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Enhancements in Epilepsy Forewarning Via Phase-Space Dissimilarity 

 
 
 We extend the recent application of phase space dissimilarity measures for scalp EEG data 

in two directions.  First, we use a forewarning window of up to eight hours, thereby providing more 

forewarning time of the seizure event.  This window was limited to a maximum of one hour in our 

previous work. Second, we combine information from two channels via a multi-channel phase-space 

to improve the quality and confidence limits of the forewarning. Combining these two 

enhancements, we obtain two-channel results that are superior to the single-channel ones. 

 
 Index Terms— dynamical systems, epileptic seizure forewarning, nonlinear analysis, phase-
space dissimilarity measures, multi-channel analysis. 
 

 

     Epilepsy afflicts about 1% of the world’s population, or more than 50 million people. Typical 

seizures are not serious medical events in themselves, but may become life-threatening while the patient 

is pursuing hazardous activities (e.g., driving or swimming alone). However, extreme epileptic events 

require immediate medical intervention to avoid sudden unexplained death, which is characterized by 

fatal cardiac arrhythmia and/or breathing cessation, along with concomitant injuries. Two-thirds of 

patients have events that are controllable by anti-epileptic drugs, but the medications frequently have 

debilitating side effects (e.g., sleepiness, fuzzy thinking, and disorientation). Another 7-8% can be cured 

by epilepsy surgery, which may result in cognitive impairments. For the remaining 25% though, no 

available therapy is effective. Reliable seizure forewarning would allow preventive action, reduce 

morbidity and mortality, and improve patients’ quality of life.   

  Early work on prediction of epileptic seizures began in the 1970s (Viglione and Walsh, 1975), 

expanding rapidly over the last decade, due to digital electroencephalographic (EEG) technology and 

advances in nonlinear dynamics  (Eckmann and Ruelle, 1985; Jackson, 1989; Strogatz, 1994; Abarbanel, 

1996; Kantz and Schreiber, 1999). Babloyantz and Destexhe(1986) and Babloyantz (1990a,b) suggested 
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that EEG data have noisy deterministic features that produce diverse behaviors, including chaos, although 

some investigators have challenged this idea  (Ivanov et al., 1996; Jeong et al., 1999; Gribkov and 

Gribkova, 2000). The Journal of Clinical Neurophysiology published a recent focus issue (May 2001) on 

epilepsy prediction  (Jerger et al., 2001; Lehnertz et al., 2001; Le Van Quyen et al., 2001; Osorio et al., 

2001; Protopopescu et al., 2001; Savit et al., 2001; Sunderam et al., 2001). Litt and Echauz  reviewed this 

research in May 2002, including time- and frequency-domain analysis, nonlinear dynamics and chaos, as 

well as neural networks and other artificial intelligence approaches. IEEE Transactions on Biomedical 

Engineering published a focus issue (May 2003) on prediction of epilepsy (Chavez et al., 2003; 

D’Alessandro et al., 2003; Hively and Protopopescu, 2003; Iasemidis, 2003; Iasemidis et al., 2003; Lopes 

da Silva et al., 2003; McSharry et al., 2003; Notley and Elliott, 2003; Paul et al., 2003; Rieke et al., 2003; 

Slutzky et al., 2003; Witte et al., 2003). Typical measures for prediction include the largest Lyapunov 

exponent  (Iasemidis,  2003), synchrony  (Chavez et al., 2003), correlation integral  (Notley and Elliott, 

2003), and various time- and frequency-domain features of EEG energy  (D’Alessandro et al., 2003). 

These results are mostly based on analysis of intracranial EEG. 

 We use scalp EEG, which is non-invasive, but has resisted previous analyses due to signal 

attenuation through bone and soft tissue, and contamination from eye blinks and other muscular artifacts. 

