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ABSTRACT

The duality that exists between the basic equations and the
dependent variables of the problems of stretching and of bending
of plates is applied to the finite element method. A displacement
method in the stretching problem is a stress function method in the
bending problem and vice-versa.

The displacement method for the stretching problem and the
dual stress function method for the bending problem are applied to
orthotropic triangular elements. The derivation of the dual purpose
stiffness -flexibiltity matrix is carried out explicitly.

Various boundary conditions are considered including elastic
supports and edge beams in both stretching and bending problems. It
is found that elastic supports in one problem are dual of an edge beam
in the other problem and vice-versa. A treatment of dislocations in
the stretching of multiplyconnected plates is also includéd.

The stress function method uses two equations per node whereas
three equations per node are used in displacement methods. It has the
same properties of accuracy and convergence as the well established
dual displacement method for plate stretching. The availability for
the same problem of both a stress function method and of a displacement
method allows obtaining upper and lower bounds on flexibility coefficients.

A program originally written for the analysis of plane stress and
plane strain problems by the displacement method is used to solve
plate bending problems. Results show that a high degree of accuracy
may be achieved for the stress couples. The determination of the deflec-
tion and slopes is made from the curvatures and involves no lc;ss of
accuracy. Comparisons with results of the fully compatible displace-

ment method are presented.




I. Introduction

The analysis of plate and shell structures by the finite element
method is generally associated with the use of a stiffness matrix for
triangular or rectangular elements and with the determination of the
displacements at the vertices or nodes of the elements into which
the structure is subdivided. In the problem of stretching of plates
satisfactory results are reported (1) with use of triangular elements
and of element displacements that are linear functions of the cartesian
coordinates, whereas some difficulties seem to be encountered in ob-
taining as satisfactory results in the problem of plate bending (2)(3)
(4)(5).

In contrast to the displacement method, force methods where

stresses or stress functions are the unknowns have recieved compara-

tively little or no attention. A stress method based on the discretization

of the stress field and the use of the theorem of stationary complement-
ary potential energy is presented in reference (6) but stress functions
have apparently not been used yet in formulating a finite element
method. In view of the duality that exists, however, between the plate
stretching and plate bending problems(7) a stiffness method for the
stretching problem may be interpreted as a flexibility method for the
bending problem if the displacements are replaced by stress functions.
Similarly, a stiffness method for plate bending may be used to solve
plate stretching problems if the deflection of the plate is interpreted

as Airy's stress function.

The use of stress functions in the finite element method is pre-
sented here within the context of the stretching-bending duality and of
the application of one mathematical method to the solution of both
stretching and bending problems. Because of this duality the use of
stress functions for the analysis of plates in bending leads to a finite

element method that has the same properties and characteristics as
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the dual displacement method for the analysis of plates in stretching.
In particular, the use of triangular elements and of piece-wise

linear stress functions in the bending problem should lead to as satis-
factory a finite element method as the dual displacement method for
the stretching problem. This latter method has been tested for
accuracy(l) and is monotonically convergent(8). It involves two
equations per node whereas three equations per node are used in
displacement methods for plate bending.

The derivation of the stiffness matrix and of the dual flexibility
matrix for the stretching and bending, respectively, of an orthotropic
triangular plate is here based on dual variational formulations and is
carried out explicitly.

The duality between the basic equations, dependent variables,
loadings and boundary conditions of the stretching and bending problem
is presented in detail in reference 7. It is here extended and applied

to plates supported elastically or bounded by edge beams.

2. Variational Formulation of the Stretching Problem in Terms of the

Displacements

Consider a plate, Fig. 1, in equilibrium under a surface load of

vector intensity
p=pit PJ (1)

and an edge load of vector intensity

Ny= N T+ N (2)

The displacement vector

e |

=ui +vj (3)

makes stationary the potential energy of the plate considered as a

functional of the displacements.
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We consider linearly elastic orthotropic plates having the coor-
dinate planes as planes of elastic and thermal symmetry and for

which the strain energy density function has the form

2

2
_ X vy [ XX Yy x Yy 2
W= 2(1-y vy )L E ¥ E ( E ¥ E ) axxiyy t 2Gh exy
x'y y x y x
+N° + N° 4
wExx TN E (4)

where Ex and Ey are Young's moduli, G is the shear modulus and P‘

and Vy are Poisson's ratios. These are related through the relation

Vy Vx
Yy _¥x
E " E (5)
x y

€ , &€ and € are the linear components of strain and are rela-
xx yy Xy

ted to the displacements through the relations

Exx=u,x (6)

= 7
EYY V’Y (7)
Zﬁxyzu’y+v’x (8)

N; and N‘;’ are initial stress resultants related to thermal strains £°
x
and E‘;’ through the relations

Eh

°—____x_ ° o
Ne= Ty v, (Ex % €Y <
x Uy

5_‘___L____ ° ° '
R AR (10)

We consider boundary conditions of the form

__ 2B
Nk =" 3u (11)

v ..28

T (12)
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where B is a function of the displacements. If Nnx and Nny are
specified at the boundary then

B=-N u-N v (13)
nx ny

In the case of elastic boundary conditions of the form

N =k (uo-u)+k (v° -v) (14)
nx XX Xy
N =k (us -u) tk (vs - v) (15)
ny yx Yy
where the stiffness coefficients kxx’ kxy =k and k _ and the support

S S . . ces
displacements u and v are given functions of position on the boundary,

B takes the form

1 s 2 s s 1 s 2

B--Z-kxx(u-u ) +kxy(u-u v - v )+2kyy(v-v ) (16)
Letting

P = —pxu - pyv | (17)

w, =KWdA (18)

Pt =KPdA (19)
and

Bt = des (20)

where the area integrals extend over the domain of the plate and the
curvilinear integral extends over the boundary, the total potential

energy of the plate is
= + P +
M =w+p B, (21)

The displacements of the plate satisfy the variational equation

ST - o (22)
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3. Stretching of a Triangular Plate

An approximate solution of the problem of stretching of a
triangular plate, Fig. 2, is now obtained by applying a direct method
to the variational equation 22.

