopolar resuiltg for T, < 1 hour,
and then are consistently larger fir> 1 hour. Rows 25 through 32 show forewarning far bipolar
montage without artifact filtering. Here, we obtaialues ofx = 3 and 2 as the maximum forewarning
time increases froni, < 1 hour toT, < 2 hours, and frorii, < 2 hour toT, > 2 hours, respectively. These
fr values fall below the artifact-filtered bipolarstédts only for 1< T, < 2 hours. We note thidgy = 4

occurs for bipolar channels with and without adiféiltering for T, > 4 hours, which is a very robust



result that is not consistently displayed by thenomolar results. These results show the superiofity
artifact-filtered bipolar EEG, with a smallest maxim forewarning of 5.32 hours (19,184 s), conststen
with recent work by Litt and Echauz, 2002).

Another extension of the methodology is the rachi@nnel form of Eq. (2). Based on the results of
the previous paragraph (Table 1), we analyze twiaet-filtered, bipolar channels. An exhaustive
analysis of all possible pairs of eighteen bipothannels would involve 153 (18 17/2) unique
combinations, which is beyond the scope of the gmesvork. Instead, we restrict the analysis to
symmetric pairs of bipolar channels, which are efge to contain complementary information. Table 2
shows the results for the singthannel analyses of Table 1, in comparison witl-dhannel analysis for
equivalent parametersv£54, N=22000,d=1, S=20) with a forewarning window of one hour. Channel
consistency is not required for this portion of @ralysis, since the channel is fixed in each chise.
value ofA is needed for the dual-channel analysis, becaqsé2 ford=1 reduces tg(i) = [S(1);, S(2)].
Larger values oT; increase the total true rate, as shown in Tabléoever, the point of this additional
analysis is the relative improvementfinfrom single-channel to dual-channel analysis. Aseeted, the
dual channel analysis yields a larger total trie than either of the single-channel analyses althe
extreme frontal, bipolar channels have the besll tivte rates, even though these EEG data are for
temporal-lobe epileptic events. The reason for thigzling result may be that channels closer to the
temporal lobes are too sensitive, while those samaéviarther away give appropriate sensitivity for
forewarning. We note that the frontal (foreheadpruiels have minimal hair, potentially enabling
electrode placement by the patient or a care-dordong-term, non-clinical, ambulatory monitoring.

A further improvement is optimization of the paeters for the artifact-filtered, bipolar pair with
the best total true in Table 2 (C1-C9). A systemagarch (Hively and Protopopescu, 2003) yields a
result that has one false-negative and three fadséive indications. This result corresponds to an
average rate of 0.011 false positives per hougegolivalently a mean time between false positive87of
hours. This FP rate is more than an order of madaitbelow the maximum acceptable rate of

0.15FP/hour, as recommended by Winterhalder ¢2@03). We obtain this result for uniform symbols



with w=280,N=19316,d=1, andS=55. (Equiprobable symbols give even lower valuef i this case.)
This instance has nk, because Eq. (2) fa=1 reduces tg(i) = [S(C1), S(C9)]. While this result is an
improvement over our earlier work (Hively and @pmopescu, 2003), the choice of parameters is not
robust, because a unit change in any of these péeasnowers the total true rate. Thus, improvenrent
the forewarning robustness is an important focusfditure work. Figure 2 shows the corresponding
distribution of forewarning times. We note that thenulative distribution function of forewarningnes
in Fig. 2 rises roughly linearly from 0.5h to 3.5thile encompassing 90% of the forewarnings. Fidure
shows an example of thg dissimilarity measures for the analysis of char@&lonly, channel C9 only,
and dual-channel analysis for C1 and C9. This &glrows that the dual-channel-result extracts ¢fieb
forewarning from channel C9 rather than that froln & expected.
DISCUSSION

