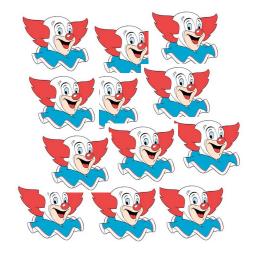
Real World Data is Ugly and Hard; What to Do?

Modern data is: huge, relentless, deeply skewed, ill-suited, noisy, and riddled with error and ambiguity.

So: give up on the craftsman model of pattern recognition.

"Ensembles" enable a *commodity* model:

- Accepts data as it is.
- No user tuning required.
- Robust in the face of noise.
- Scales to terabytes of data.
- Always improves accuracy.



Hordes of Bozos for Robust Prediction

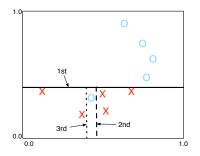
Groundtruth Data for Detection of Ideology

File	Ideo?	Language	CS-1	CS-2	•••	CS-K
	Truth	a_1	a_2	a_3		a_K
f_1	Yes	12	1003	0.97	••••	0.12
f_2	Yes	99	2	0.33	•••	0.03
f_3	No	3	27	0.12	•••	0.13
f_4	Yes	16	183	0.08	•••	0.58
f_5	No	17	665	0.36	•••	0.64
f_6	No	44	1212	0.29	• • •	0.42
f_7	No	42	24	0.33	• • •	0.88
f_8	Yes	78	42	0.44	• • •	0.52
• • •	• •	•	• •			
f_N	No	12	3141	0.92	•••	0.17

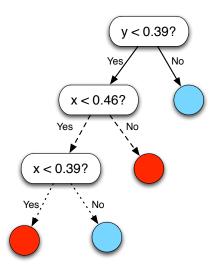
Use Groundtruth to Learn Label Predictor

Also known as: pattern recognition, statistical inference, data mining.

- Input: "ground truth" data.
 - $-\,$ Samples, with attributes, and labels.
 - Example: detect ideology in text
 - * Samples: a document
 - * Attributes: features of the text
 - * Labels: "yes", "no"
- Apply suitable method: decision trees, neural nets, SVMs.
- Output:
 - rules for labeling new, *unlabeled* data. Equivalently:
 - a partitioning of attribute space.



Attribute space partitioned.



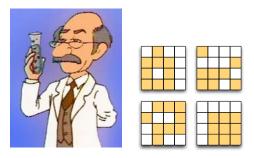
Decision tree representation.

Ensembles: Efficient, Robust, Optimal Accuracy

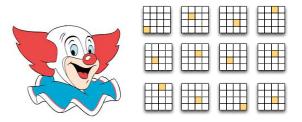
- **Traditional:** Use 100% of training data to build a sage.
- **Ensembles:** Use randomized 100% of training data to build an expert. Repeat to build many experts. Vote them.
- Sandia: Use a semi-random 1% of the training data to build a "bozo". Repeat to build very many bozos. Vote them.

The experts beat the sage[1]. The bozos beat the experts[4].

Sage sees all the data.



Each expert sees 2/3rds of the data.



Each bozo sees a tiny fraction.

Groundtruth is Key! But ...

Groundtruth is also ...

• expensive,

• time-consuming,

• and often under-represents the most important class.

What to do?

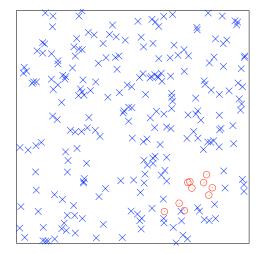
SMOTE for Under-Represented Data

- Synthetic Minority Oversampling TEchnique[3].
- Oversample the minority population, but ...

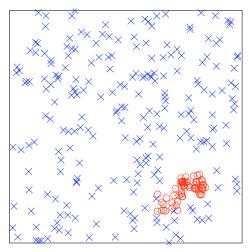
... simple oversampling induces pathologies.

So: add *synthetic* samples.

- Method:
 - Pick minority sample.
 - Pick a nearby neighbor.
 - Add new minority sample at a random point between them.
 - Repeat.

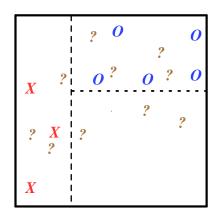


Minority class overwhelmed.

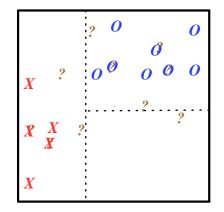


Minority class filled out by SMOTE.

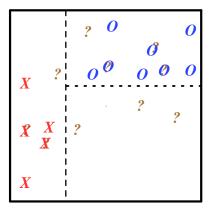
Semi-Supervised Learning[2], To Bootstrap Groundtruth



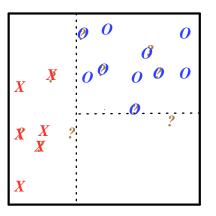
Many unlabeled points.



Which changes the decision boundaries,

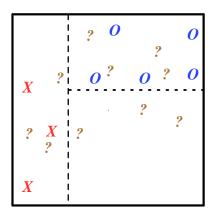


Re-label the most confident,

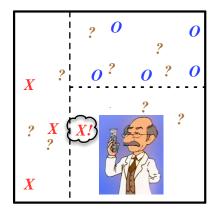


So more points can be labeled.

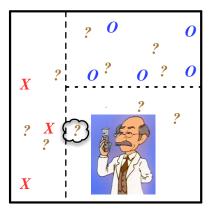
Active Learning[5], To Sharpen Groundtruth



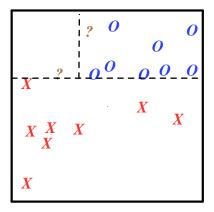
Many ambiguous points.



Ask an expert to label it.



Find the most telling one to label.



More points can be accurately labeled.

Example Applications, Existing or In Development

- Detection of steganography in audio signals.
- Malware classification.
- Search by example in NW simulation data.
- Determine friend or foe from body movement.
- Word classification for entity extraction, for building graphs.
- Predict successful gene expression process parameters.
- Detecting and identifying "ideology" in documents.

References

- BANFIELD, R. E., HALL, L. O., BOWYER, K. W., BHADORIA, D., KEGELMEYER, W. P., AND ESCHRICH, S. A comparison of ensemble creation techniques. In *Proceedings of the Fifth International Conference on Multiple Classifier Systems*, MCS2004 (2004), J. K. F. Roli and T. Windeatt, Eds., vol. 3077 of *Lecture Notes in Computer Science*, Springer-Verlag.
- [2] CHAPELLE, O., SCHÖLKOPF, B., AND ZIEN, A., Eds. Semi-Supervised Learning. MIT Press, Cambridge, MA, 2006.
- [3] CHAWLA, N. V., BOWYER, K. W., HALL, L. O., AND KEGELMEYER, W. P. SMOTE: Synthetic minority over-sampling technique. *Journal of Artificial Intelligence Research 16* (2002), 321–357.
- [4] CHAWLA, N. V., HALL, L. O., BOWYER, K. W., AND KEGELMEYER, W. P. Learning ensembles from bites: A scalable and accurate approach. *Journal of Machine Learning Research 5* (2004), 421–451.
- [5] COHN, D. A., GHAHRAMANI, Z., AND JORDAN, M. I. Active learning with statistical models. In Advances in Neural Information Processing Systems (1995), G. Tesauro,
 - D. Touretzky, and T. Leen, Eds., vol. 7, The MIT Press, pp. 705–712.