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Abstract 
 

In this paper, the problem of determining safe 
regions of the visible terrain for autonomous 
spacecraft landing is explored. A multi-sensor 
architecture is proposed with a combination of active 
and passive sensors that monitor the terrain during 
descent. Craters and rocks are identified using hazard 
detection algorithms that provide a preliminary 
assessment of unsafe regions of the terrain. Slope and 
roughness features are also extracted and provide a 
richer description of the surface topography. However, 
a direct relationship between the topographic features 
and terrain safety is unknown. Hence, supervised 
learning techniques are employed in order to obtain an 
optimal mapping between the topographic features and 
terrain safety. An evidential framework is used to fuse 
the individual terrain safety assessments yielded by 
each sensor using Dempster-Shafer theory. The 
evidential terrain safety assessment provides a 
continuous-valued landing score for all visible points 
on the terrain that can be used to determine the safest 
landing site.  
 

1. Introduction 
 

The Entry, Descent, and Landing (EDL) phase is 
critical for the success of a landed space exploration 
mission. Recent missions have generally opted for a 
“hard” landing, including both the Pathfinder and Mars 
Exploration Rovers (MER) missions. For future 
missions, NASA has focused on EDL technologies that 
enable “soft” landing driven by autonomous terrain 
characterization capabilities.  

The work presented here is part of an on-going 
effort to investigate the use of multiple on-board 
sensors for autonomous hazard assessment and safe site 

selection [1-3]. Sensor fusion was discussed in [1], and 
Bayesian and Fuzzy approaches to landing site 
selection were presented in [2] and [3], respectively. In 
this paper, the use of evidential reasoning for landing 
safety assessment is investigated. Landing safety 
assessment is the process of determining how safe the 
visible terrain is for landing. The terrain is 
characterized in real-time during descent using a suite 
of on-board sensors. Points on the visible terrain must 
be assigned a safety score in order to determine a 
viable landing target. 

The multi-sensor architecture provides a rich set of 
measurements from which to characterize the terrain. A 
combination of active (radar and lidar) and passive 
(camera) sensors are used. Hazard detection algorithms 
are used to determine the presence of craters and rocks 
on the terrain from visible imagery. The absence of 
these hazards, however, does not necessarily indicate 
that the terrain is certainly safe. Hence, topographic 
features (slope and roughness) from range data are also 
extracted to enhance the terrain safety assessment. 
However, the relationship between the topographic 
features and terrain safety is not explicitly known. 
Thus, supervised learning techniques are used to 
establish the best mapping between the topographic 
features and terrain safety. Decision trees [4] are 
considered because their computational simplicity 
makes them suitable for on-board computers. The 
safety ground truth is obtained using a simple 
geometric algorithm that estimates the final pose of the 
spacecraft based on the layout of the terrain. 

The individual contributions from each sensor are 
fused using Dempster-Shafer (DS) theory [5] in order 
to arrive at a final safety score. DS theory provides a 
framework for evidential reasoning that explicitly 
accounts for both known and unknown information. 
 



2. On-board sensors 
 

As intimated earlier, multiple on-board sensors are 
considered in order to provide both richness and 
robustness. The specifications of the sensors are shown 
in Table 1. 

 
Table 1. On-board sensor characteristics 

 
Sensor Type Max. 

Range 
FOV Image Size 

Radar Active 10km 27° 10×10 
Camera Passive 8km 37° 1024×1024 
Lidar Active 1km 12° 100×100 

 
Based on the inherent range of operation of each 

sensor shown in Table 1, the descent is divided into 
three tiers. In tier 1, roughly between 10km and 8km, 
only the radar is operational. At 8km the camera 
becomes operational and together with the radar 
constitutes tier 2. Finally, in tier 3, from 1km to 
touchdown, all three sensors are operational, as 
summarized in Table 2. 

 
Table 2. Tiered sensor operation 

 
Tier Range Operational Sensor(s) 

1 10km – 8km Radar 
2 8km – 1km Radar + Camera 
3 1km - Touchdown Radar + Camera + Lidar 

 
During spacecraft descent, there are only a limited 

number of retargeting maneuvers that can be 
performed. Using the tiered approach described here, 
three retargeting maneuvers could be allotted—one per 
tier. 

