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Abstract

In this paper, the problem of determining safe
regions of the visible terrain for autonomous
gspacecraft landing is explored. A multi-sensor
architecture is proposed with a combination of active
and passive sensors that monitor the terrain during
descent. Craters and rocks are identified using hazard
detection algorithms that provide a preliminary
assessment of unsafe regions of the terrain. Sope and
roughness features are also extracted and provide a
richer description of the surface topography. However,
a direct relationship between the topographic features
and terrain safety is unknown. Hence, supervised
learning techniques are employed in order to obtain an
optimal mapping between the topographic features and
terrain safety. An evidential framework is used to fuse
the individual terrain safety assessments yielded by
each sensor using Dempster-Shafer theory. The
evidential terrain safety assessment provides a
continuous-valued landing score for all visible points
on the terrain that can be used to determine the safest
landing site.

1. Introduction

The Entry, Descent, and Landing (EDL) phase is
critical for the success of a landed space exptorat

mission. Recent missions have generally opted for a

“hard” landing, including both the Pathfinder ancdg
Exploration Rovers (MER) missions. For future

missions, NASA has focused on EDL technologies that

enable “soft” landing driven by autonomous terrain
characterization capabilities.

The work presented here is part of an on-going

effort to investigate the use of multiple on-board
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selection [1-3]. Sensor fusion was discussed ingad
Bayesian and Fuzzy approaches to landing site
selection were presented in [2] and [3], respebtiva

this paper, the use of evidential reasoning fodilag
safety assessment is investigated. Landing safety
assessment is the process of determining how kafe t
visible terrain is for landing. The terrain is
characterized in real-time during descent usingige s

of on-board sensors. Points on the visible ternairst

be assigned a safety score in order to determine a
viable landing target.

The multi-sensor architecture provides a rich et o
measurements from which to characterize the terfain
combination of active (radar and lidar) and passive
(camera) sensors are used. Hazard detection &lignsrit
are used to determine the presence of cratersoahd r
on the terrain from visible imagery. The absence of
these hazards, however, does not necessarily tedica
that the terrain is certainly safe. Hence, topoli@p
features (slope and roughness) from range datalsoe
extracted to enhance the terrain safety assessment.
However, the relationship between the topographic
features and terrain safety is not explicitly known
Thus, supervised learning techniques are used to
establish the best mapping between the topographic
features and terrain safety. Decision trees [4] are
considered because their computational simplicity
makes them suitable for on-board computers. The
safety ground truth is obtained using a simple
geometric algorithm that estimates the final posthe
spacecraft based on the layout of the terrain.

The individual contributions from each sensor are
fused using Dempster-Shafer (DS) theory [5] in orde
to arrive at a final safety score. DS theory presich
framework for evidential reasoning that explicitly
accounts for both known and unknown information.

sensors for autonomous hazard assessment andtsafe s



2. On-board sensors X2 2
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As intimated earlier, multiple on-board sensors are '

considered in order to provide both richness and 0, otherwise
robustness. The specifications of the sensorshaners
in Table 1. wherex andy are points in a coordinate system rotated
by ¢ and translated by andy;. Non-zero values df;
Table 1. On-board sensor characteristics indicate the presence of craters with a degree of

certaintys 0[0,1].

Sensor Type Max. | FOV | Image Size
Range 3.2. Rock detection
Radar Active 10km | 27° 10x10
Camera| Passive 8km| 37° 1024x1024 The algorithm described in [7] uses segmentation to
Lidar Active 1km 12° 100100 first identify shadow regions in the image. Givéwe t

known sun angle, the location and size of rocks are

Based on the inherent range of operation of eachdetermined based on shadow projection patterns. Let
sensor shown in Table 1, the descent is divided int B(X.y) represent the binary map of detected rocks
three tiers. In tier 1, roughly between 10km ancngk Produced by the algorithm:
only the radar is operational. At 8km the camera
becomes operational and together with the radar b(x, y) = L (xy)OR %)
constitutes tier 2. Finally, in tier 3, from 1km to Y 0, otherwise’
touchdown, all three sensors are operational, as

summarized in Table 2. whereR is the set of pixel locations identified as rocks.

The binary mapb(x,y) is filtered to account for
uncertainty in the detection process and err orsithe
of caution. The final rock map is:

Table 2. Tiered sensor operation

Tier Range Operational Sensor(s
1 10km — 8km Radar _ o : :
2 8km — 1km Radar + Camera fr(xy) = ZZb(|, Dh(x=1.y=1), C)
3 | 1km - Touchdown Radar + Camera + Lidar b

where h(x,y) is any suitable low-pass filter whose
elements sum to unity, which ensures that
fr(x,y)d[0,1]. Crater and rock detection results are
shown in Figure 1.