Our initial analysis of scalp EEG (Hively et al., 1995) used traditional nonlinear measures (TNM), such as 

Kolmogorov entropy and correlation dimension, yielding inconsistent forewarning. In our subsequent  

work (Hively et al., 1999; Hively, Clapp et al., 2000; Hively, Gailey et al., 2000; Hively, Protopopescu et 

al., 2000; Gailey et al., 2001; Protopopescu et al., 2001; Hively and Protopopescu, 2003), we developed 

and implemented the phase-space dissimilarity measures (PSDM). We also showed by direct comparison 

that these measures provide consistently better forewarning than TNM, independent of patients’ age, sex, 

event onset time, pre-event activity, or awake- versus asleep-state baseline state. The improved 

discrimination by PSDM is a direct result of their definition and calculation by summing the absolute 

value of differences, while TNM are based on a difference of averages.  



 

 

4 

 

         Previously, we limited the forewarning analysis to no more than one hour before the clinically 

characterized seizure.  This forewarning window was motivated by two reasons, namely: (i) we wanted to 

see whether any forewarning can be obtained at all; and (ii) forewarnings longer than one hour were 

generally considered too long and/or too uncertain to be of clinical value. However, recent work by Litt 

and Echauz (2002) demonstrated forewarning of several hours before the epileptic events. Consequently, 

the present work extends the time window to the full length of the data, yielding forewarning of ≤6 hours, 

which is consistent with Litt and Echauz (2002) . 

 In our previous work (Hively et al., 1999; Hively, Clapp et al., 2000; Hively, Gailey et al., 2000; 

Hively, Protopopescu et al., 2000; Gailey et al., 2001; Protopopescu et al., 2001; Hively and 

Protopopescu, 2003), we used forewarning indication (or lack thereof in non-event datasets) in any one 

channel, regardless of the results in other channels. Specifically, instances of a true positive (true 

negative) in one channel are sometimes accompanied by a false negative (or false positive) in other 

channel(s) for an event (non-event) dataset. Consequently, the any-one channel criterion is rather weak 

and clearly needs improvement. In the present work, we abandon the any-one channel criterion, and 

instead use simultaneous information from a combination of two fixed channels with a resultant 

forewarning that is consistently more robust than the forewarning from either of the individual channels 

alone. This result is consistent with our intuitive expectation that the use of two channels should increase 

the amount of information in comparison to the single-channel analysis, thereby providing a stronger 

forewarning for all patients. 

     The remainder of this paper is organized as follows. The Methods section describes the data 

acquisition, artifact filtering, PSDM methodology, and approach for channel-consistent forewarning. The 

Results section explains our analysis and presents the results. The Discussion section presents our 

concluding remarks. 

METHODS 

 We retrospectively analyzed 60 scalp EEG datasets: 40 with at least one electrographic temporal-
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lobe event, plus 20 datasets without epileptic events as controls. The data were obtained from 41 different 

patients with ages between 4 and 57 years. Half of the patients have only a single dataset. The other 30 

datasets are from 11 different patients with multiple datasets: 7 patients with 2 datasets, one patient with 3 

datasets, 2 patients with 4 datasets, and one patient with 5 datasets. Our analysis begins at the start of each 

dataset, and ends with the last full window of data or with the window that includes the first event 

(whichever comes first). The dataset lengths are between 5,016 s (1 h and 23 min) and 29,656 s (8 h and 

14 min), with an average of 15,668 s (4 h and 21 min). The cumulative period of the analysis is 940,104 s 

(261 h and 8 min). If we split these 60 datasets into equally-sized training and test sets, then inadequate 

statistics would result. Specifically, the resultant training (and test) sets would then have only ten non-

event datasets. Moreover, only fifteen datasets from the patients with multiple datasets would be available 

for the channel-consistency analysis for the training (and test) sets. Consequently, we use all of the 

datasets as a training set, which clearly limits the strength of our conclusions. 