The stress resultants are specified on the three sides of the

triangle. On side m we let

N =N (23)
nx X

N =N (24)
ny 'y

The displacements are sought as linear functions of the coordinates.
It will be convenient to use triangular coordinates fl, FZ, and Es.
They are related to the cartesian coordinates through the linear rela-
tions ay-bx+ec,

i i i

?i: — i=1,2,3 (25)

where a, and bi are the components of side (i) of the triangle considered
as a vector and oriented counterclockwise when seen from the positive
side of the Z axis, Fig. 3. A is the area of the triangle. ci/ZA are thg
triangular coordinates of the origin and are not needed in what follows.
The triangular coordinates are non-dimensional distances as shown in

Fig. 3. They satisfy the relations

E +%, +f3 =1 (26)
ff‘?ﬂA:% C(27)

H'EfdA =% (28)

“FifjdA=% i #] (29)




It is also noted that

= 30
a1+a2+a3 0 (30)
+ = 3
bl b2+b3 0 (31)
¢, tc, tcy=2A (32)

The displacements u and v are expressed in terms of their values at the

nodes through the relations

8]

u ui'Ei (33)

H

v=v,§. (34)
i*i

in which u, and v,are the displacements at node i and the summation convention
pertaining to a repeated index is used.

The total potential energyfTwill now be expressed in terms of the
nodal values of the displacements and will be made stationary with

regard to them. In computing the strains the chain rule of partial

differentiation is used in the form

b
_9() _ i _2()
( ),x - ?F .Ei,x - ZA 2?1 (35)

vy fF, Ly 24 IF, (36)
vielding
&xx - 211&1 (37)
4V

8yy =T2A . (38)

a iui b,vi

- 17
2éxy - T 2Aa (39)

The potential energies of the surface load and of the boundary load,

Egs. 19 and 20, and the term involving the initial stress resultants in




Eq. 18, take the form

P =-P u -P v, (40)
t x11 yii
B, =-R u -R v, (41)
t x1 1 yi 1
ffovoe  +n0E )aa=-@ . -@ v, (42)
X XX Vo yy xi i yi i
where
£y ff 00
P =ﬂpy §aa (44)
em m '
m 1 m .
in —I Nx Ei dsrn = Tm ( Nx 5 dsm, m # i (45)
o o]
{m -
m 1 m .
RYi —I NY 'Eidsm = mf NY s dsm, m#i (46)
o o
bi '
®xi - Z—Aﬂ Nx dA (47)
!
@Yiz-z—f’:ﬁNydA (48)

In Eqs. 45 and 46 m refers to the two sides of the triangular plate
intersecting at node i, and on each side s . is oriented positively
towards node i.

The potential energy of the plate, Eq. 21, may now be written

in the form
2 2
T E BN (bju, (a;v;) Vx Yy ]
T8A(1-Y ¥ )[ E e E TE PN
X Y Y X y X

: 2
+ = (aw. -bv) -(P . +R . +® Ju. -(P.+R . +© v, (49)
11 11 X1 X1 X1 1l Yl Yl Yl 1
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>u =0 (50)

;E}T =0 (51)
Kk

or, explicitly

h f
4A(1- Y ¥ )l

— - ) -
[E b.b. + Gl y )a a ] u [Ex)’xbkai FG(L- Y Vy)akbi] vi}

+ +
ka ka @

<k (52)

h
4A(1 -»_ ¥ )
x'y

{[ P by + GO -V v)ba]u +[E a3 ¥ G- ¥ V)b b] 1}:

+ +
P PRy @Yk (53)

In the case where P’ py, N; and N°y are linear in x and y the integrals
in Eqs. 43, 44, 47 and 48 may be expressed in terms of the nodal values
p .. P . N°. and NY » where i refers to any of the three nodes, accord-

xi “yi xi
ing to the relations

Pxi = “ pr j 1 é2 (pxi * pxl * pr * px3) (54)
P.=“p.’f.'€.dA=—é—(p.+p tp,t+tp ) (55)
yi vyt 12 yi Tyl Ty2 o Ty3
b b, :
@ - E;K“No Taa - = (N? +NT o+ N ) (56)
a, a,
@Yi= -5y N"ij.dAz-——él- (NS |+ N+ N2 ) (57)
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It is convenient to call Eqs. 52 and 53 equilibrium equations
and the terms on their right hand sides generalized nodal forces at
node k. The six equilibrium equations at the three nodes of the tri-
angular plate form a system in six unknown nodal displacements.
This system of equation's is singular, however, because the homo-
geneous system admits non-trivial solutions that are the nodal dis-
placements in an arbitrary rigid body displacement of the plate. It
may be verified, as it is to be expected, that the thermal generalized
nodal forces are self equilibrating, and that for the non-homogeneous
system to admit a solution the generalized nodal forces associated
with the surface and edge loads must be statically equivalent to zero.
This condition is equivalent to the condition that the surface and edge
load be self-equilibrating. In that case the general solution of the non-
homogeneous system consists of a particular solution superimposed on
an arbitrary rigid body displacement. By fixing the latter a definite
solution is obtained.

In the case where only the thermal generalized forces are not
zero the solution for the displacements represents a free deformation

of the triangular plate.

4. Application to a Plate of Arbitrary Shape

The derivation of Eqs. 52 and 53 may be viewed as a step in
applying the variational equationé TT = 0 for a plate of arbitrary shape.
The domain of the plate is , Fig. 5, subdivided arbitrarily into tri-
angular elements and the displacements are sought as piecewise linear
functions. The boundary of the plate, if curved, is replaced by an
approximating polygon and the boundary conditions are formulated for
the polygonal boundary. Known displacements at the boundary are re-
placed over each side joining two consecutive nodes by approximating

linear functions.
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The potential energy of the plate is equal to the sum of the
potential energies of the triangular elements. In forming this sum
the potential energies of the boundary loads of the triangles cancel
each other over all sides in the interior of the plate because the stress
resultants along a side common to two elements act in opposite direc-
tions on the two elements.