During spacecraft descent, there are only a limited
number of retargeting maneuvers that can be
performed. Using the tiered approach described, here
three retargeting maneuvers could be allotted—one pe

tier. @ (b)

3. Hazard detection "J %

3.1. Crater detection

The crater detection algorithm is described in [6].
Given the known location of the sun during desctrt,
algorithm can accurately locate craters based ein th
shadow patterns. Each detected crater is modelad as
ellipse. Let &;,y;), &, b, and g be the ellipse center,
semi-major axis length, semi-minor axis length, and
rotation angle, respectively, for tlhigh detected crater.
The crater map is defined as:

Figure 1. Example crater (a) and rock (b)
detection results.



Hazards detected from camera imagery provide asimple geometric algorithm to determine the lander’s
preliminary characterization of the terrain. Yet, i final pose on the terrain surface is proposed. The lander
should be borne in mind that the crater and rocksma is modeled as a plane and determine three supporting
f. andf, only indicate the location afnsafe landing contact points.
hazards. If a hazard (i.e. crater or rock) is reiedted,
the terrain cannot be assumed to be necessaridy saf
For a complete terrain safety assessment, further @) (b) ()
information is necessary. The radar and lidar range
information is used for this purpose.

4. Terrain classification 4
The process of classifying points on the terrain as
either safe or unsafe based on simple topographic
featgres derived from range data is discussedig th Figure 2. Determination of spacecraft
section. contact points.
4.1. Terrain features The first contact poinp, is the highest point on the

terrain within the boundary of the plane defining the

The topographic features must be highly descriptive lander's footprint. Having touched;, the spacecraft
yet simple enough to satisfy on-board computational will tilt in the direction of the center of grawty, as
constraints. The key indicator of safety is thepelof ~ Shown in Figure 2a. A new search space is defined by
the terrain. The slope of the terrain can be esticha the points; that satisfy
from range data using plane fitting techniques. The
local terrain slope is defined as the angle forimgthe (p; —pl)T (Pog —P1) >0, (6)
estimated plane normaland geodetic normailg:

wherepg is the location of the center of gravity. The

fo(Xy)= cos‘l(nTng ) 4) second contact poik is the one with maximum tilt;
As shown in [8], the Least Median of Squares g =tan™ lpi =Pl @)
(LMedSq) regression technique approximates the z-7 )

orientation of the terrain underneath objects oa th

terrain surface (such as rocks). Thus, a terrainyherez andz are the terrain elevation values of the
roughness feature can be defined based on thaiasid st angith points, respectively. Having determined the
between the sensor range vatl{a,y) and the value of 5500 contact poimb, as shown in Figure 2b, the new

the fitted plane using LMedSq regression: search space includes the poinitthat satisfy

fo(x¥) =|d(x y) ~d(x,y)| (5) lo2 -p0) ;i =p0)]P2 ~p) T (01 -pey)|>0. ()

where d(x,y) is the value of the fitted plane at As before, the maximum tilt is used to determine the

location (,y). The slope is extracted from radar range third contact poinps. But in this case, the tilt is now

data and the roughness is extracted from lidar range ; ;
data. 4 P12 plZ‘le p]j‘
@ =tan

4.2. Safety ground truth (Z2=2)P2' Pia + (2= Z)P12 Pz

(9)

The mapping between _ the afpremention_ed where p;=p;-p;. The landing orientation is
topographic features and terrain safety is learned in adetermined based on the normal to the plane that

supervised fashion. In order to learn the mapping intersects the three contact points shown in Figare
between the features and safety, a means of obtaining

safety ground truth is needed. For this purpose, a



n=(pP3;-pP)%P,—Py)- (10) For the application considered here, a very snedll s
of features is used and the mapping between these

Terrain safety is determined based on the stalifity féatures and terrain safety is relatively simpleisl
the lander. For this analysis, the lander is matiakea intuitive, for instance, that unsafe regions of tieain
cuboid in00®. The center of gravity lies at a distawge ~ Should map to high slope values. What is not known,
from the bottom plane. The lander is stable (ared th NOWever, is exactly what slope value will minimire
terrain is safe) if the center of gravity lies viitithe error. It is in this respect that decision trees aery
boundary of the bottom face of the cuboid (as guré ~ useful- _ _ o
3): otherwise it will topple (and the terrain issafe). A decision tree is a set of logical conditions tba

In order to make this determination, the locatidithe be used to map a set of predictors to a categorical
center of gravity is projected onto thgplane: target. Decision trees effectively partition thettee
space into multiple regions, each associated withad

n the target values, or classes. Decision trees are
Pog = WP, (11) particularly attractive because of their simplicity
||n|| Inference merely involves evaluating a sequencié of

then statements. Each if-then statement represents

where P is an orthographic projection matrix anis partition of the feature space, which is effectvel
the plane normal (10). Therefore, the terrain fe $ar threshold.

