

17th Annual U.S. EPA Emissions Inventory Conference

Development of High-Resolution Motor Vehicle Emission Inventories for City-wide Air Quality Impact Analysis in China

Hui Guo, PhD Sue Sung, PhD, PE

June 3, 2008 Portland, Oregon

Background - Vehicle Fleet Growth in China

📓 Car 🛛 📓 Private car 🔛 Other motor vehicle 🛛 📓 Total vehicle

Status:

- Vehicle fleet growth rate > 20%
- Traffic pollution becomes severe in large cites
- **Gaps in Vehicle Emission Estimation:**
 - Insufficient vehicle activity database
 - No comprehensive emission model based on China fleet characteristics

Objective of Study

- Develop a city-wide mobile source inventory system in support of policies to achieve emissions control targets
 - Identify an appropriate motor vehicle emission model to improve the estimation of motor vehicle emission factors
 - Improve the accuracy in estimating the motor vehicle activity levels with limited data sources
 - Develop high-resolution spatial and temporal emission inventories for on-road motor vehicles, which could be used directly as the inputs to urban air quality models

Adaptation Analysis of Existing Emission Models for China

Emission model	Developer	Applications in China	Characteristics, advantages and limitations	
MOBILE	USEPA	Widely used	BEFs are identified by emission model year; Choosing the model year which is matched to the emission control level in China is a rough BEFs estimation; average-speed based; vehicle type classification is detailed and quite different from that in China	
EMFAC	California Air Resources Board	Hong Kong, not widely used in the continental China	Especially designed for the California State; technology categories and input data requirements are more complicated than MOBILE; average-speed based	
COPERT	European Union	Several applications	Similar testing procedures and similar vehicular pollution control standards; average-speed based; testing cycles are much simpler than the American ones	
IVE	CE-CERT	Newly introduced; some applications	BEFs are determined by vehicle technology, BEFs are easily adjustable; driving cycle (VSP) based; simple vehicle classification	

IVE Model Data Requirement

- Base Emission Factor (BEFs)
 - Running BEFs of gasoline vehicles adjusted by on-road remote sensing measurement in Hangzhou
 - Running BEFs of diesel vehicles and other fuel-type vehicles – default BEFs in IVE
 - Starting BEFs default BEFs in IVE
- Vehicle activity level data
 - Based on existing database, surveys and measurements

Study Area: Hangzhou Urban Area

- **730 km^2 (6 districts)**
- Over 2 million people
- 230,000 Vehicles (2004)
- Average annual vehicle growth rate was 27.8% from 2001 to 2004

Activity Study: Identification of Homogeneous Zones

Population distribution (people/km²)

Road Network

Activity Study: Street Types in Zone I

Activity Study: Traffic Flow and Vehicle Fleet Composition

- Video-tape survey on 9 roads in 3 Zones (I, II, III)
- Jan. 17-23, 2005 (7 days), from 6:00-22:00

Activity Study: Vehicle Technology Distribution

- I/M station survey: 4,849 vehicles
- Bus information, by Hangzhou Public Transport Group Co. Ltd.

Vehicle Type	Fuel Type	Air/fuel system	Emission control	Fraction	Total	
	Gasoline	Carburetor	No Catalyst	20.8%		
			2-way Catalyst	6.5%		
Passenger		SPFI	2-way Catalyst	4.4%	100%	
Car (PC)			3-way Catalyst	11.9%	10070	
-		MPFI	3-way Catalyst	53.7%		
	Diesel	Direct injection	EGR	2.7%		
Taxi	Gasoline	MPFI	3-way Catalyst	91.7%	100%	
	Diesel	FI	EGR	8.3%		
	Gasoline	Carburetor	No Catalyst	17.7%		
		FI	Euro I	8%		
Bus		Direct injection	Improved	13.3%	100%	
	Diesel	FI	Euro I	51.0%	-	
		FI	Euro II	9.8%		
	Gasoline	Carburetor	No Catalyst	11.7%	-	
		FI	Euro I	9.6%		
Thursday		FI	Euro II	4.4%	100%	
LIUCK	Diesel	Pre-Chamber	None	23.6%		
		FI	Euro I	44.4%		
		FI	Euro II	6.36%		
	Gasoline	Carburetor	No Catalyst	14.6%	100%	
Dtruck	Diesel	Direct injection	Improved	68.7%		
		FI	Euro I	26.5%		

