Measuring Physical Properties of Polymer Electrolyte Membranes

Cortney Mittelsteadt 9/14/06

September 14, 2006

Overview

- Water Uptake
 - Liquid
 - As a function of RH and Temperature
- Conductivity (briefly)
 - In-plane
 - Submerged
- Gas Permeability
- Mechanical Properties
 - Time-Temperature-RH Superposition

Water Uptake

- Why Important?
 - All other properties are related back to water uptake.
 - Expansion due to water uptake must be accommodated by rest of the stack build.
 - PEM can not be water soluble.
 - GM Guideline: Less than 100% Volume expansion in liquid water at 100°C

Temperature and Relative Humidity

Gas in

- Magnetic Balance
 - Allows complete isolation of sample
 - MeOH, other isotherms possible
- RH controlled by mixing dry and wet streams together
 - Allows quick change of RH compared to saturator temperature.
 - If membrane is thick enough permeability and diffusivity can also be calculated
- Temperature Control Extremely Important
 - Water Jacket
 - 1°C difference = 5% RH difference
 - Thermocouple every inch along the column, +/- 0.1°C over 6" active region.
- RH measurement very important
 - Probe in close proximity to sample
 - Probe calibrated by Pressure

September 14, 2006

DOE High Temperature Membrane Working Group

RH Probe

Water Uptake of Nafion Using the Magnetic Balance

Water Uptake: Liquid Water

- Technique:
 - Submerged for 24 Hours
 - Removed and placed between 2 wetted clear films
 - X,Y,Z expansion measured
 - Surface moisture removed, placed in pre-weighed sealed container, container weighed for mass uptake

1100 EW Nafion[®] Swelling in Equilibrium with Water

Conductivity: Briefly

- In-plane Conductivity done as a function of temperature and RH, 3 Membranes at a time *with one always being Nafion 112.*
- RH sweep done at 30, 60, 80, 95, 110, 120, 140°C
 - Up and down at $80^{\circ}C$
- Submerged conductivity done with equivalent empty window to subtract solution conductivity

Conductivity: Submerged

- Submerged conductivity done with equivalent empty window to subtract solution conductivity
- Entire Apparatus is Pt and PTFE

Gas Permeability

- Why Important?
 - Direct loss to efficiency
 - Gas Crossover Implicated in Degradation
 - N₂ Permeability determines H₂ Stoichiometry

Giner Electrochemical Systems, LLC – Gas Permeability: Method and Results

Test cell is 50cm² cell most people have access to with inexpensive optical sensors added

N₂ Permeability of Nafion 1100

Mechanical Properties

- Why Important
 - Can limit how thin that you can go.
 - Relate back to water content.
 - If you know the equilibrium dimension at a given condition, then perturb that condition you can predict the stress developed, this relates back to mechanical failures.

-Giner Electrochemical Systems, LLC Mechanical Properties: Time-Temperature-RH Superposition

- DMA Modified for RH control (Q800 TA Instruments)
- Three dimensional Matrix: Temp, RH and frequency
- Important that sample does not creep during testing
- Test also gives single axis swelling as a fxn of RH
- See work by Yeh-Hung Lai of GM and Dillard of Virginia Tech

-Giner Electrochemical Systems, LLC Time-Temperature RH Superposition: Raw Data

1100 EW Ionomer Time-Temperature-RH Raw Data

Giner Electrochemical Systems, LLC Mechanical Properties:

Time Temperature RH Superposition

Nafion 112 DMA scan. Frequency is shifted for Temperature, but not RH

Failure Modes

- Why Important?
 - Divorce Chemical and Mechanical Modes of Degradation
 - Accelerated Chemical Testing:
 - At Open Circuit Voltage
 - Increased Temperature
 - Decreased RH

Failure Modes: Accelerated Chemical Testing

- Tests Conducted at 95°C, 50% RH with H₂/Air at 7 psig
- Water Collected for F⁻ analysis (perfluorinated only)
- H₂ cross-over
 - Electrochemical Measurement with N₂ at Cathode
 - Increase in current at equal pressure indicates membrane thinning
 - Increase in current with $H_2 > N_2$ pressure indicates pin-holing
 - Increase in N_2/N_2 current at give voltage indicates shorting

OCV Test:

Crossover Currents at 0.5 Volts (95°C 50% RH)

September 14, 2006

Summary

- Fairly quick screening methods developed to measure membrane critical parameters.
 - Water Uptake
 - Conductivity
 - Gas Permeability
 - Mechanical Properties
 - Secondary Characterizations
 - Water Hydraulic Permeability
 - Electroosmotic Drag Coefficient