The variational equation 5 T = 0 for the plate yields a set of
simultaneous equations for determining the nodal displacements. At
each node k belonging to n elements two equations are obtained by
superposition of n pairs of equations such as Eqs. 52 and 53. These
two equations are conveniently referred to as equilibrium equations

and their right hand sides as generalized nodal forces at node k. Let

ka anf F K be the generalized nodal forces due to the edge loads, ie.,
y
F o, =LR, (58)
Foe = & Ry (59)

where the summation extends over the elements having node k in

common. At an interior node we obtain

F =0 (60)

Fyk =0 (61)

because the stress resultants on a side common to two elements con-
tribute opposite quantities to the sums in Eqs. 58 and 59. At a boundary
node k let m and n denote the two sides issuing from that node, Fig. 6.
From Eqs. 45 and 46 we can write
{m fn
1 m 1 n
F ., == N +—— | N s ds (62)
X e X n n
n

o o

s ds
m m
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m bn

1
F =———( N"s ds +—1——f N" s ds (63)
vk ?m y m m }

o o
In Eqs. 62 and 63 sides m and n are oriented towards node k, Fig. 6.

Writing two equations per node yields as many equations as
nodal displacements. The right hand sides of these equations are
known at all interior nodes if the externally applied load is known.

At boundary nodes ka and Fyk may or may not be known depending
on the boundary conditions.

a) Stress Boundary Conditions

If the stress resultants are specified on the two sides
issuing from node k, the two equilibrium equations at that node have
known right hand sides.

In the case where the stress resultants are known on all the
boundary, it is necessary to specify the elements of a rigid body
displacement in order to avoid treating with a singular matrix. This
will be examined in more detail subsequently.

b) Displacement Boundary Conditions

If the displacements of a boundary node are specified, the
two equilibrium equations associated with that node are not part of the
system of simultaneous equations. They are used after solving this

system to compute the unknown edge reactions Fx It may

K and Fyk'
be noted that the preceding applies as well to an interior node whose
displacements are specified and at which there are therefore unknown
reactions.
c) Mixed Boundary Conditions
If the stress resultant component in a direction (a) is

specified on the two sides issuing from node k and if the displacement
of node k in a different direction (B) is specified, one equation at node

k is obtained by projecting the two equilibrium equations on the direction

(a) and a second equation is obtained by expressing the known displace-
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ment component in terms of the cartesian components u and Vi

In the case where stress boundary conditions are specified on
all the boundary, a rigid body displacement must also be specified
if the displacements are to be determined in a definite manner. This
may be done by specifying as zero the displacements of a node i and the
rotation about that node. In order to specify zero rotation the dis-
placement component of a node j in the direction perpendicular to the
line ij may be specified as zero. The two equilibrium equations at
node i and the equilibrium equation at node j in the direction perpen-
dicular to line ij are deleted from the system of simultaneous equations.
They may be used to perform a statical check by computing the reactions.

d) Elastic Boundary Conditions

Elastic boundary conditions are specified by means of the

function B, Eq. 16, to which corresponds the potential energy Bt’
Eq. 20. Using piecewise linear functions to represent u, v, us and v'S
and referring to the notation defined in Fig. 7 we obtain at node 2

generalized nodal forces of the form

3B‘c XX , 8§ X X B
_ - y -
S c) Wy mu) S T v (64)
2 . ]
i=1 i=1
2B, & ., C v s
- = - + -
> Z k0 (a] - ) Z_ ko, (v =) (65)
2 . )
i=1 i=1
where [1 p3
XX 1 2 1 2
- —_— + k :
kZZ ez f kxx s1 ds1 éz I x s 3ds3 (66)
1 o 3 0

0
Ko = ! [ k s.( e.-s.)ds. i=1,3 (67)
X 1 1 1 1
o)
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Byusing inturnk , k , and k instead of k in Egs. 66 and 67
yy Xy yx XX
we obtain the remaining stiffness coefficients. It is noted that

xy _ L yx .
Koy = Ky v i=1,3 (68)

The right hand sides of Eqs. 64 and 65 take the place in the equilibrium
equations at node 2 of the generalized nodal forces sz and FyZ due

to the edge load. uis and viS are assumed known. If, instead, the
spring forces are known the boundary conditions are then of the stress

type.

5. Plate Bounded by an Edge Beam

Formulated analytically the boundary conditions for a plate with
an edge beam are the differential equations of equilibrium of the edge
beam expressed in terms of plate edge displacements. It will be
assumed that the edge of the plate coincides with the centerline of
the beam.

The problem may be discretized by adding to the potential energy
of the plate the potential energy of the edge beam and applying the direct
variational method. The piece-wise linear displacements need however
a special interpretation when used to compute the potential energy of
the beam because they imply no change of curvature of a side joining
two adjacent boundary nodes. In order to compute the strain energy
due to bending a numerical integration may be made where the change
of curvature is computed in terms of nodal displacements by means of
differences of side rotations.

The strain energy of the beam is taken in the form

wP - % ﬂEA (- &) +EYx- %)?] ds (69)

where g€ and Xare the extensional and curvature strains, respectively.
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[+

and o¢ are thermal strains, A is the cross sectional area, Iis the

3

moment of inertia with regard to the axis perpendicular to the plane
of the beam and passing through the centroid and E is Young's modulus.
The potential energy of the distributed load applied on the beam

is of the form

p° - <f (AN u + AN v)ds (70)
X y

In Eq. 70 ANx and ANy are the components of the distributed load which
consists of the load applied externally on the beam and of the stress
resultants at the plate edge. Using piece-wise linear displacements
and a piece-wise constant thermal strain to compute the strain energy

due to axial stretching we obtain

)] v
s EA(E-€)as =5 EA(E, - €90, (71)
i
where i refers to a boundary segment and the summation extends over all

such segments. Referring to Fig. 8 we can write
&i Zi = - (ui+1 - ui)sm¢‘+ (v,ﬁ_1 - vi)cos¢‘, (72)
Letting wi denote the rotation of side i we have
(di Fi = - (uH_1 - ui)cosﬂ - (vi_}_1 - vi)sm ¢.. (73)
and letting at node k
X = 2 (@, - @ ) (74)
k Zk + ?k ] k k-1

The strain energy due to bending is expressed in the form

1 2. 1 2 Ot b
E’éEI(’x.- xA°) ds = > Zk Eklk( 'xk - 'xk) — (75)
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where the summation extends over the boundary nodes.
The potential energy of the applied load is obtained as a sum of

products of generalized nodal forces and nodal displacements in the

form
b
= - +
P 2 OF vy OF v, (76)
k

where

Aka = ka B ka (77)