We deem these results as encouraging and woftroprdinuing development despite several
limitations, which we discuss next. First, we ueofthe data as a training set, limiting the styth of
our conclusions. However, the alternative wouldlme equally-sized training and test sets. Theltasu
training (and test) sets would then have only ten-avent datasets and fifteen datasets for channel-
consistency, which would result in inadequate stiai. Second, we analyze EEG data from a condrolle
clinical setting, rather than an uncontrolled, afatmry environment. Third, our results depend orefta
adjustment of the analysis parameters for the tmtat-true rate. Fourth, we analyze only physician-
selected portions of the patient data, rather tharfull monitoring period. Fifth, these resultge &r only
sixty datasets (forty with epileptic events) fosiagle seizure type (temporal lobe). Much more data
(hundreds of datasets spanning >1000 h) are ndedeke proper choice of the analysis parameters as
part of a robust and conclusive statistical val@tat These data requirements are far beyond owwepte
capabilities, and almost everyone else’s, basegremsent publications. Sixth, we have not performed
prospective analysis of long-term continuous daflaich is the acid test for any predictive approach.
Finally, the present analyst-intensive methodolapgs retrospective analysis of archival EEG on a

desktop computer. Ambulatory forewarning requiraslgst-independent, prospective analysis of real-



time EEG on a portable device. Clearly, much waains to address these issues. Thus, we view the

importance of this work as an example of the oV@atiential of the methodology, rather than thecepe

results.
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Table 1 Largestt for monopolar (M) and bipolar (B) montage withifardt filtering (AF) on or off

---------- Tew(S)------ ----Distribution of Tew---
MB  AF Ty(h) Neim Neec U M N MAX AVG sSD 1h 2h 3h 4h 5h 6h 7h
1) M on 1 4 54 0.012 60 3588 2095 905 77
2) M on 2 4 41 0.017 68 7164 4229 1945 63 108
3) M on 3 23 43 0.073 76 10772 6153 2739 60 126 118
4) M on 4 4 41 0.016 68 14396 7196 3370 72 149 159 66
5) M on 5 4 41 0.016 68 17652 7614 3772 72 149 159 66 23
6) M on 6 4 41 0.016 68 20512 7753 3954 74 151 161 68 23 6
7) M on 7 4 41 0.016 68 20512 7753 3954 74 151 161 68 23 6
8) M on 8 4 41 0.016 68 20512 7753 3954 74 151 161 68 23 6
9) M of f 1 >3 53 0.083 140 3576 2096 1020 53
10) M off 2 4 54 0.011 76 7196 4115 2025 64 103
11) M off 3 23 47 0.066 136 10720 6271 2817 56 132 125
12) M off 4 4 46 0.014 120 14268 7424 3639 57 139 114 75
13) M off 5 3 2 0.015 316 17776 8619 4658 28 42 41 35 22
14) M off 6 3 2 0.015 316 20944 9281 5212 28 42 41 35 22 11
15) M off 7 3 2 0.015 316 21876 9351 5282 28 42 41 35 22 11 1
16) M off 8 3 2 0.015 316 21876 9351 5282 28 42 41 35 22 11 1
17) B on 1 >3 50 0.063 72 3552 1883 1016 72
18) B on 2 23 49 0.062 132 7184 4285 2134 66 107
19) B on 3 23 47 0.062 176 10744 6016 2725 66 118 119
200 B on 4 4 34 0.030 76 14380 7043 3425 54 131 109 53
21) B on 5 4 34 0.030 76 17828 7575 3924 57 132 110 54 24
22) B on 6 4 34 0.030 76 19184 7666 4040 57 132 110 54 24 3
23) B on 7 4 34 0.030 76 19184 7666 4040 57 132 110 54 24 3
24y B on 8 4 34 0.030 76 19184 7666 4040 57 132 110 54 24 3
25) B off 1 4 56 0.012 144 3552 2211 938 72
26) B off 2 4 56 0.013 104 7196 4171 1825 71 114
27) B off 3 4 56 0.013 104 10572 5460 2514 68 120 75
28) B off 4 4 34 0.027 76 14368 7510 3405 43 136 117 66
29) B off 5 4 34 0.027 76 17740 7974 3824 46 139 119 67 24
30) B off 6 4 34 0.027 76 20680 8173 4077 46 139 119 67 24 7
31) B off 7 4 34 0.027 76 20680 8173 4077 46 139 119 67 24 7
32) B off 8 4 34 0.027 76 20680 8173 4077 46 139 119 67 24 7



