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Work at Brown led to the CBK model nowWork at Brown led to the CBK model now
integrated in integrated in FluentFluent and and Glacier Glacier CFD codesCFD codes
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New work to extend CBK to high pressure char combustion

Characteristic 
Burnout Rate,    RBO =
(1/burnout time)

dm / dt
mo

In Zone I 
(kinetically-limited reaction)

In Zone III 
(diffusion-limited reaction)

km Xox P dp
2

RBO = =   Xox / ρ dp
2

ρ dp
3

RBO =  kint Pn
XoxRBO = 

(ρ dp
2)coal (1-VM) ω

derivable from other properties

CFD-based models need:  VM*, ω*, kin,*, n*, porosity (some models), ρchar



High-Pressure Char Morphology

Illinios#6, 20 atm. O/C: 58%
3 kV e-beam 20 kV e-beam



High-Pressure Char Morphology

Pitt. #8, 30 bar, O/Coal 48.6% Pitt. #8, 30 bar, O/Coal 103%



Pittsburgh #8, 10 atm. O/C: 29.8%



Pittsburgh,
30 atm.

O/C: 9.5%



PRB Coal Char 

10 bar, O/Coal 200% 30 bar, O/Coal 154%



Pittsburgh, 30 atm., O/C: 9.5%



Agglomeration 
and coalescence

Illinois #6, 2 atm.
O/C: 160%



Pittsburgh,
30 atm.

O/C: 48.6%



Quantitive Swelling Data from 
For High Pressure Chars
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Quantitive Swelling Data for High Pressure Chars
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Summary of High Pressure Swelling Data and 
Comparison to 1 atm Flow Reactor Data (Sandia)
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Intrinsic Reactivities of High Pressure Chars
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Total Surface Areas of High Pressure Chars
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Carbon/Oxygen Reaction: Review of Measured
Reaction Orders in Intrinsic Regime
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The observed high, fractional reaction orders are not consistent
with the simple 2-step mechanistic kinetic models in current use



High Pressure Combustion Kinetics

Proposed 3-step semi-global mechanism

1. C  + O2 --->   2C(O)

2. C(O)  +  O2 ---> CO2 + C(O)

3. C(O)  --->  CO

rgas  =   
k1k2 PO2

2  +  k1k3PO2   

   k1PO2  +  k3/2  

CO/ CO2   =   
k3

 k2PO2
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Project on Predicting Reactivities
of Diverse Solid Fuel Chars

log10 R [sec-1]
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Reactivity of 1000°C Chars
log10 R [sec-1]
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Total Char Surface Area

Reactivity, x 105
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Model Development

Hybrid chemical/statistical approach

Two independent, parallel, non-catalytic and catalytic 
components are assumed:

R700°C =  Rcarb +   Rcat

Rcarb = function of:

%C (parent fuel)

or

char surface area 

Rcat = function of:

concentration
and

dispersion
of

Group I, II, and 
transition metals* 

*in this data set: K, Ca+Mg, V



Non-Catalytic Baselinelog10 R [sec-1]
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Catalyst Dispersion

Catalyst activity depends strongly on grain size [Radovic et al., 
1983; Cope et al., 1994; numerous heterogeneous catalysis studies]

Bulk granular mineral matter in coals has low catalytic activity
[Tomita et al., 1977]

• exchanged cations
• soluble salts
• organometalics w/
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coals Fuel-Specific Dispersion Rules

mixed nano- and 
granular dispersion

nanodispersed fraction 
determined by comparing 

concentration of ion-
exchange (carboxylic) sites 

to catalyst loading

biomass 0
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granular inorganic 
impuritiestiresK (dominant) and Ca:

primarily in soluble or ion-
exchangeable forms [Jenkins 
et al., 1998], except bagasse, 

which has been washed 
during processing.

cokes V is nano-dispersed 
in porphyrins



Hybrid Approach Result

Reactivity, R
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= log10 R,
model
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Rcarb = fxn (wt-% C of precursor)

+

+ 3.1.10-8 (Vnano)

Rcat =  7.9.10-7 (Knano)

+ 1.3.10-7 (Canano+Mgnano)
Most reactivity variation explained 

through 4 precursor properties:

Knano, (Ca+Mg)nano, wt-% C, Vnano

(in order of decreasing importance)



Reactivities of Diverse Solid Fuels: Conclusions  

For coals, reactivity correlates well with organic composition 
(C,H,O,N,S), but the trend is NOT evident for solid fuels of < 80% C, 
daf (most practical fuels).

For 700°C chars, catalysis is the dominant factor determining 
reactivity trends (in agreement with most demineralization studies).

Sensitivity studies (according to model coefficients) suggest that 
virtually no natural materials can be safely assumed to be non-
catalytic. [Knano must be < 44 ppm; (Ca+Mg) nano < 270 ppm]

Crude estimation of reactivity is possible based on parent fuel 
characterization alone, if the model incorporates literature 
information on the form and dispersion of inorganic matter.



Air Entrainment in Fly Ash ConcreteAir Entrainment in Fly Ash Concrete

concrete mixture

Portland Portland 
cementcement fly ashfly ash

chemical chemical 
admixturesadmixtures

CH(CH3)2

CH3

H3C

—OOC
Na+

aggregateaggregate

waterwater

Surfactant  
adsorption sites



[ Freeman, et al., 1996; Smith et al., 1998 ][ Freeman, et al., 1996; Smith et al., 1998 ]

•• surfactantsurfactant
adsorptivityadsorptivity
varies widelyvaries widely

•• variation at variation at 
constant LOIconstant LOI
is is significantsignificant
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Ozone Treatment Found to Reduce Surfactant Adsorptivity (Foam Index)
And Improve Ash Performance in Concrete
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Effect of Ozonation on Carbon Content
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Proposed Mechanism for the  
Deleterious Effect of Unburned 
Carbon in Fly Ash Concrete micelles

interfacial accumulation air 
bubbles
(desired)

Non-polar 
surfactant "tail"

adsorption

non-polar 
portion of 
carbon surfacesHOH

O OH
HOH

HOH

(this adsorption renders
the surfactant
unavailable for air
bubble stabilization)

Ozonation



Development and Scale-up of Ash Ozonation Process

A team of organizations has been assembled to pursue the densign, scale-up and 
commercialization of Brown's patented fly ash ozonation technology.  The team includes:
PCI-Wedeco, PP&L (power generating utility), Fuller Bulk Handling, EPRI, Brown, 
and EES for support and project management. along with funding from the Dept. of Energy, 
National Energy Technology Laboratory 
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First generation pilot plant at PCI-Wedeco, West Caldwell N.J., the world's leading 
manufacturer of ozone generators.  Left: portion of the pilot plant; Right: early results.
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