AFyk:Fyk-Fyk (78)

ka and Fyk are the generalized nodal forces arising from the stress

resultants acting on the plate edge, Eqgs. 62 and 63. ka and F | 2T
y
the generalized nodal forces arising from the load applied externally

on the edge beam. Denoting by N r:;1:=tnd ﬁr;lthe components of that

load on side m, F_, and F _ are obtained through formulas similar

xk vk
to Eqs. 62 and 63.
By making stationary the potential energy of the beam with regard
to the displacements of node 3, Fig. 9, force-displacement relations

are obtained in the form

"

5
. XX
AF 37FLst Z kg @ vy (79)-
i=1
a Fy3 i

.V,

5
xy
+
AR
i=1
5
¥y
+
2 ¥ (80)
i=1

5

o - LYX

Fys+Z K09
i=1

Introducing the notation

ZEka

= k=12,3,4 1
T o

e =EA { i=1, ..., 4 (82)
1 1 1 1
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sin®: ai
§ = /%= . — i=1, ... ,4 (83)
i é 2
i ¢
1
cos¢‘ bi
c.1 = ? = —'—2 " (84)
i él

The stiffness coefficients in Eqs. 79 and 80 are obtained in the form

XX 2 2 2 2 2
= +

k33 azs2 a,8, + d3(c2 + c3) + d2c2 + d4d3 (85)

KX = 6% _d c(c.+c.)-doc(c, +c,) 86

3y T 7 Gp8, - A3C,le, Tyl m GGl T (86)

W ol a % cdcfc tc)-ddc,te,) (87)

34 - T %3%3 79353352 T 3 493'¢3 7 C4

XX

Ky = dye e, (88)

XX

K35 = 4,03 (89)

K.Y = fd.(c. tc)(s, +s,)+dsc +ds.c

33 = T @58,C, " @385C5 T d3lc, TC3I8, T 85 2922 T 9%

Y Zasc -ds.(c.tc,) -doc (s, +s) (91)

32 - 32526 T 935217 3 2%2'%2 7 %

Y —asc -ds.(c.+ec,)-dc,(s,+s,) (92)

34 = 938363 7 93531¢ T ©3 4%3'%3 7 84

XY _

k31 = 9%,% (93)

Xy _ :

kg = 448,46, (94)
k};? and k?i{, i=1l, ..., 5 are obtained from Eqs. 85 to 94 by inter-

changing x and y and sj and cj, i=1, ..., 4.

3

(90)
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The quantities F‘;{3 and F°y3 in Eqs. 79 and 80 arise from the

thermal strains and are obtained in the form

o - o o _l'_ o
Fl3 = ;8,85 - a38; &5 - 5d;(c, +cj) €2 * €3) LE!

1 ' | o
5 d CZ(gl +éz”‘z t3d,c50 €3 +(4) L (95)

+
2 2

1
() - o + ] P + + o
Fl3mm 0,6, €5 T agc; &5 - 7 ds(s, +5,) l, +0);

1 o _]; o
t7 4,8, (41 tl)ws, + 5 d sl +l) x (96)

When writing the two equilibrium equations for the plate at a boundary

node k the generalized nodal forces ka and Fyk are replaced by

ka - ka B Aka (97)

=F

Fyk vk - AFyk (98)

and AF . and AF . are expressed in terms of the displacements through
X y

k
Egs. 79 and 80.

k

6. Multiply-connected Plate with Dislocations

Consider a multiply-connected plate bounded on the outside by a
curve (C) and on the inside by curves (Cl)’ (CZ), e, (Cn). Such a
plate may have, in the absence of external loads, initial stresses
corresponding to n independent dislocations. It will be sufficient to
consider one dislocation such as shown in Fig. 10. The positive face
of the dislocation may be brought to coincide with the negative face
through a rigid body displacement that may be defined by means of the

translation components du° and dv° at the origin of coordinates and of
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the rotation angle Jdw°. It is known that the closing of the dislocation

results in multivalued displacements and in singlevalued stresses (10).
Geometrically the 2 faces of the dislocation are considered as

one curve as shown in Fig. 1la. Consider a cut made in the stressed

plate along the dislocation curve and a node q on that curve. Denote by

q~ the node belonging to the negative face of the cut and by q+the node belong-

ing to the positive face, Fig. 1lb. The displacements of nodes q~ and q+

that arise from closing the dislocation are related through the relations

+ -
=u +Ju° -v dw® 99
uq q q (99)
+ - o
v =V +Jv° +x Jw (100)
q q q

where xq, Yq are the coordinates of node q. ILetting

+ - .

5uq:uq -u (101)
+ -

évq=vq - v (102)

Eqs. 99 and 100 may be written in the form

Ju =0du° -y Jw> 0
uq u Yq (103)

év :Jv° + x Ja)° (104)
q q

Consider now the two equilibrium equations associated with node K,

Fig. 12. They may be written using matrix notation in the form

+ =F.
kUk KkU K, U +ZK WU = F (105)

+
Similarly at node k we may write




-19-

+ o+ o+ b+ +
ul vk uTr kT oty - F
R T T Z- KepUp ™ Fic (106)

where F-k and F; are the matrices of the generalized nodal forces due
to the stress resultants acting on the negative and positive faces of
the dislocation, respectively. If surface forces or thermal effects
are present the corresponding generalized nodal forces are added to
the right hand sides of Eqs. 105 and 106. Because the stress result-

ants are continuous across the dislocation we have

-4+
FF =0
P+ F, (107)
Letting
+ -
Ju =ut -vu =i,k (108)
a a4 gq L

we can write

U+=U +%5U

10
q " Yq (109)

q

Ut =U -%JU (110)

where from Eqs. 103 and 104
511 Jllo -y
du =] - v+ dwel 9

? 3v 5v° b'e
q

and U is the matrix of the average displacements.
q . + . -
Superimposing Eqs. 105 and 106 and substituting for Uq and U ,

q
using Eqs. 109 and 110 obtain a matrix equation of the form

+ + K U, + K U + K U =JF 112
KkkUk KkiUi kj j 2. km m Z kp p k ( )

m P
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K =K +K q =ik (113)
1 ; +
1 i 114
5Fk 2;“{1«1 qu)éUq (114)

In writing the two equilibrium equations at a node k not situated
on the dislocation but belonging to elements having one or two nodes
such as node q on the dislocation, the displacements of node q are
replaced by the right hand side of one of Eqs. 109 and 110. Eq. 109
is used if node k is on the positive side of the dislocation and Eq. 110
is used if node k is on the negative side.