Acquisition and preparation of EEG data 

 EEG data were acquired from each patient over several days to two weeks under standard clinical 

protocols. Recordings came from 32-channel instruments (Nicolet-BMSI, Madison, Wisconsin) with 19 

scalp electrodes in the International 10−20 system of placement (see Fig. 1). Each channel was amplified 

separately, band-pass filtered between 0.5−99 Hz, digitized at 250Hz, and stored on VHS tape. The 

physicians independently selected data from this archive, as “representative” of the patients’ condition, 

without regard to the presence (or absence) of artifacts or other noise. To ensure adequate data for our 

analysis, we further require that: (i) event datasets include a baseline period of at least two hours plus the 

entire event segment, and (ii) non-event datasets be longer than one hour. The physician’s 

characterization covered only the dataset, which represents a fraction of the total monitoring periods, and 

in principle limits the generality of our results. Analysis of the full monitoring periods is beyond the 

scope of this work. The characterization of each dataset includes: patient’s sex and age; start and stop 

time of the data recording; seizure event onset time; seizure type; and the patient’s activity at the start of 
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the recording and immediately prior to the event, as shown in Table 1 of our earlier work  (Protopopescu 

et al., 2001). 

  We first divide the stream of time-serial data into contiguous, non-overlapping windows (cutsets) 

of N data points. The artifact signal is removed from each cutset with a novel zero-phase quadratic filter  

(Hively et al., 1995), using a moving window of data points, ei, with the same number of data points, w, 

on either side of a central point. We fit a quadratic curve in the least-squares sense over this window, 

taking the central point of the fit as the low-frequency artifact, fi. The residual value, gi = ei – fi, has 

essentially no low-frequency artifact activity. 

Phase-space methodology 

  We convert each artifact-filtered point into a discrete symbol, si, as one of S different integers, 0 ≤ 

si ≤ S – 1. We use contiguous, non-overlapping partitions to obtain uniform symbols between the 

minimum, gmin, and maximum, gmax, in the data of the first base case cutset with si = INT[S(gi − gmin)/( gmax 

− gmin)]. The function INT converts a decimal number to the next lower integer, e.g., INT(3.14) = 3. 

Alternatively, one can use equiprobable symbols, by ordering all N baseline data points from the smallest 

to largest value. The resultant symbolization is: si = 0 for gmin ≤ gi < g1; si = 1 for g1 ≤ gi < g2; ...; si = S − 

2 for gS-2 ≤ gi < gS-1; and si = S – 1 for gS-1 ≤ gi ≤ gmax. The first N/S of these ordered data values 

correspond to the first symbol, 0, by an appropriate choice of g1. Ordered data values (N/S)+1 through 

2N/S correspond to the second symbol, 1, and so on up to the last symbol, S – 1. Equiprobable symbols 

have non-uniform partitions in signal amplitude with dynamical structure arising only from the phase 

space (PS) reconstruction of Eqs. (1)-(2). Large negative and/or positive values of gi have little effect on 

equiprobable symbolization, but significantly change the partitions for uniform symbols. 

  We assume that the complex, high-dimensional brain dynamics are confined to a bounded, low-

dimensional region, called an “attractor.” Then, the symbolized data can be converted into a phase space 

representation by standard reconstruction of the dynamics via time-delay vectors (Eckmann and Ruelle, 

1985). The single-channel form is: 
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 (1)   y(i) = [si, si+λ , . . . , si+ (d–1)λ]                                                                                                          

The symbolization discretizes the PS representation into Sd bins to extract event forewarning on the basis 

of a local time delay, λ, and dimensionality, d. In addition, information exchange in the brain connects 

local processes, implying that a multi-channel PS vector of C channels (Boccaletti et al., 2002) could 

contain more information. Here, the underlying assumption is that additional channels add more 

information about the dynamics that are connected via the overall process. The resultant multi-channel PS 

form is: 

(2)    y(i) = [s(1)i, s(1)i+λ , … , s(1)i+ (d–1)λ, …, s(C)i, s(C)i+λ , … , s(C)i+ (d–1)λ],                                      

where, s(k) denotes symbols from the kth channel, 1 ≤ k ≤ C. Symbolization divides the multi-channel PS 

into SCd bins. We count the number of points that occur in each PS bin, thus forming a discrete DF that 

accounts for the geometry and visitation frequency on the attractor. We denote the population of the ith 

bin of the DF, Qi, for the base case, and Ri for a test case, respectively. An (un)changing DF indicates 

(un)altered dynamics.  