 
3. Hazard detection 
 
3.1. Crater detection 
 

The crater detection algorithm is described in [6]. 
Given the known location of the sun during descent, the 
algorithm can accurately locate craters based on their 
shadow patterns. Each detected crater is modeled as an 
ellipse. Let (x i ,y i), ai, bi, and φi be the ellipse center, 
semi-major axis length, semi-minor axis length, and 
rotation angle, respectively, for the ith detected crater. 
The crater map is defined as: 
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where x and y are points in a coordinate system rotated 
by φi and translated by xi and yi. Non-zero values of f c  
indicate the presence of craters with a degree of 
certainty βi ∈ [0,1]. 
 
3.2. Rock detection 
 

The algorithm described in [7] uses segmentation to 
first identify shadow regions in the image. Given the 
known sun angle, the location and size of rocks are 
determined based on shadow projection patterns. Let 
b (x ,y)  represent the binary map of detected rocks 
produced by the algorithm: 
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where R is the set of pixel locations identified as rocks. 
The binary map b (x ,y)  is filtered to account for 
uncertainty in the detection process and err on the side 
of caution. The final rock map is: 
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where h (x,y)  is any suitable low-pass filter whose 
elements sum to unity, which ensures that 
f r(x ,y)∈ [0,1]. Crater and rock detection results are 
shown in Figure 1. 

 
Figure 1. Example crater (a) and rock (b) 

detection results. 

(a) (b) 



Hazards detected from camera imagery provide a 
preliminary characterization of the terrain. Yet, it 
should be borne in mind that the crater and rock maps 
f c  and f r  only indicate the location of unsafe landing 
hazards. If a hazard (i.e. crater or rock) is not detected, 
the terrain cannot be assumed to be necessarily safe. 
For a complete terrain safety assessment, further 
information is necessary. The radar and lidar range 
information is used for this purpose. 
 
4. Terrain classification 
 

The process of classifying points on the terrain as 
either safe or unsafe based on simple topographic 
features derived from range data is discussed in this 
section. 
 
4.1. Terrain features 
 

The topographic features must be highly descriptive 
yet simple enough to satisfy on-board computational 
constraints. The key indicator of safety is the slope of 
the terrain. The slope of the terrain can be estimated 
from range data using plane fitting techniques. The 
local terrain slope is defined as the angle formed by the 
estimated plane normal n and geodetic normal ng : 
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As shown in [8], the Least Median of Squares 

(LMedSq) regression technique approximates the 
orientation of the terrain underneath objects on the 
terrain surface (such as rocks). Thus, a terrain 
roughness feature can be defined based on the residual 
between the sensor range value d (x ,y)  and the value of 
the fitted plane using LMedSq regression: 
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where ),(ˆ yxd  is the value of the fitted plane at 

location (x ,y). The slope is extracted from radar range 
data and the roughness is extracted from lidar range 
data. 
 
4.2. Safety ground truth 
 

The mapping between the aforementioned 
topographic features and terrain safety is learned in a 
supervised fashion. In order to learn the mapping 
between the features and safety, a means of obtaining 
safety ground truth is needed. For this purpose, a 

simple geometric algorithm to determine the lander’s 
final pose on the terrain surface is proposed. The lander 
is modeled as a plane and determine three supporting 
contact points. 
 

 

 
 

Figure 2. Determination of spacecraft 
contact points. 

