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• Motivations
– Uncertainty in ontology representation, reasoning and mapping
– Why Bayesian networks (BN)

• Overview of the approach
• Translating OWL ontology to BN

– Representing probabilistic information in ontology
– Structural translation
– Constructing conditional probability tables (CPT)

• Ontology mapping
– Formalizing the notion of “mapping”
– Mapping reduction
– Mapping as evidential reasoning

• Conclusions

Outline
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• Uncertainty in ontology engineering
– In representing/modeling the domain

• Besides A subclasOf B, also A is a small subset of B
• Besides A hasProperty P, also most objects with P are in A
• A and B overlap, but none is a subclass of the other

– In reasoning
• How close a description D is to its most specific subsumer

and most general subsumee?
• Noisy data: leads to over generalization in subsumptions
• Uncertain input: the object is very likely an instance of 

class A

Motivations



4
UMBCUMBC

an Honors University in Marylandan Honors University in Maryland

– In mapping concepts from one ontology to another
• Similarity between concepts in two ontologies often cannot 

be adequately represented by logical relations
– Overlap rather than inclusion

• Mappings are hardly 1-to-1
– If A in onto1 is similar to B in onto2, A would also be similar to 

the sub and super classes of B (with different degree of 
similarity)

• Uncertainty becomes more prevalent in web environment
– One ontology may import other ontologies
– Competing ontologies for the same or overlapped domain

Motivations
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• Why Bayesian networks (BN)
– Existing approaches

• Logic based approaches are inadequate
• Others often based on heuristic rules
• Uncertainty is resolved during mapping, and not 

considered in subsequent reasoning
– Loss of information

– BN is a graphic model of dependencies among variables: 
• Structural similarity with OWL graph
• BN semantics is compatible with that of OWL
• Rich set of efficient algorithms for reasoning and learning

Bayesian Networks
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Bayesian Networks
• Directed acyclic graph (DAG) 

– Nodes: (discrete) random variables
– Arcs: causal/influential relations
– A variable is independent of all other non-descendent 

variables, given its parents

• Conditional prob. tables (CPT)
– To each node: P(xi |πi) whereπi is the parent set of xi

• Chain rule:
–

– Joint probability as product of CPT
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Bayesian Networks
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BN1

– OWL-BN translation
• By a set of translation rules and 

procedures
• Maintain OWL semantics
• Ontology reasoning by probabilistic 

inference in BN

Overview of The Approach
onto1

P-onto1
Probabilistic 
ontological 
information

Probabilistic 
ontological 
information

onto2

P-onto2

BN2
Probabilistic 
annotation

OWL-BN 
translation

concept 
mapping

– Ontology mapping
• A parsimonious set of links
• Capture similarity between concepts 

by joint distribution
• Mapping as evidential reasoning
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• Encoding probabilities in OWL ontologies
– Not supported by current OWL
– Define new classes for prior and conditional probabilities

• Structural translation: a set of rules
– Class hierarchy: set theoretic approach
– Logical relations (equivalence, disjoint, union, intersection...)
– Properties

• Constructing CPT for each node: 
– Iterative Proportional Fitting Procedure (IPFP)

• Translated BN will preserve
– Semantics of the original ontology
– Encoded probability distributions among relevant variables

OWL-BN Translation
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Encoding Probabilities
• Allow user to specify prior and conditional Probabilities.

– Two new OWL classes: “PriorProbObj” and “CondProbObj”
– A probability is defined as an instance of one of these classes.

• P(A): e.g., P(Animal) = 0.5
<prob:PriorProbObj rdf:ID="P(Animal)">
<prob:hasVariable><rdf:value>&ont;Animal</rdf:value></prob:hasVariable>
<prob:hasProbValue>0.5</prob:hasProbValue>

</prob:PriorProbObj>

• P(A|B): e.g., P(Male|Animal) = 0.48
<prob:CondProbObjT rdf:ID="P(Male|Animal)">
<prob:hasCondition><rdf:value>&ont;Animal</rdf:value></prob:hasCondition>
<prob:hasVariable><rdf:value>&ont;Male</rdf:value></prob:hasVariable>
<prob:hasProbValue>0.5</prob:hasProbValue>

</prob:CondProbObjT>
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Structural Translation
• Set theoretic approach