        We compare the test case to the base case via dissimilarity measures (DM) between Qi and Ri  

(Protopopescu et al., 2001): 

(3)  ( ) ( )∑ +−=
i

iiii RQRQ ,/22χ                                                                                                      

(4)       ∑ −=
i

ii RQL .                                                                                                                              

These sums run over all populated PS cells. The χ
2 measure is a powerful, robust, and widely used 

comparison between observed and expected frequencies. The χ2 is a relative measure (Hively et al., 1999) 

of dissimilarity in this context, rather than a mathematical distance or an unbiased statistic for accepting 

or rejecting a null statistical hypothesis. The L1 distance is the natural metric for DFs by its direct relation 

to the total invariant measure on the attractor and defines a bona fide distance. Consistent calculations 

require the same number of points in both Qi and Ri, identically sampled; otherwise the DFs must be 

properly rescaled. We also capture the dynamical flow (Abarbanel, 1996) between PS states, 



 

 
 

 

y(i) → y(i + 1), as a connected PS (CPS) vector, Y(i) = [y(i), y(i + 1)], with corresponding DFs and 

dissimilarity measures (denoted below by the subscript, c) that have the same form as the PS measures  

(Protopopescu et al., 2001; Hively and Protopopescu, 2003).  

 We use the DFs from the first B cutsets to represent non-seizure (baseline) dynamics, with B=10 to 

capture sufficient variability. The baseline DFs are exhaustively compared to one another in pair-wise 

fashion via Eqs. (3) - (4) to obtain the mean baseline dissimilarity, V, as well as a corresponding standard 

deviation,σ, for each DM from the set, V = {L, Lc, χ2, χc
2}. The disparate range and variability of these 

measures are difficult to interpret, particularly for noisy data, so we need a consistent criterion for 

comparison. For this purpose, we renormalize the dissimilarity measures  (Protopopescu et al., 2001; 

Hively and Protopopescu, 2003) by comparing each of the B baseline cutsets to each (ith) test case cutset, 

and then computing the corresponding average dissimilarity value, Vi, of the ith cutset. The renormalized 

dissimilarity is: U(V) = |Vi – V|/σ, as the number of standard deviations that the test case deviates from the 

baseline mean. We use these renormalized dissimilarity measures to test for statistically significant 

change. 

Data analysis 

  The analysis starts at the beginning of the dataset and proceeds forward in time until a forewarning 

occurs, as defined next. We define a true positive (TP = 1 in the sum below) as a forewarning in any one 

channel when a number of simultaneous PSDM, NSIM, exceed a threshold, U ≥ UC, for a number of 

sequential occurrences, NOCC, within a preset forewarning window, 1 minute ≤ T1 ≤ TSZ − TFW ≤ T2, before 

the seizure onset time, TSZ. The corresponding forewarning time is TFW. The value of T1 was chosen, based 

on input from a physician collaborator that even with one minute of forewarning, 

useful things could be done to help the patient medically1.  A false positive (FP) occurs if TSZ − TFW < T1 

or TSZ − TFW > T2 in an event dataset, or for a forewarning in a non-event dataset. A true 

                                                           
1 Private Communication from M. L. Eisenstadt, M.D., Ph.D. 



 

 
 

 

negative (TN = 1) corresponds to no forewarning in a non-event dataset. No forewarning in an event 

dataset is a false negative (FN). The number of true instances of channel-consistent forewarning (Hively 

and Protopopescu, 2003) for the jth channel of the kth patient is Tjk  = Σi [TPijk + TNijk], where the sum 

over datasets runs from i=1 to M(k) = number of datasets for the kth patient. The occurrence of Tjk ≥ 2 

indicates consistency in more than one dataset for the same patient, while Tjk ≤ 1 means that the jth 

channel provides no such consistency. The best channel consistency is ck  = max (Tjk), for Tjk ≥ 2 and k 

fixed; ck  = 0, if Tjk ≤ 1; ck = 1 for patients with only one dataset. The channel-consistent total-true rate 

then becomes fT = [Σk ck]/[Σk M(k)]. Here, k runs over all P of the patients, which weights each dataset 

equally. 