The first contact point p1 is the highest point on the 
terrain within the boundary of the plane defining the 
lander’s footprint. Having touched p1, the spacecraft 
will tilt in the direction of the center of gravity, as 
shown in Figure 2a. A new search space is defined by 
the points pi that satisfy 
 

 0)()( 11 >−− pppp cg
T

i , (6) 

 
where pcg is the location of the center of gravity. The 
second contact point p2 is the one with maximum tilt: 
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where z1 and zi are the terrain elevation values of the 
first and ith points, respectively. Having determined the 
second contact point p2, as shown in Figure 2b, the new 
search space includes the points pi that satisfy 
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As before, the maximum tilt is used to determine the 
third contact point p3. But in this case, the tilt is now 
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where pij ≡ pi − pj. The landing orientation is 
determined based on the normal to the plane that 
intersects the three contact points shown in Figure 2c: 
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Terrain safety is determined based on the stability of 

the lander. For this analysis, the lander is modeled as a 
cuboid in ℜ3. The center of gravity lies at a distance w 
from the bottom plane. The lander is stable (and the 
terrain is safe) if the center of gravity lies within the 
boundary of the bottom face of the cuboid (as in Figure 
3); otherwise it will topple (and the terrain is unsafe). 
In order to make this determination, the location of the 
center of gravity is projected onto the xy-plane: 
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n
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where P is an orthographic projection matrix and n is 
the plane normal (10). Therefore, the terrain is safe for 
landing if p′cg lies within the boundary defined by 
bottom face of the cuboid, as shown in Figure 3. 
 
 

 
Figure 3. Terrain safety based on the lander’s 

final orientation on surface. 
 
4.3. Terrain classification using decision trees 
 

Numerous classification engines exist that could be 
used to learn a mapping from terrain features to terrain 
safety that minimizes classification error. Well known 
classifiers include Neural Networks [9] and kernel 
methods, such as Support Vector Machines [9]. 
However, these approaches are better suited to more 
complex classification problems, particularly non-
linear mappings in very high-dimensional spaces. 
Furthermore, even the most efficient implementation of 
any of these classification engines still requires 
computational resources that may be beyond those 
available on a mission spacecraft. 

For the application considered here, a very small set 
of features is used and the mapping between these 
features and terrain safety is relatively simple. It is 
intuitive, for instance, that unsafe regions of the terrain 
should map to high slope values. What is not known, 
however, is exactly what slope value will minimize the 
error. It is in this respect that decision trees are very 
useful. 

A decision tree is a set of logical conditions that can 
be used to map a set of predictors to a categorical 
target. Decision trees effectively partition the feature 
space into multiple regions, each associated with one of 
the target values, or classes. Decision trees are 
particularly attractive because of their simplicity. 
Inference merely involves evaluating a sequence of if-
then statements. Each if-then statement represents a 
partition of the feature space, which is effectively a 
threshold. 

Many methods exist to train decision trees. One 
such approach is known as Classification and 
Regression Trees (CART) [4]. CART yields an optimal 
decision tree that best balances classification error and 
complexity (i.e. tree size).  CART uses a set of 
statistical measures to determine optimal partitions of 
the feature space. A decision tree can grow arbitrarily 
large until every observation in the training set is 
properly classified—an impractical scenario. 
Therefore, CART employs stopping criteria based on 
classification error tolerance. Furthermore, the decision 
tree can be pruned in order to arrive at a tree size that 
suits the task at hand, while minimizing classification 
error. 

For the task of terrain classification, CART is used 
to learn decision trees that map radar and lidar features 
to terrain safety. This is similar to the approach used in 
[8] to map lidar slope and roughness features to terrain 
safety; except in this case the thresholds are optimally 
determined using CART. Application of the decision 
trees will yield a binary safety map for both the radar 
and lidar. (The camera safety map is obtained directly 
from the hazard detection algorithms.) Since each 
sensor has its own safety map, a means of fusing the 
information is needed.  
 
5. Evidential safety assessment 
 
5.1. Dempster-Shafer sensor fusion 
 

In DS theory [5], evidence from a sensor is 
measured as belief. Each sensor contributes a belief of 
1.0 and distributes this belief among certain 
propositions. The combined mass of belief for two 
sensors is obtained using Dempster’s combination rule: 
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where m(A) represents the proportion of evidence that 
supports the claim that a particular element of the 
universal set X belongs to the set A, and i and j 
represent two arbitrary sensors. In our case, the 
universal set is X={ safe, unsafe, unknown}. Beliefs 
need not be mutually exclusive; thus, 
m(unknown) = 1− m(safe) − m(unsafe). 