In summary, the presence of dislocations does not alter the pro-
cedure of forming the stiffness matrix of the structure. The dislocations

contribute only fictitious generalized nodal forces.

7. Variational Formulation of the Bending Problem in Terms of Stress

Functions

A variational formulation of the bending problem and its applica-
tion to establish what may be called a flexibility matrix for a triangular
element may be directly obtained from the preceding by replacing the
dependent variables and the elastic constants of the stretching problem
by their dual dependent variables and elastic constants in the bending
problem according to the correspondence established in reference (7).
Because the resulting variational formulation seems to differ, however,
from the form it takes when based on the principle of virtual forces it
is established here directly starting from this latter form.

Consider a plate subjected to a normal distributed load of intensity
q, an edge deflection w and an edge rotation w n in the plane normal to
the boundary curve, Fig. 13. The stress cou;lles in the plate and the

stress couples and transverse shear on its boundary make stationary
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the functional

T =ﬁW‘dA +9€Bnds (115)

where W' is the complementary strain energy density and B' may be
called the complementary potential energy density of the boundary
forces. [T'is a functional of the stress couples and transverse shears
whose variations are constrained to satisfy the homogeneous differen-
tial equations of equilibrium but are otherwise arbitrary.

For a plate made of the same material as in the stretching

problem and with no transverse shear deformability W' takes the

form
) MZ MZ 5 y MZ
W =—-—[ XY (L )M M+ XX]
3LE E E E XX VY G
h b'e y X y
+A°M._+X°M 116
Mok ’Xy vy (116)

where M , M and M are the stress couples, Fig. 14, and x°
XX xy X

Yy
and’)(,"y are thermal curvatures. To ’X‘;{ and ’X.°Y correspond the ini-

tial stress couples

M° =-D (%X° + ¥ %X°) (117)
X X X Xy
M° =-D S+ Y xX°) 118
y Y( ’x'y y X (118)
where Exh3
DT Zi-v v) - (119)
XV .
and
' E b
D = y (120)

y 12(1 - Vx vy)
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For prescribed w and w n at the boundary B' is expressed
)
in terms of the bending stress couple Mnn’ the twisting stress

couple Mns and the transverse shear Q Fig. 15a, in the form

B"=M w +M w -Q w (121)
nn ,n ns ,S n

Alternatively, using the cartesian components Mnx and Mny of the
stress couple vector, Fig. 15b, and the cartesian components

w and w , B' takes the form

s X Y

B'=-M w +M w -Qw (122)
nx ,y ny ,x n

In order to vary arbitrarily the internal forces in {T' without violating
the statical constraints the stress couples and transverse shears are
expressed in terms of two stress functions U and V and a particular

solution of the differential equations of equilibrium. These are

M + M -Q
XX, X VX, ¥y x

0 (123)

+ M -Q =0 (124)
Xy, X Yy ¥y y
+ +q =
Qx,x Qy,y q=20 (125)
The particular solution of Eqs. 123 and 124 is taken in the form
MP =MmP -0 (126)
Xy yx
P _ P _ . '
Qf =M. = [DX(KY +y K], (127)
QP =M = .[p (x_ +v k)], (128)
y Yy, y y x yy°©y
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P

M =-D (K +V K) (129)
XX X vy X x
MP =-D (K +V K ) (130)
vy y x vy

and in order to satisfy Eq. 125, Kx and KY must satisfy the differential
equation

(o, (_ + v K )] et [Dy(Kx + YK ) 1 Ly 40 (131)

The stress couples and transverse shears of this particular
solution are those that would occur in two families of strips parallel
to the coordinate axes. The load may be subdivided arbitrarily between
the two families of strips and the end conditions of the strips are also
arbtirary. It will be assumed that the particular solution for a given
problem is determined in a definite manner. The reason for introducing
the functions Kx and Ky is that Kx, % and KY, v are dual of the load com-
ponents P and py, respectively, in the stretching problem. KX and
K have the dimensions of curvatures and are parts of the actual cur-
Vztures of the plate in the y and x directions respectively. The remaining
parts are contributed by the stress functions and are such that the cur-
vatures and twist of the plate are geometrically compatible and the boundary
conditions are satisfied.

The general solution of the equilibrium equations may be written

in the form

M =M= + Mp (132)
XX XX XX

M  =Mx +MP (133)
Yy vy Yy

M = Mx (134)

Xy Xy
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o = Qx +QP (135)
x X X
Q =Qx+QF (136)
Yy y y
where
Mx =V (137)
XX 'Y
Mx =0U (138)
Yy s X
M = ‘];(U +V ) (139)
)‘{Y T 2 s Y » X
Qx =% (140)
X zZ, Y
o% = -0 (141)
y Z,X
and
Q =%V _-U ) (142)
z 2 ,X Y

M =-y M ‘ + x M (143)
nx »8 XYy s 8 Yy

M =y M -x M (144)
ny 8 XX ,8  yxX

Q =y Q -x Q (145)
n 8 X ;S Y

where s denotes the arclength of the boundary curve.
The functional [T' may now be expressed in terms of the stress
functions. The complementary strain energy density, Eq. 116, takes

the form
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1
W'=wW"-KU -KV +lDK2+—(VD + ¥ D )K K
X ,X y .,y 2 x vy 2 X X vy vV x vy
1 2 o o
+-DK -D X°(K +YK)-D «°(K +V¥ K ) (146)
2 y x X Xy X X vV YV x vy
2
where , v ' UZ ) ) U v )2
wi = —2 [ Yy 2X X s Fyu v o+ 'x]
- 3
Eh EX EY Ex EY X L, Y 4G
+ o + (-]
’)(XV,y ’ny’x (147)

The terms that do not involve the stress functions in Eq. 146 may be
deleted when forming the functional {T' because they do not vary,
The area integral of the linear terms in U and V in Eq. 146 may be
expressed through use of Green's theorem, assuming the stress

functions to be singlevalued, in the form
(((-KU -KV )d.A:{f(K U+K V)dA
X ,X y o,y X, X Y,V
+¢ (Kdex - KXUdy) (148)

Multivalued stress functions are considered subsequently.
Similarly, the terms not involving the stress functions may be
deleted from the boundary integral in the functional [T'. The remaining

integral, after successive integrations by parts, is expressed in the

form
é(M* WMt w - Qfwids=§(w  U-w Vs | (149)
nx ,y Xy X n , V8 , XS :
Finally, the functional takes the form
o= [[owe+ Pryaa +§Brds (150)

where W!' is given through Eq. 147 and
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P =Kx,xU+Ky,yV (151)

B'" = - ‘X*yU tok v (152)
where

’x*sy = - W,ys + ny’ S (153)

’xﬁ;x T W,xs ¥ ny,s (154)

It may be readily observed that - (T'" is obtained from the poten-
tial energy (T of the stretching problem if in the latter the interchange

indicated below is made.