  To maximize fT, we searched over parameters in the following ranges: 5 000 ≤ N ≤ 100 000, 2 ≤ w 

≤ 1 000, 2 ≤ S ≤ 200, 2 ≤ d ≤ 26 (single channel via Eq. 1) or 2 ≤ d ≤ 13 (two-channel via Eq. 2), and 1 ≤ 

λ ≤ 100. We use double-precision base-S arithmetic to represent the PS state, thus limiting the 

combination of values of S and d. A huge reduction in the computational effort is obtained by varying one 

parameter at a time, while holding the others fixed. This approach avoids an exhaustive multi-dimensional 

search at the expense of sub-optimal, but quite acceptable results (Protopopescu et al., 2001). The 

forewarning analysis of the previous paragraph exhaustively searches over other parameters: 1 ≤ NSIM ≤ 4, 

1 ≤ NOCC ≤ 100, 0.001 ≤ UC ≤ 2. After determining the best parameters, the analysis is much faster than 

the data-recording time.  

RESULTS 

  As explained in the introduction, our previous work  (Protopopescu et al, 2001; Hively and 

Protopopescu, 2003) restricted the forewarning window, T2 ≤ 1 hour, for artifact-filtered, monopolar data. 

Here, we first examine the effect of opening the forewarning window to T2 ≤ 8 hours, for combinations of 

unfiltered and artifact-filtered, monopolar and bipolar data. Figure 1 shows the electrode locations. Table 

1 (rows 1-8) shows monopolar results (M in column 1) with artifact filtering on (column 2) for various 

values of T2 (column 3), and corresponding values of NSIM (column 4), NOCC (column 5),



 

 
 

 

and UC (column 6). This analysis uses the best set of parameters (w=54, N=22000, d=2, S=20, λ=17) from 

our most recent work  (Hively and Protopopescu, 2003) for equiprobable symbols and single-channel 

analysis via Eq. (1). Statistical measures of the forewarning times (in seconds) include the minimum 

(MIN in column 7), maximum (MAX in column 8), average (AVG in column 9), and sample standard 

deviation (SD in column 10). Columns 11-17 display the distribution of TFW in one hour increments, from 

≤1 hour, 1-2 hours, and so on up to 6-7 hours. The magnitude of fT depends in this case on the (weak) 

any-one-channel criterion, and always rises monotonically as T2 increases. Consequently, we cite only 

changes in fT for each increase in T2, ∆fT = x/60. For monopolar analysis with artifact filtering, we obtain x 

= 3 and 2 as the maximum forewarning time increases from T2 ≤ 1 hour to T2 ≤ 2 hours, and from T2 ≤ 2 

hour to T2 > 2 hours, respectively. Rows 9-16 show monopolar results without artifact filtering. Here, we 

obtain x = 12, 1, 1, 1 when the maximum forewarning time increases from T2 ≤ 1 hour to T2 ≤ 2 hours, T2 

≤ 2 hours to T2 ≤ 3 hours, T2 ≤ 3 hours to T2 ≤ 4 hours, and from T2 ≤ 4 hours to T2 > 4 hours, 

respectively. These fT-values are smaller than the artifact-filtered counter-parts for T2 ≤ 4 hours, and then 

are the same for T2 > 4 hours. However, the distribution of TFW without artifact filtering extends beyond 6 

hours, which is not sufficiently conclusive for clinical use. Rows 17-24 show results with artifact filtering 

for 18 bipolar channels (B in column 1). A channel in this case is the difference between adjacent 

monopolar channels, removing most locally-measured artifacts, while retaining a differential measure of 

the brain dynamics. Table 2 includes the definitions of the bipolar channels. Here, we obtain x = 10 and 1 

as the maximum forewarning time increases from T2 ≤ 1 hour to T2 ≤ 2 hours, and from T2 ≤ 2 hour to T2 