The belief masses for each sensor are obtained from 
the terrain features discussed above. The radar belief 
mass is: 
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where fθ is the radar slope defined earlier and TR is a set 
of thresholds represented by nodes in the decision tree 
yielded by CART. The unsafe belief mass is defined as 
mR(unsafe) = 1− mR(safe). Whenever radar 
measurements are available, mR(unknown) = 0. 
Conversely, for points lying outside the radar’s field of 
view, mR(unknown) = 1. The camera belief mass is: 
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where fc and fr are the crater and rock detection maps. 
Only an unsafe belief mass is defined for the camera 
because, as discussed earlier, the hazard detection 
algorithms do not provide information about safe 
regions. Hence, mC(unknown) = 1− mC(unsafe) and 
mC(safe) = 0. Finally, the lidar belief mass is: 
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where fe is the lidar roughness defined earlier and TL is 
the set of thresholds learned by CART for the lidar. 
Similarly to the radar, the unsafe belief mass is defined 
as mL(unsafe) = 1− mL(safe). Again, mL(unknown) = 0 
for points lying within lidar’s field of view, and 
mL(unknown) = 1 otherwise. 
 
5.2. Evidential safety score 
 

Dempster’s combination rule (12) can be applied 
iteratively for more than two sensors. Once the 
combined mass of belief is obtained, a safety score that 

takes into account the available evidence is computed. 
A completely unknown area is considered neither safe 
nor unsafe, and consequently it is assigned a safety 
score of 0.5. If a landing site is certainly safe or 
certainly unsafe, it is assigned a score of 1.0 or 0.0, 
respectively. These scores define the boundaries. 
Points in between are defined linearly. The evidential 
safety score is shown in Figure 4 and is defined as: 
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where mRCL(safe) and mRCL(unsafe) are obtained by 
iteratively applying equation (12). 
 

 
 
 

Figure 4. Surface defined by evidential 
safety score. 

 
6. Spacecraft descent simulation 
 
6.1. DSENDS 
 

In order to simulate spacecraft descent onto a 
planetary surface—including the spacecraft pose and 
sensor data—the high-fidelity Dynamics Simulator for 
Entry, Descent and Surface landing (DSENDS) [10] is 
used. DSENDS was developed at JPL and incorporates 
spacecraft, atmosphere, and planetary models as well as 
realistic guidance and navigation algorithms and has 
been used to simulate Mars EDL for various projects 
and missions. External sensor models for the radar, 
camera, and lidar are integrated to extract terrain 
features during descent. 
 



6.2. Planetary terrains 
 

A recursive fractal method [11] is used to create a 
base terrain Digital Elevation Model (DEM), t(x,y). 
The synthetic terrains are consistent with Bernard and 
Golombek’s definition of “moderately cratered” 
regions of Mars [12]. The average number of craters 
per unit area is used as the rate parameter of a Poisson 
random variable that yields the total number of craters 
in the DEM. These craters are then sized based on the 
distribution of crater diameters reported in [12] and are 
randomly placed on the DEM (according to a uniform 
distribution). The crater model is a hemisphere with a 
radius R and a depth of 0.4R [12]. An ejecta blanket 
extends from the outer rim with an elevation profile 
proportional to 1/r3, where r is the distance from the 
crater center. The ith crater in the terrain is thus 
modeled as: 
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The crater is displaced by 0.08 above the terrain 
surface in order to properly model the elevated rim and 
ejecta blanket. 

Rock abundance is also determined using a Poisson 
model. However, different rate parameters are used 
based on proximity to craters [12]. Golombek’s 
exponential rock model is used to randomly set the 
diameter of each rock [12]. The rock model is a 
hemisphere perturbed by noise: 
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where Di is the diameter of the ith rock, and ηx and ηy 
are normally distributed random variables that 
determine the roughness of the rock. The final terrain 
DEM is a linear combination of the fractal terrain and 
the craters and rocks: 
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6.3. Results 
 

Spacecraft descent is simulated for ten different 
terrain DEMs using DSENDS. During a simulated 

descent, the sensors are activated and terrain features 
are extracted. The features are all co-registered. For 
supervised learning, the ten DEMs are partitioned into 
training and testing sets (five DEMs in each). Each 
point on the terrain is treated independently and used as 
a sample for training. 