– Each OWL class is considered a set of objects/instances
– Each class is defined as a node in BN
– An arc in BN goes from a superset to a subset
– Consistent with OWL semantics

<owl:Class rdf:ID=“Human">
<rdfs:subclassOf rdf:resource="#Animal">
<rdfs:subclassOf rdf:resource="#Biped">
</owl:Class>

RDF Triples:

(Human rdf:type owl:Class)
(Human rdfs:subClassOf Animal)
(Human rdfs:subClassOf Biped)

Translated to BN
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Structural Translation
• Logical relations

– Some can be encoded by CPT (e.g.. Man = Human∩Male)

– Others can be realized by 
adding control nodes

Man ⊂ Human
Woman ⊂ Human
Human = Man ∪ Woman
Man ∩ Woman = ∅

auxiliary node: Human_1
Control nodes: Disjoint, Equivalent
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Constructing CPT
• Imported Probability information is not in the form of CPT
• Assign initial CPT to the translated structure by some 

default rules
• Iteratively modify CPT to fit imported probabilities while 

setting control nodes to true.
– IPFP (Iterative Proportional Fitting Procedure)

To find Q(x) that fit Q(E1), … Q(Ek) to the given P(x)
• Q0(x) = P(x); then repeat Qi(x) = Qi-1(x) Q(Ej)/ Qi-1(Ej) until 

converging
• Q∞ (x) is an I-projection of P (x) on Q(E1), … Q(Ek) 

(minimizing Kullback-Leibler distance to P)
– Modified IPFP for BN
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Example
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• Formalize the notion of mapping
• Mapping involving multiple concepts
• Reasoning under ontology mapping
• Assumption: ontologies have been translated to 

BN

Ontology Mapping
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• Simplest case: Map concept E1 in Onto1 to E2 in Onto2

– How similar between E1 and E2

– How to impose belief (distribution) of E1 to Onto2

• Cannot do it by simple Bayesian conditioning
P(x| E1) = ΣE2 P(x| E2)P(E2 | E1) similarity(E1, E2)

– Onto1 and Onto2 have different probability space (Q and P)
• Q(E1) ≠ P(E1)

• New distribution, given E1 in Onto1: P*(x) ≠ΣP (x|E1)P(E1)

– similarity(E1, E2) also needs to be formalized

Formalize The Notion of Mapping
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• Jeffrey’s rule
– Conditioning cross prob. spaces

– P*(x) =ΣP (x|E1)Q(E1)
– P* is an I-projection of P (x) on Q(E1) (minimizing Kullback-

Leibler distance to P)
– Update P to P* by applying Q(E1) as soft evidence in BN

• similarity(E1, E2)
– Represented as joint prob. R(E1, E2) in another space R
– Can be obtained by learning or from user

• Define 
map(E1, E2) = <E1, E2, BN1, BN2, R(E1, E2)>

Formalize The Notion of Mapping
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Reasoning With map(E1, E2)

Q     BN1

E1

P     BN2

E2

R     

E1        E2

Applying Q(E1) as 
soft evidence to 
update R to R* by 
Jeffrey’s rule

Using similarity(E1, E2):
R*(E2)

= R*(E1, E2)/R*(E1) 

Applying R*(E2)
as soft evidence to 
update P to P* by 
Jeffrey’s rule
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Reasoning With Multiple map(E1, E2)

Q     BN1 P     BN2

R     

Multiple pair-wise mappings: map(Ak, Bk):
Realizing Jeffrey’s rule by IPFP

A1

An

…

A1

An

…

A1

An

…

B1

Bn

…
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• Multiple mappings
– One node in BN1 can map to all nodes in BN2
– Most mappings with little similarity
– Which of them can be removed without affecting the overall 

• Similarity measure: 
– Jaccard-coefficient: sim(E1, E2) = P(E1 ∩ E2)/R(E1 ∪E2)
– A generalization of subsumption
– Remove those mappings with very small sim value

• Question: can we further remove other mappings 
– Utilizing knowledge in BN

Mapping Reduction
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• Summary
– A principled approach to uncertainty in ontology 

representation, reasoning and mapping
• Current focuses: 

– OWL-BN translation: properties
– Ontology mapping: mapping reduction

• Prototyping and experiments
• Issues 

– Complexity
– How to get these probabilities

Conclusions