> 2 hours, respectively. These fT values are below the counterpart monopolar results only for T2 ≤ 1 hour, 

and then are consistently larger for T2 > 1 hour. Rows 25 through 32 show forewarning for the bipolar 

montage without artifact filtering. Here, we obtain values of x = 3 and 2 as the maximum forewarning 

time increases from T2 ≤ 1 hour to T2 ≤ 2 hours, and from T2 ≤ 2 hour to T2 > 2 hours, respectively.  These 

fT values fall below the artifact-filtered bipolar results only for 1 ≤ T2 < 2 hours. We note that NSIM = 4 

occurs for bipolar channels with and without artifact filtering for T2 > 4 hours, which is a very robust 



 

 
 

 

result that is not consistently displayed by the monopolar results. These results show the superiority of 

artifact-filtered bipolar EEG, with a smallest maximum forewarning of 5.32 hours (19,184 s), consistent 

with recent work by Litt and Echauz, 2002). 

  Another extension of the methodology is the multi-channel form of Eq. (2). Based on the results of 

the previous paragraph (Table 1), we analyze two artifact-filtered, bipolar channels. An exhaustive 

analysis of all possible pairs of eighteen bipolar channels would involve 153 (18 × 17/2) unique 

combinations, which is beyond the scope of the present work. Instead, we restrict the analysis to 

symmetric pairs of bipolar channels, which are expected to contain complementary information. Table 2 

shows the results for the single-channel analyses of Table 1, in comparison with dual-channel analysis for 

equivalent parameters (w=54, N=22000, d=1, S=20) with a forewarning window of one hour. Channel 

consistency is not required for this portion of the analysis, since the channel is fixed in each case. No 

value of λ is needed for the dual-channel analysis, because Eq. (2) for d=1 reduces to y(i) = [s(1)i, s(2)i]. 

Larger values of T2 increase the total true rate, as shown in Table 1. However, the point of this additional 

analysis is the relative improvement in fT from single-channel to dual-channel analysis. As expected, the 

dual channel analysis yields a larger total true rate than either of the single-channel analyses alone. The 

extreme frontal, bipolar channels have the best total true rates, even though these EEG data are for 

temporal-lobe epileptic events. The reason for this puzzling result may be that channels closer to the 

temporal lobes are too sensitive, while those somewhat farther away give appropriate sensitivity for 

forewarning. We note that the frontal (forehead) channels have minimal hair, potentially enabling 

electrode placement by the patient or a care-giver for long-term, non-clinical, ambulatory monitoring. 

  A further improvement is optimization of the parameters for the artifact-filtered, bipolar pair with 

the best total true in Table 2 (C1-C9). A systematic search (Hively and Protopopescu, 2003) yields a 

result that has one false-negative and three false-positive indications. This result corresponds to an 

average rate of 0.011 false positives per hour, or equivalently a mean time between false positives of 87 

hours. This FP rate is more than an order of magnitude below the maximum acceptable rate of 

0.15FP/hour, as recommended by Winterhalder et al. (2003).  We obtain this result for uniform symbols 



 

 
 

 

with w=280, N=19316, d=1, and S=55. (Equiprobable symbols give even lower values of fT in this case.) 

This instance has no λ, because Eq. (2) for d=1 reduces to y(i) = [s(C1)i, s(C9)i]. While this result is an 

improvement over our earlier work   (Hively and Protopopescu, 2003), the choice of parameters is not 

robust, because a unit change in any of these parameters lowers the total true rate. Thus, improvement in 

the forewarning robustness is an important focus for future work. Figure 2 shows the corresponding 

distribution of forewarning times. We note that the cumulative distribution function of forewarning times 

in Fig. 2 rises roughly linearly from 0.5h to 3.5h, while encompassing 90% of the forewarnings. Figure 3 

shows an example of the χ2 dissimilarity measures for the analysis of channel C1 only, channel C9 only, 

and dual-channel analysis for C1 and C9. This figure shows that the dual-channel-result extracts the better 

forewarning from channel C9 rather than that from C1, as expected. 