Table 1. a
u,v u,v
NY, N° -0("Y, - A,
Py Py K x’ Ky,y
Nnx’ NnY -(x.i‘»y’ xéx
EB. Eh, Gh - D';, —D;{l, - (Gn’/3)7
V' Yy " Vet Yy

The duality indicated above may be completed to include all
the dependent variables of the stretching and of the bending pro‘blem (7).
For this purpose let¥* , %x* , and X be related to M* M* and M
vy XX xy VY XX X

y
as shown below. Obtain

1
Xk =L (M - » M¥ )=-w, +K (155)
Yoo 33 Yy o x oxx yy X

y
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12
nx = (M¥ =~ pMk )=-w +K (156)
XX 3 XX Yy vy » XX y
Eh
x
’xx = —"——123 Mx = -w < (157)
Y Gh ¥ s

The superscript * is associated with the solution of the homogeneous

equations of equilibrium in terms of stress functions. The quantities

X , X and X are the curvatures and twist of the plate, i.e.
Yy XX Xy

-w y =W and -w , respectively.
' YY » XX » XYy

The table below indicates the dual correspondence between

dependent variables of the stretching and of the bending problem.

Table 1b
» N N -k, X -
Nxx Xy vy ’xyy Xy xxx
’ ’ M* ] "M ’ M'
EXX éXY EYY Yy Xy Xx
1 1
W == - Q -= -
z 2 (V',x u,y) z 2 (V,x U,y)
e = & - £ =W Q% = Mx* + M =0
vz vy, X XY,y zZ,Vy X XX, X VX, ¥y zZ,y
= - i = Q% = - M* - M =
’sz ny,x E’xx,y wz,x Qy Xy, X YV, V¥ ﬂz,x
s L = - Mk , % = o
Eol=lw,-&. ) nnt Ype = (U, + MK )

If subscripts n and s indicate the directions of the outward normal and
of the ta:ngent, respectively, at a point of the boundary curve, the cor-
respondence between quantities at the boundary defined with respect to
the directions n and s is obtained by changing in the table abové sub-
scripts x and y into n and s, respectively. Derivatives with regard

to x and y may not in general be changed into derivatives with regard

to n and s if the boundary is curved. The appropriate formulas obtained

with use of curvilinear coordinates may be found in reference (7). Of
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interest is the duality between the extensional strain E'ss of the
boundary curve and the stress couple M>1;m and the duality between
the in-plane change of curvature X of the boundary curve and the
effective transverse shear Q>'-;le. This is indicated in the last line of

Table 1. b.

8. Bending of a Triangular Element

The duality mentioned above is now used to apply to the bending
problem of a triangular element the equations established for the

stretching problem. The equations dual of Eqs. 52 and 53 are

b b b
3 [ki+akai]U+[kaai_akbi]V P R -y
3L E 4G i E 4G i~ A R C A
Ah y y
(158)
b
3 [)’yak 1 ) bkal]U + [ akaj_ ' bkb]_} V} _ P! - Rx @r
Ah3 Ex 4G i Ex 4G i vk vk vk
(159)
! s P! ’ 'k ’ 1 ’ ! ! 4 4
where ka vk ka RYk @Xk and @yk are dual of ka Pyk
ka, Ryk’ @xk and @Yk, respectively, and may be expressed through

equations dual of Egs. 43 to 48. It appears appropriate to call the
terms on the right-hand sides of Eqs. 158 and 159 generalized nodal
rotations.

The three pairs of equations associated with the three nodes of
the triangular plate form a system of six equations in six unknowns.
This system is singular, however, because the homogeneous system
has a non-trivial solution that isdual of the arbitrary rigid body dis-
placement in the stretching problem. Such a solution for the stress
functions yield zero stress couples. For the system of six equations to

have a solution the generalized nodal rotations must satisfy three
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compatibility equations that are dual of the three equilibrium equa-

tions to be satisfied by the generalized nodal forces in the stretching
problem. Two of these equations are conditions of singlevaluedness
of w and w _ and the third equation is a condition of singlevalued-

,X ’y
ness for w.

9. Application to a Plate of Arbitrary Shape

As in the stretching problem two equations are associated with
each node k. They are obtained by superposition of n pairs of equa-
tions such as Egs. 158 and 159, n being the number of elements having
node k in common. These two equations may conveniently be referred
to as compatibility equations. At an interior node the superposition
of R'Xk and R';fk yields zero values because each of the quantities

o= - W + K and ¢* = - w + K x take two opposit
'xSy » VS xy,s 'xsx , XS y ,8 pposite
values on an edge common to two elements. At a boundary node, Fig. 16,
iti f R

the superpositions o ka

alized nodal rotations.

Im
1 1

lm

=?71—[ # ) s ds__ 7——{(’)( )5 ds_ (161)
mo

F'*k and F'* are dual of the generalized nodal forces FF . and F
X

and of R'*k » respectively, yields the gener-
Yy

vk xk vk’
respectively.
We let
Fik =F' - F'P (162)

xk xk xk

% = . P 163
Fyk Fyk Fyk (163)
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_— 1 (
ka_ 71: f( ,ys)m m m (W,ys)nsndsn (164)

o
1 1
= ( -w ds [( w ds (165)
xs m°m m V4 n
m n
o o
and ém /n
P 1 (Ky ) s ds + L (K ) s ds (166)
xk e x’,smm m g % ,s'n n
m n
o o
Om ln
L / s ds +— [ (-K x ) sds (167)
yk ?m ,s m m m In y ,8nn n
o o
- . , . s
It is possible to express ka and F vk in terms of the slopes w’ y and

w , respectively, through integration by parts in Eqs. 164 and 165.
x

?

