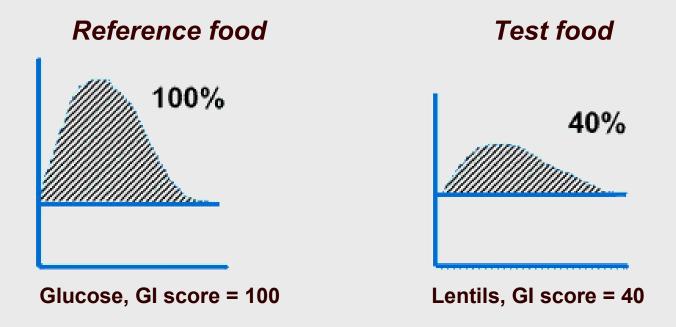
Development of a Glycemic Index Database for Dietary Assessment


Sally F. Schakel, Rebecca Schauer, John H. Himes, Lisa Harnack, Nancy Van Heel

What is glycemic index?

- Applies only to carbohydrate foods.
- Ranks foods based on their effect on postprandial glycemia.
- Determined in vivo.
- Measures glucose response of a reference food (e.g. glucose or white bread). By definition, GI = 100.
- Measures glucose response of test food.
- Ratio of the area under the curve of the test food to the reference food X 100 = GI.

The two hour blood sugar response of a reference food vs a test food

The amount of carbohydrate (starch & sugars) in the reference and test foods must be the same.

Factors Affecting Glycemic Index

Higher GI

- Starch gelatinization
- Moist cooking methods
- Refined grains
- Amylopectin starch

Lower GI

- Amylose starch
- Resistant starch
- Intact grains
- Fermentation
- Dairy protein
- Fructose

Classifying Foods

- High GI = 70 or more
 - White Bread
 - Processed Cereals
 - Potatoes
 - White Rice (low amylose)
- Medium GI = 56 to 69
 - Rye bread
 - Banana
 - White rice (high amylose)
 - Sweet corn

- Low GI = 55 or less
 - Milk
 - Apple
 - Legumes
 - Pasta
 - All Bran cereal

Carbohydrate Intake and Chronic Disease

- Diabetes
- Coronary Heart Disease
- Obesity
- Cataracts
- Cancer

Nutrition Data System for Research (NDSR)

- Standardized collection of food intake data
- Database of 18,000+ foods based on 2258 core foods
- Core foods determine nutrient values for other foods
 - Similar foods
 - Recipes
 - Commercial product formulations

Database Preparation for Addition of Glycemic Index

- Added two fields for GI.
 - Glucose reference
 - Bread reference
 - GI (bread) = 1.43 X GI (glucose)
- Added field for available carbohydrate.
 - acho = total carbohydrate total dietary fiber

Determining GI Values for NDSR Foods

- Match core foods to published GI.
- Estimate GI from a similar food.
- Use a default GI for low carbohydrate foods.
- Assign GI = 0 for foods with no available carbohydrate.
- Calculate GI for multi-component foods from available CHO and GI of ingredients.

Matching to Published GI Values

- Select data sources.
 - International Table of Glycemic Index and Glycemic Load Values: 2002 (Foster-Powell et al)
 - Other current journals
- Match by description, type of carbohydrate, preparation or processing method.
- Select North American foods, healthy subjects, 2 hr glucose response.

Estimating GI from Similar Foods

- Average GI for similar food group
 - Starchy root vegetables
 - Legumes
 - Tropical fruits
 - Berries
 - Nuts
- Cheese = GI of milk
- Refined white flour = GI of white bread
- Luncheon meats with cereal fillers = GI of sausage

Default and Zero Values

- Foods with low carbohydrate content
 - Default GI = 50 (glucose reference)
 - Midway between 0 and 100
 - Diet GI is not affected appreciably by the default value
- Foods with no available carbohydrate
 - \circ GI = 0

Calculating GI for Multi-component Foods

Ingredient	ACHO (g)	Proportion of total ACHO	Ingredient GI	Proportional GI (proportion of total ACHO X ingrd GI)
Figs, dried	14.12	0.2119	61	12.9
Flour, white, all-purpose	17.79	0.2670	70	18.7
Corn syrup	12.92	0.1939	105	20.4
Sugar, white, granulated	16.81	0.2523	61.4	15.5
High fructose corn syrup	4.95	0.0743	73	5.4
Shortening, soybean	0	0	0	0
Eggs, whole	0.03	0.0005	0	0
Salt	0	0	0	0
Total for Food	66.62	1.0000		72.9

The GI Database in

- Carbohydrate-containing foods
 - 22% direct matches
 - 23% similar matches
 - 17% default GI
 - 38% calculated from ingredients
- Major carbohydrate contributors
 - 60% direct matches
 - 19% similar matches
 - 1% default GI
 - 20% calculated from ingredients

Evaluation of Calculation Method

	Median	Mean	S.D
Calculated GI	66.0	64.3	9.9
Analyzed GI	64.5	61.3	16.2

Evaluation of Calculation Method

- Calculation underestimates GI.
 - Unsweetened RTE cereals

- Calculation overestimates GI.
 - Sweetened dairy products

GI Database Limitations

- Limited GI values for U.S. foods.
- Unable to account for variation in cooking times, storage, fruit ripeness.
- Lack of GI values for ingredients used in commercially processed foods.

Future GI Database Modifications

- Addition of more GI values from U.S. foods.
- Addition of "gelatinized cereal grains" for RTE cereal calculations.
- Addition of "low-GI sugars" for use in dairy food calculations.
- Addition of more core foods to increase GI specificity.

Uses of the GI Database

- Determine diet GI.
- Rank high carbohydrate foods.
- Substitute low-GI foods for high-GI foods.
- Couple GI with nutrient density to assess food quality.

www.ncc.umn.edu