Activity Study: Vehicle Technology Distribution

Size and Use Characteristics of Hangzhou Fleet

Vahiala	Exhaust valuma/	Vehicle use			
type	Vehicle weight	<80,000 km	80,000-160,000 km	>160,000 km	Total
	Light (<1500cc)	8.4%	3.6%	2.4%	14.4%
Passenger	Medium (1500-3000cc)	48.6%	20.6%	14.3%	83.5%
Car (rC)	Heavy (>3000cc)	1.2%	0.5%	0.4%	2.1%
	Total	58.2%	24.7%	17.1%	100%
Taxi	Medium (1500-3000cc)	20.1%	12.37%	67.53%	100%
	Light (4.1-6.4t)	3.7%	2.6%	4.5%	10.8%
Bus	Medium (6.4-15t)	31.9%	19.7%	37.6%	89.2%
	Total	35.8%	22.1%	42.1%	100%
	Light (<2.3t)	15.8%	18.7%	8.22%	42.8%
I truck	Medium (2.3-3t)	20.9%	6.9%	3.2%	31%
Luter	Heavy (3-4.1t)	11.58%	7.72%	6.93%	26.2%
	Total	48.3%	33.4%	18.3%	100%
	Light (4.1-6.4t)	17.1%	12%	8.8%	38%
Dtruck	Medium (6.4-15t)	25.3%	20.6%	16.2%	62%
	Total	42.4%	32.6%	25%	100%

Consultants

The Annual Mileage Accumulation Rates

Vehicle use during the first fourteen years of age: (a) PC (b) LTruck

For estimating the total annual mileage traveled in the model year, combing with vehicle age distribution

Activity Study: Vehicle Driving Patterns

GPS technology: second by second measurements of vehicle speeds

Activity Study: Vehicle Driving Patterns

- Driving patterns characterized with two parameters:
 - Vehicle Specific Power (VSP)
 - Engine Stress

Activity Study: Vehicle Driving Patterns

Comparison of Driving Patterns for Three Major Vehicle Classes at 5:30pm

Activity Study: Vehicle Start Patterns

- Questionnaire for vehicle drivers in I/M stations:
 - How many times did you start your vehicle the day before the survey day?
 - When the starts happened?
 - How long was the engine-off time (soak time) between two starts?
- Valid questionnaires: 522 (292 for PC, 176 for truck and 54 for taxi)
- Average daily start times: 7.1, 5.5 and 3.2 times for PC, truck and taxi, respectively.

Activity Study: Vehicle Start Patterns

Methodology: VKT Spatial Allocation

- Line sources for highway and arterial way:
 - Monitored traffic volume
 - Length of roadway links
- Area sources for residential way:
 - Area source mileage =
 Total mileage traveled Line source mileage
 - Population density
 - Roadway density

Methodology: Start times and Patterns Allocation

- It is assumed that the soak time distribution of each vehicle category was the same in all street types
- The start times can be allocated following:

Equation (5)
$$S_{i}$$

where,

 $S_{ij} = rac{M_{ij}}{M} imes S_{ij}$

 S_{ij} - start times in grid j (or in link j) at i hour, times; M_{ij} - mileage traveled in grid j (or in link j) at i hour, km; M- daily total mileage traveled in the whole study area, km; S- daily total start times in the whole study area, times;

Results: Temporal Emission Distribution

Results: Spatial Emission Distribution

Trinity A Consultants

Results: Emission Contribution from Different Vehicle Types

Trinity

Simulation of Pollutant Dispersion

- Assess the impact from mobile sources on air quality
- USEPA AERMOD model (version 07026)
- Inputs:
 - Hourly emission inventory of 161 line sources
 - Hourly emission inventory of 756 area sources
 - Hourly 2004 meteorological data from NCDC
 - 1° DEM data (90 meters resolution)

Results: Modeled Annual Average Concentration Distribution

Tripity

Conclusions

- IVE model has the following advantages and are more suitable for China
 - BEFs can be defined by vehicle technology
 - BEFs are easily adjustable
 - Improvement of vehicle driving patterns modeling
- The methods of vehicle activity data collection are suitable in China
- Reasonable high-resolution temporal and spatial vehicle emission inventories can be developed using this methodology for urban air quality assessment

Recommendations

- Develop informative and detailed vehicle registration systems in Chinese cities
- More on-road emission measurements are needed to adjust original BEFs in IVE model
- Refined methodology and additional survey to enhance the spatial distributions of start emissions

Contact Information

 Hui Guo, Trinity Consultants, China 86-0571-89938938

hguo@trinityconsultants.com

Sue Sung, Trinity Consultants, Dallas
 800-613-9350

ssung@trinityconsultants.com

www.trinityconsultants.com