DISCUSSION 

  We deem these results as encouraging and worthy of continuing development despite several 

limitations, which we discuss next. First, we use all of the data as a training set, limiting the strength of 

our conclusions. However, the alternative would involve equally-sized training and test sets. The resultant 

training (and test) sets would then have only ten non-event datasets and fifteen datasets for channel-

consistency, which would result in inadequate statistics. Second, we analyze EEG data from a controlled 

clinical setting, rather than an uncontrolled, ambulatory environment. Third, our results depend on careful 

adjustment of the analysis parameters for the best total-true rate. Fourth, we analyze only physician-

selected portions of the patient data, rather than the full monitoring period. Fifth, these results are for only 

sixty datasets (forty with epileptic events) for a single seizure type (temporal lobe). Much more data 

(hundreds of datasets spanning >1000 h) are needed for the proper choice of the analysis parameters as 

part of a robust and conclusive statistical validation. These data requirements are far beyond our present 

capabilities, and almost everyone else’s, based on present publications. Sixth, we have not performed 

prospective analysis of long-term continuous data, which is the acid test for any predictive approach. 

Finally, the present analyst-intensive methodology uses retrospective analysis of archival EEG on a 

desktop computer. Ambulatory forewarning requires analyst-independent, prospective analysis of real-



 

 
 

 

time EEG on a portable device. Clearly, much work remains to address these issues. Thus, we view the 

importance of this work as an example of the overall potential of the methodology, rather than the specific 

results. 
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Table 1: Largest fT for monopolar (M) and bipolar (B) montage with artifact filtering (AF) on or off 
 
                                   ----------TFW(s)------   ----Distribution of TFW---- 
    MB   AF  T2(h) NSIM  NOCC   UC     MIN    MAX   AVG   SD  1h  2h  3h  4h  5h  6h  7h 
1)   M   on   1     4   54  0.012   60   3588  2095   905  77 
 
2)   M   on   2     4   41  0.017   68   7164  4229  1945  63 108 
 
3)   M   on   3     ≥3  43  0.073   76  10772  6153  2739  60 126 118 
 
4)   M   on   4     4   41  0.016   68  14396  7196  3370  72 149 159  66 
 
5)   M   on   5     4   41  0.016   68  17652  7614  3772  72 149 159  66  23 
 
6)   M   on   6     4   41  0.016   68  20512  7753  3954  74 151 161  68  23   6 
 
7)   M   on   7     4   41  0.016   68  20512  7753  3954  74 151 161  68  23   6 
 
8)   M   on   8     4   41  0.016   68  20512  7753  3954  74 151 161  68  23   6 
 
 
9)   M  off   1     ≥3  53  0.083  140   3576  2096  1020  53 
 
10)  M  off   2     4   54  0.011   76   7196  4115  2025  64 103 
 
11)  M  off   3     ≥3  47  0.066  136  10720  6271  2817  56 132 125 
 
12)  M  off   4     4   46  0.014  120  14268  7424  3639  57 139 114  75 
 
13)  M  off   5     3    2  0.015  316  17776  8619  4658  28  42  41  35  22 
 
14)  M  off   6     3    2  0.015  316  20944  9281  5212  28  42  41  35  22  11 
 
15)  M  off   7     3    2  0.015  316  21876  9351  5282  28  42  41  35  22  11   1 
 
16)  M  off   8     3    2  0.015  316  21876  9351  5282  28  42  41  35  22  11   1 
 
 
17)  B   on   1     ≥3  50  0.063   72   3552  1883  1016  72 
 
18)  B   on   2     ≥3  49  0.062  132   7184  4285  2134  66 107 
 
19)  B   on   3     ≥3  47  0.062  176  10744  6016  2725  66 118 119 
 
20)  B   on   4     4   34  0.030   76  14380  7043  3425  54 131 109  53 
 
21)  B   on   5     4   34  0.030   76  17828  7575  3924  57 132 110  54  24 
 
22)  B   on   6     4   34  0.030   76  19184  7666  4040  57 132 110  54  24   3 
 
23)  B   on   7     4   34  0.030   76  19184  7666  4040  57 132 110  54  24   3 
 
24)  B   on   8     4   34  0.030   76  19184  7666  4040  57 132 110  54  24   3 
 