landing if py lies within the boundary defined by Many methods exist to train decision trees. One
bottom face of the cuboid, as shown in Figure 3. such approach is known as Classification and

Regression Trees (CART) [4]. CART yields an optimal
decision tree that best balances classificatioor emnd
complexity (i.e. tree size). CART uses a set of
statistical measures to determine optimal parstioh
the feature space. A decision tree can grow arlhtra
large until every observation in the training set i
properly  classified—an  impractical  scenario.
Therefore, CART employs stopping criteria based on
classification error tolerance. Furthermore, theisien
tree can be pruned in order to arrive at a tree thiat
suits the task at hand, while minimizing classtiima
error.

For the task of terrain classification, CART is dise
to learn decision trees that map radar and lidatufes
to terrain safety. This is similar to the approaskd in
[8] to map lidar slope and roughness featuresrtaite

Figure 3. Terrain safety based on the lander’s safety; except in this case the thresholds aremaiti
final orientation on surface. determined using CART. Application of the decision

trees will yield a binary safety map for both ttaelar
4.3. Terrain classification using decision trees and lidar. (The camera safety map is obtained tlijrec

from the hazard detection algorithms.) Since each

Numerous classification engines exist that could be sensor has its own safety map, a means of fusieg th
used to learn a mapping from terrain features naite information is needed.
safety that minimizes classification error. Wellokm
classifiers include Neural Networks [9] and kerel 5 Evidential safety assessment
methods, such as Support Vector Machines [9].
However, these approaches are better suited to more; 4 Dempster -Shafer sensor fusion
complex classification problems, particularly non-
linear mappings in very high-dimensional spaces. |, DS theory [5], evidence from a sensor is
Furthermore, even the most efficient implementatbn 044 red as belief. Each sensor contributes & bélie
any of these classification engines still requires 1.0 and distributes this belief among certain
computational resources that may be beyond those, ,nqsitions. The combined mass of belief for two
available on a mission spacecraft. sensors is obtained using Dempster’s combinatiten ru



Z m (B)mj (C) takes into account the available evidence is coetput
BaC=A : , 12) A completelyunknown area is considered neithsafe
1_anc=m m' (B)m! (C) nor unsafe, and consequently it is assigned a safety
score of 0.5. If a landing site is certainégfe or
certainly unsafe, it is assigned a score of 1.0 or 0.0,
respectively. These scores define the boundaries.
Points in between are defined linearly. The evidént
safety score is shown in Figure 4 and is defined as

m' (A) =

wherem(A) represents the proportion of evidence that
supports the claim that a particular element of the
universal setX belongs to the sef, andi and j
represent two arbitrary sensors. In our case, the
universal set isX={safe, unsafe, unknown}. Beliefs
need not be mutually  exclusive; thus, s(x, y):l mRet (safe)—mRCL (unsafe) +1{, (16)
m(unknown) = 1 — m(safe) — m(unsafe). 2
The belief masses for each sensor are obtained from

the terrain features discussed above. The radafbel Where m™(safe) and m™* (unsafe) are obtained by
mass is: iteratively applying equation (12).

1 f,<TR

E (13) ]
0, otherwise

m~ (safe) = {
10.9
0.8
wherefyis the radar slope defined earlier afds a set
of thresholds represented by nodes in the dectséen
yielded by CART. Thainsafe belief mass is defined as
m~(unsafe) = 1 — m~(safe). Whenever radar
measurements are availablem®(unknown) = 0.
Conversely, for points lying outside the radar&diof
view, m¥(unknown) = 1. The camera belief mass is:
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mC (unsafe) = max{ f., f,}, (14)

miunsafe)
wheref, andf, are the crater and rock detection maps. misafe)

Only anunsafe belief mass is defined for the camera

because, as discussed earlier, the hazard detection

algorithms do not provide information abostfe Figure 4. Surface defined by evidential
regions. Hence,m®(unknown) = 1 - m®(unsafe) and

& . ) ) X safety score.
m~(safe) = 0. Finally, the lidar belief mass is:

) 6. Spacecr aft descent simulation
m" (safe) = Lot ST_ : (15)

0, otherwise 6.1. DSENDS
wheref, is the lidar roughness defined earlier ahds In order to simulate spacecraft descent onto a
the set of thresholds learned by CART for the lidar planetary surface—.lnclgdm_g the spa_cecrgft pose and
Similarly to the radar, thensafe belief mass is defined sensor data—the high-fidelity Dynamics Simulatar fo