 
Table 3. Results using CART 

 
Tier Radar Lidar 

1 93.3% (2 nodes) N/A 
2 92.4% (2 nodes) N/A 
3 88.6% (2 nodes) 90.5% (2 nodes) 

 
The results shown in Table 3 represent the 

percentage of sample points (drawn from the terrains in 
the test set) that are correctly classified. Table 3 also 
shows the number of nodes in the optimal decision tree 
yielded by CART. The resulting number of nodes in 
each optimal tree is only two. This means that the 
mapping between the relevant feature and terrain safety 
involves only one partition or threshold—the simplest 
possible scenario. For comparison, results using a 
Bayesian classifier are also shown in Table 4. As can 
be seen, the results in Tables 3 and 4 are very close. 
 
Table 4. Results using Bayesian classification 

 
Tier Radar Lidar 

1 93.7% N/A 
2 96.0% N/A 
3 87.4% 91.1% 

 

Full results using evidential reasoning are shown in 
Figure 5. The evidential safety score obtained from 
operational sensors in each tier is overlaid on two 
different terrain DEMs. The safety score is shown at 
altitudes of 8000m (tier 1), 4000m (tier 2) and 500m 
(tier 3). The color scheme used is consistent with the 
surface shown in Figure 4, where green and red 
correspond to the two extremes safe (1.0) and unsafe 
(0.0), respectively and unknown (0.5) is shown in 
yellow. 

As can be seen in Figure 5, the evidential safety 
score is highest when the individual contributions from 
each sensor are in agreement. Disagreement between 
the sensors leads to uncertainty and, in turn, the safety 
score tends towards the midpoint (0.5). This is evident 
in the outer portion of the results from tier 2 and 3 in 
Figure 5. This outer portion is the region where only 
the camera information is available and there is no 
contribution from the radar or lidar. Unless a crater or 



rock is detected by the camera, the terrain will be 
deemed unknown and the safety score (as shown) is 
consequently 0.5. When a hazard is detected by the 
camera, the safety score appropriately tends to 0.0. 
This can be seen in the results for tier 3 where the 
terrain is mostly unknown (shown in yellow) unless a 
rock is detected (shown in red).  

During descent, the spacecraft can be retargeted 
away from points with a low score (0.0) and towards 
points with a high score (1.0). Because the evidential 
safety score is more assertive when sensors agree and 
less assertive when they disagree, the approach can be 
regarded as aggressive for the purposes of landing site 
selection. That is, fewer points on the terrain are 
deemed unsafe (0.0), and consequently, there are more 
potential landing sites to choose from. In practice, it 
may be desirable to have both aggressive and 
conservative estimates in order to make different types 
of retargeting decisions based on the lander’s distance 
to the surface. This idea will be explored in future 
research. 
 
7. Conclusions 
 

The paper describes a method for determining safe 
regions of the terrain for an autonomous planetary 
lander using evidential reasoning. Crater and rock 
detection algorithms are used to identify unsafe regions 
of the terrain directly from camera imagery. 
Classification and Regression Trees are used to 
determine optimal thresholds that map topographic 
features extracted from range data to terrain safety. 
Dempster-Shafer theory is used to derive an evidential 
terrain safety score that fuses the contributions from 
each of three sensors (radar, camera, and lidar). The 
overall approach successfully integrates information 
from multiple, heterogeneous sensors in a 
computationally efficient framework with uncertainty 
management. For future work, plans include a more 
rigorous comparison between the proposed evidential 
safety assessment and previously reported Bayesian 
and fuzzy approaches. 
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Figure 5. Evidential safety assessments for two dif ferent planetary terrains (left and right 
columns). The evidential safety assessment is shown  for both terrains in tier 1 at 8000m, tier 2 at 
4000m, and tier 3 at 500m. The dashed square repres ents the portion of the terrain visible in the 

next tier.  
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