In doing this it is noted that the positive sense of s coincides with that

of s but is opposite to that of s , Fig. 16. Obtain

In lon

F'k=—1—fwvds-—l—( w ds (168)
x {. {_ Y
o o
[n Zm
1 1
F'k=———fw ds+T/ w ds (169)
y Zn , X m , X
o
It is seen that F'xk is the difference between the averages over sides

n and m, respectively, of the slope with regard to the y axis. A

similar statement holds for F;'k'

Various types of boundary conditions are now examined.
a. Displacement Boundary Conditions
From specified values of w and w _ at the boundary it is

’

possible to compute w and w v through the relations

)y X
= +

W,x w’ny’ 5 w, sx’ s (170)

W,'Y:—W’nx’s-l-w’sy’s (171)

then w s and w s through differentiation
X
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with regard to s. *sx and rx*sy are computed through Eqs. 153 and
154 and finally the generalized nodal rotations F';ﬁk and F‘;‘fk are
computed through Egs. 160 and 161.

The computation of the generalized nodal rotations from xzx and
04 sy is dual of the computation of the generalized nodal forces from
specified stress resultants. An alternate way, however, is to
compute F"xpkv and F;}; through Egs. 166 and 167, then F;{k and F;rk
through Eqs. 168 and 169 and finally F';!Zk and F'* through Eqs. 162

k
and 163. In this alternate method it is not necesiary to determine
the curvature components W,xs and w’ ys’

It is recalled that in the stretching problem with stress conditions
on all the boundary, three equilibrium equations are deleted and are
replaced by three corresponding conditions specifying the elements of
a rigid body displacement. A dual procedure is followed in the bend-
ing problem if displacement conditions are given on all the boundary.

b. Stress Boundary Conditions

For a plate without transverse shear deformability stress
boundary conditions specify the values of the bending stress couple
Mnn and of the effective transverse shear Qne' Having determined the

particular solution of the equilibrium equations, M>§‘1n and Qﬂ;xe are

determined through the relations

Mx =M - MP (172)
nn nn nn

Qx = Q - QP (173)
ne ne ne

From the known vélues of M>1;m and Qﬂ;le the stress functions U .and v
are determined and the boundary conditions are then treated as the
displaéement boundary conditions are in the stretching problem. For
determining U and V consider the boundaryarc AOA, oriented positively

from Ao to A, Fig. 17, and let
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s
P =I Q% ds (174)
z ne
o
s
o= - sk sk + N d
C* yP® + f (y QF, Mnnx,s) s (175)
o
s
C¥ = xP¥ +f (-xQ* + M* y )ds (176)
y z ne nn’, s
o

P is the resultant of the effective transverse shear Q% o On arc AOA.
z n
C* and C* are the moments, with regard to axes x and y, respectively,
X y
passing through A, of the transverse shear (Q* o and of the stress
n

couple M* on arc A A. Letting
nn o

O =Q + Mx (177)
Z ns

It is found that (11)

 -Q +px (178)
(o] Z
Uu=0_- (y-yo)Qo+c§; (179)
V=V +(x-x )0 +Cx (180)
o o o y

where UO, VO, and Qo are the values of U, V, andflat point Ao.

It may be noted that the determination of U and V from M::;m and Q%
ne

is dual of the determination of u and v from the extensional strain éss
and the change of in-plane curvature X of the boundary curve. The
constants Uo and V0 are dual of the displacements of point Ao and -Qo
is dual of the rotation of the boundary curve at point Ao. For a simply
connected domain U _, V _, and .Qo may be chosen arbitrarily at one
point AO. U and V are then fully determined if there are not more than

one point such as A i.e. if the stress boundary conditions are given
o
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either on all the boundary curve or on only one continuous arc of it.

The determination of U and V through Eqs. 179 and 180 yields
singlevalued functions. if Q>:1<'1e and M";m form a system statically
equivalent to zero. This is always the case in a simply connected
domain without singularities since the applied distributed load is
equilibrated by the particular solution of the equilibriﬁm equations.
The cases of a multiply-connected domain and of stress boundary
conditions given on more than one arc of the boundary are treated
subsequently.

An alternate way of treating stress boundary conditions is to
express average values over the boundary sides of Mﬂ;m and Q>l;1e in
terms of the nodal values of the stress functions. This is done
through formulas dual of those expressing the extensional strain and
the in-plane change of curvature of a boundary curve in terms of nodal
displacements, Eqgs. 72 to 74. The equation for M>:1:*1n is associated
with a side and uses the nodal values of U and V at the two nodes
defining the side. The equation for Q;‘;e is associated with a node and
uses the values of ] at the two sides issuing from the node. Deleting
the subscripts in Mnn and Qﬁ;qe and letting M1 be associated with side i
and Q>11<< be associated with node k, Fig. 18, the equations dual of Egs.
72 to 74 take the form

M é =- (U

- : + - :
it pp1 " Upsin®y (Vi) - Vleos @, (181)

L9

€75 Uy - Ueosd, - (V)

, .
Q% = Q, -8 (183)
k=7 kK k-l

c. Displacement Boundary Conditions Alternating with Stress

- V.)sin @ (182)

Boundary Conditions
Consider the boundary curve shown in Fig. 19 and let dis-

placement conditions be given on arcs (Dl) (DZ)’ .. (Dn) including
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B, A, B,,

) R 2 20 T
given on arcs (Sl)’ (SZ), cee (Srz. The total number of boundary

points A An, Bn and let stress conditions be

conditions must be equal to twice the number of boundary nodes. At
each node of arc (Di) except the end nodes Bi and A,

i+l
bility equations are written as explained in (a). The same cannot

two compati-

be done at Bi and Ai+1 because w and W,n must be known on both
sides of a node in order to be able to compute the generalized nodal
rotations. At each node of arc (Si) and at node Bi the stress functions
U and V may be expressed, as explained in-(b), in terms of their
values Ui and Vi at node Ai and in terms of the value 'Qi of 2 at the
side joining Ai to the next node. There remains therefore to write
three conditions per arc (Si) corresponding to the three unknowns
Ui’ Vi’ andﬂ i In order to write these three conditions we will make
use of a property of w that is more conveniently presented in its dual
statical form as a property of Airy's stress function

Consider an arc AB of a boundary curve oriented positively from
A to B, Fig. 20. Let PjB and P?B be the resultants and C?B be the
moment with regard to point B of the stress resultants N;T‘lx and Nﬁ

acting on arc AB and due only to the stress function\f/ . The following

relations may be established (12).