N . . L _ Entry, Descent and Surface landing (DSENDS) [10] is
asm (gn&afe) - 1 nf(gafe).. A‘?’a'”: m (unkn(?wn) =0 used. DSENDS was developed at JPL and incorporates
for points lying within lidar's field of view, and

X spacecraft, atmosphere, and planetary models aasvel
mi-(unknown) = 1 otherwise. realistic guidance and navigation algorithms and ha
) ) been used to simulate Mars EDL for various projects
5.2. Evidential safety score and missions. External sensor models for the radar,

o ~camera, and lidar are integrated to extract terrain
Dempster's combination rule (12) can be applied features during descent.

iteratively for more than two sensors. Once the
combined mass of belief is obtained, a safety sttae



6.2. Planetary terrains descent, the sensors are activated and terraionrésat
are extracted. The features are all co-registeffed.

A recursive fractal method [11] is used to create a supervised learning, the ten DEMs are partitiomed i
base terrain Digital Elevation Model (DEMj(x.y). training and testing sets (five DEMs in each). Each
The synthetic terrains are consistent with Berrard point on the terrain is treated independently ssetiias
Golombek's definition of “moderately cratered” a sample for training.
regions of Mars [12]. The average number of craters
per unit area is used as the rate parameter ofsad®o Table 3. Results using CART
random variable that yields the total number ofensa

in the DEM. These craters are then sized basetieon t | Tier Radar Lidar
distribution of crater diameters reported in [18fare 1 93.3% (2 nodes) N/A
randomly placed on the DEM (according to a uniform 2 92.4% (2 nodes) N/A
distribution). The crater model is a hemispherenait 3 88.6% (2 nodes) 90.5% (2 nodes

radiusR and a depth of ORI[12]. An ejecta blanket

extends from the outer rim with an elevation pmofil The results shown in Table 3 represent the

proportional to 1f, wherer is the distance from the percentage of sample points (drawn from the tesrain

crater center. Theth crater in the terrain is thus the test set) that are correctly classified. Tablalso

modeled as: shows the number of nodes in the optimal decisiea t
yielded by CART. The resulting number of nodes in

02 +y?) s o each optimal tree is only two. This means that the

-d [1--———+008R, x"+y"<R mapping between the relevant feature and terrdétysa

c(xy) = R . (17) involves only one partition or threshold—the singple
ﬂ, X2 +y? > R? possible scenario. For comparison, results using a

(X2+y2)3 Bayesian classifier are also shown in Table 4. &s c

be seen, the results in Tables 3 and 4 are vesg.clo

The crater is displaced by 0.08 above the terrain
surface in order to properly model the elevatedaid
ejecta blanket.

Table 4. Results using Bayesian classification

Rock abundance is also determined using a Poisson Tller S;c;;r I;\'I?:r
model. However, different rate parameters are used : o°
based on proximity to craters [12]. Golombek’s 2 96.0% N/A
exponential rock model is used to randomly set the 3 87.4% 91.1%
diameter of each rock [12]. The rock model is a
hemisphere perturbed by noise: Full results using evidential reasoning are shawn i
Figure 5. The evidential safety score obtained from
, ((X+,7x)2 +(y+n )2) operational sensors in each tier is overlaid on two
nxy) =—,1- > Y , (18) different terrain DEMs. The safety score is shown a
2 (D; 12 altitudes of 8000m (tier 1), 4000m (tier 2) and %00

(tier 3). The color scheme used is consistent tith
whereD; is the diameter of thigh rock, ands, and 7, surface shown in Figure 4, where green and red
are normally distributed random variables that correspond to the two extremsafe (1.0) andunsafe
determine the roughness of the rock. The finaaterr  (0.0), respectively andinknown (0.5) is shown in

DEM is a linear combination of the fractal terraind ~ Yellow. o o
the craters and rocks: As can be seen in Figure 5, the evidential safety

score is highest when the individual contributinasn
each sensor are in agreement. Disagreement between
2% y) =t(x.y) +Zci (x) +Zri (xy). (19) the sensors leads to ugncertainty and,?n turnsttfety
' ! score tends towards the midpoint (0.5). This islewi
in the outer portion of the results from tier 2 éhih
6.3. Results Figure 5. This outer portion is the region wherdyon
the camera information is available and there is no

Spacecraft descent is simulated for ten different contripution from the radar or lidar. Unless a erair
terrain DEMs using DSENDS. During a simulated
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Figure 5. Evidential safety assessments for two dif ~ ferent planetary terrains (left and right
columns). The evidential safety assessment is shown for both terrains in tier 1 at 8000m, tier 2 at
4000m, and tier 3 at 500m. The dashed square repres ents the portion of the terrain visible in the

next tier.