Table 2 Total true valuesf{) for artifact-filtered bipolar analysis wiffy = 1 hour

Bipolar channels First Channel

Second Channel

Dual Channel

C01 =F7 - FP1&C09 = F8 — FP2 f{(C01) =18/60
C02=T3-F7 &C10=T4-C8 f{(C02)=13/60
CO3=T5-T3 &C11=T6-T4 f{(C03)=17/60
C04=01-T5&C12=02-T6 f{(C04)=15/60
C05 =F3 - FP1& C13 = F4 — FP2 f{(C05) =22/60
C06=C3-F3 &C14=C4-F4 f{(C06)=16/60
C07=P3-C3 &C15=P4-C4 f(C0O7)=15/60
C08=01-P3 &C16=02-P4 f{(C08)=15/60

Cl7=CZ-FZ&C18=PZ-CZ f(C17)=16/60

f(C09) =12/60
f(C10) =16/60
f(C11) =18/60
f(C12) =09/60
f(C13) =21/60
f(C14) =17/60
f(C15) =15/60
f(C16) =10/60

f1(C18) =13/60

f(C01,C09) = 27/60
f(C02,C10) = 22/60
f(C03,C11) = 21/60
f(C04,C12) = 21/60
f(C05,C13) = 26/60
f(C06,C14) = 25/60
f(C07,C15) = 22/60
f(C08,C16) = 22/60

f(C17,C18) = 23/60



Fig. 1. Layout of the EEG scalp electrodes indtamdard 10-20 montage, looking at the patientalhe
from above. The bipolar montage uses signal diffees from adjacent electrodes, such as C1=FR
and G = ks — FR, which are the symmetric channels, which are amésethe multi-channel analysis via

Eq. (2).
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Figure 2: Distribution of forewarning timeTgy) for the dual-channel analysis of bipolar scalpgEkith

fr = 56/60. The corresponding sensitivity, TP/(TP N)JFis 39/40; the specificity, TN/(TN + FP), is
17/20. The stair-step (solid) plot indicates tHatiee occurrence frequency (arbitrary units)ief, versus
time intervals in one-hour increments, beginning Gal hour, and ending with 5-6 hours. The
monotonically increasing (dashed) curve is the datiwe distribution function (CDF) offry versus
time. The H-bar with the star in the middle indesathe mean value d%w (2.3 hours) and the standard
deviation of the mean.
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Figure 3: Typical values of the® dissimilarity measure for dataset #264 in (a) cearC1 only, (b)
channel C9 only, and (c) the dual-channel analys@1 and C9. The seizure onset occurs at 199 esnut
(solid vertical line). The forewarning threshold ikg=0.419 (Nocc=42), as denoted by the horizontal
dashed lines. The corresponding forewarning times34.8, 40.6, and 40.6 minutes before the seizure
event in subplots (a)-(c), respectively. Thus, dual-channel analysis extracts the better forewarni
from C9 rather than the shorter one from C1.
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Figure 3. Typical values of the® dissimilarity measure for dataset #264 in (a) cigarC1 only, (b)
channel C9 only, and (c) the dual-channel analys@1 and C9. The seizure onset occurs at 199 esnut
(solid vertical line). The forewarning threshold ik=0.419 (Noc=42), as denoted by the horizontal
dashed lines. The corresponding forewarning times34.8, 40.6, and 40.6 minutes before the seizure
event in subplots (a)-(c), respectively. Thus, thmal-channel analysis extracts the better forewarni
from C9 rather than the shorter one from C1.