 
25)  B  off   1     4   56  0.012  144   3552  2211   938  72 
 
26)  B  off   2     4   56  0.013  104   7196  4171  1825  71 114 
 
27)  B  off   3     4   56  0.013  104  10572  5460  2514  68 120  75 
 
28)  B  off   4     4   34  0.027   76  14368  7510  3405  43 136 117  66 
 
29)  B  off   5     4   34  0.027   76  17740  7974  3824  46 139 119  67  24 
 
30)  B  off   6     4   34  0.027   76  20680  8173  4077  46 139 119  67  24   7 
 
31)  B  off   7     4   34  0.027   76  20680  8173  4077  46 139 119  67  24   7 
 
32)  B  off   8     4   34  0.027   76  20680  8173  4077  46 139 119  67  24   7 
 
 
 



 

 
 

 

 
 
 
 
 
Table 2: Total true values (fT) for artifact-filtered bipolar analysis with T1 = 1 hour 
 
 

 Bipolar channels       First Channel   Second Channel  Dual Channel     
C01 = F7 – FP1& C09 = F8 – FP2  fT(C01) =18/60  fT(C09) =12/60   fT(C01,C09) = 27/60 
 
C02 = T3 – F7 & C10 = T4 – C8   fT(C02) =13/60  fT(C10) =16/60   fT(C02,C10) = 22/60 
 
C03 = T5 – T3 & C11 = T6 – T4   fT(C03) =17/60  fT(C11) =18/60   fT(C03,C11) = 21/60 
 
C04 = O1 – T5 & C12 = O2 – T6   fT(C04) =15/60  fT(C12) =09/60   fT(C04,C12) = 21/60 
 
C05 = F3 – FP1& C13 = F4 – FP2  fT(C05) =22/60  fT(C13) =21/60   fT(C05,C13) = 26/60 
 
C06 = C3 – F3 & C14 = C4 – F4   fT(C06) =16/60  fT(C14) =17/60   fT(C06,C14) = 25/60 
 
C07 = P3 – C3 & C15 = P4 – C4   fT(C07) =15/60  fT(C15) =15/60   fT(C07,C15) = 22/60 
 
C08 = O1 – P3 & C16 = O2 – P4   fT(C08) =15/60  fT(C16) =10/60   fT(C08,C16) = 22/60 
 
C17 = CZ – FZ & C18 = PZ – CZ   fT(C17) =16/60  fT(C18) =13/60   fT(C17,C18) = 23/60



 

 
 

 

   
 

 
 
Fig. 1.  Layout of the EEG scalp electrodes in the standard 10-20 montage, looking at the patient’s head 
from above. The bipolar montage uses signal differences from adjacent electrodes, such as C1 = F7 – FP1 
and C9 = F8 – FP2, which are the symmetric channels, which are chosen for the multi-channel analysis via 
Eq. (2). 
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Figure 2: Distribution of forewarning time (TFW) for the dual-channel analysis of bipolar scalp EEG with 
fT = 56/60. The corresponding sensitivity, TP/(TP + FN), is 39/40; the specificity, TN/(TN + FP), is 
17/20. The stair-step (solid) plot indicates the relative occurrence frequency (arbitrary units) of TFW versus 
time intervals in one-hour increments, beginning at 0-1 hour, and ending with 5-6 hours. The 
monotonically increasing (dashed) curve is the cumulative distribution function (CDF) of TFW versus 
time. The H-bar with the star in the middle indicates the mean value of TFW (2.3 hours) and the standard 
deviation of the mean.  
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Figure 3: Typical values of the χ2 dissimilarity measure for dataset #264 in (a) channel C1 only, (b) 
channel C9 only, and (c) the dual-channel analysis of C1 and C9. The seizure onset occurs at 199 minutes 
(solid vertical line). The forewarning threshold is UC=0.419 (NOCC=42), as denoted by the horizontal 
dashed lines. The corresponding forewarning times are 31.8, 40.6, and 40.6 minutes before the seizure 
event in subplots (a)-(c), respectively. Thus, the dual-channel analysis extracts the better forewarning 
from C9 rather than the shorter one from C1. 
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