B A AB
\V,x-q”,x_-Py (184)
B A AB
- =4+ P 185
Y’y W’y < ( )
B A A A __AB |
VY v '(XB'XA)‘V,X'(YB'VA)‘V,y'Cz (186)
If A and B are appropriately placed on sides ioil and ipip+1’ respec-

AB AB
tively, Fig. 20, then PX s Py and CZB are statically equivalent
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to the generalized nodal forces, due to N* and N;:;y’ at the nodes
situated between A and B. We will assume for simplicity that A

and B are at the mid-sides, which implies that N>l;1x and N* are

ny
constanton sides ioil and i ip+l' In the bending problem the quan-
p
tities dual of Y, N* and N* are w, w and -w, , respectively,
nx n , Y8 X8

and the quantities dual of thegeneralized nodal forces due to N>1I<1x and

N>!;1Y are the generalized nodal rotations F;{ Eqs. 164 and

!
K and Fyk’
165 or Eqs. 168 and 169.

Letting arc i,i_in Fig. 20 represent an arc (Si)’ Fig. 19, with

lp

i, and ip coinciding with Ai and Bi’ respectively, we can write the

1
three relations
i
P
B A : '
wo - = Z:_ Fl (187)
_.11
i
P
B A
wo -w.= 9 F! (188)
s Y 'Y k=i xk
1
i
P
B A A A - 1
woomwo - (xg - X gwo -y - YA)W,y = Zl [(xk' XB)Fyk -
|
- 1
(yk VB)ka] (189)

In using Eqs. 187 to 189 as part of the simultaneous equations of the

finite element method the right hand sides are replaced in terms of

the nodal values of the stress functions and in terms of the known gen-

eralized nodal rotations due to the KX and KY terms and to therrhal

effects, if any. The left hand sides are replaced by their known values.
The three equations above are written for all arcs (Si) except

an arbitrary one for which U, V, and S are specified arbitrarily at

one point.
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d. Multiply-connected Plate
The boundary forces due to the stress functions are self-

equilibrating on the boundary as a whole but not necessarily on each
boundary curve if the plate is multiply-connected.

Consider one closed boundary curve and an arbitrary point A0
on that curve. Let R*z, M>I;c, and M>!; be the resultant and the moments,
respectively, that are statically equivalent at point Ao to the boundary
forces Q* and M% . Eqs. 178 to 180 show that U, V, and €2 are multi-
valued and experience at Ao after a turn in the positive sense around

the boundary curve the discontinuities

5Q = R¥ (190)

Su-= x (191)

8V = Mx (192)
y

The stretching analogue is a plate with a dislocation whose characteristics
511, 5v and Jw at point Ao are dual of SU, JV, and J.Q, respectively.
This problem was treated in paragraph 6. The positionof point Ao and
the shape of the dislocation curve are arbitrary (10).

If stress boundary conditions are given on the boundary curve,
R*z, MX and M>i;’ are known. They are statically equivalent to the
difference between the specified boundary forces and the boundary
forces due to the particular solution of the equilibrium equations.
1f R*z, M>!}<{ and Mﬂgl are unknown the extremities of the dislocation
curve may be placed at two points where w, w’ %’ and w’ y are known.
Applying Eqs. 187 to 189, in the present case along one face of the
dislocation, yields the required three additional equations for the
determination of R>l;, MX and M'-;_

e. Mixed Boundary Conditions

Two cases of mixed boundary conditions are considered.

In the first case w and Mnn are specified on the boundary. In the dual
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stretching problem Airy's stress function and the extensional strain
E'ss are known at the boundary. For each boundary side i one equa-
tion expressing Mﬂ; in terms of nodal values of U and V is written
using Eq. 181. Another equation is obtained by using Eq. 189 where
now A is an arbitrary fixed point at the middle of a side and B is a
variable mid-side point. For a simply connected domain wA and

y X
wA may be chosen arbitrarily., The left hand side of Eq. 189 is thus

kr’lc?’wn and the right hand side is expressed in terms of U and V. The
last equation, where B coincides with A, is a condition of singlevalued-
ness for w. The above procedure yields two equations per boundary
node. Three of these equations are omitted, however, in the case

of a simply connected domain. Instead the three elements dual of a
rigid body displacement are arbitrarily specified.

In the case of a multiply-connected domain WA;{ and WA cannot
be chosen arbitrarily. Two corresponding addition,a,l equatic’)is are
obtained by equating to zero the resultants on the boundary curve of
F;;k and F;rk’ respectively. These equations are singlevaluedness
conditions for W,x and w’ v as shown by Eqgs. 187 and 188.

An alternate method consists in using instead of Eq. 189 the three
equations 187 to 189 where A and B are at the mid-points of two con-
secutive sides and w’ x and w, v are two additional unknowns per side.
The sums on the right hand sides of Egs. 187 to 189 involve then
one node only. One of Equations 187 and 188 may be replaced by the

following simpler relation obtained from them.

B B B A
(x. - x )w +(yB~YA)W’Y-w - W - (193)

B A, x
The alternate method involves more equations than the first
method but these equations have the possible advantage of following the
same pattern as other equations as regards the nodes they involve.
The method also includes implicitly the singlevaluedness conditions for

w, w andw

’ s Y
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It is interesting to note that the boundary conditions w = 0
and M* =0 have as dual conditions Y = 0 and ess = 0 i. e. the
boundary curve is inextensible and is the funicular of the boundary
stress resultants due only to Airy's stress function. The cases of
a rectangular boundary and of a circular boundary under axisy:-metrical
conditicns are particularly simple to treat.

The second case of mixed boundary conditions is one in which
w, and Qne are specified on the boundary. Eqs. 183 and 182 provide
at each node k one equation expressing in‘( in terms of nodal values of
U and V. A second equation may be associated with each side i by;
expressing w’ n in terms of W,x and w’y and then using Eqs. 187 and 188
to express these in terms of the stress functions.

f. Elastic Boundary Conditions

Consider a plate supported along its boundary by distribu-

ted elastic springs. The boundary conditions are taken in the form

w -w=f Q (194)
-w +w =f M (195)
, , SS nn
where wS is the displacement and w IS1 the rotation of the spring support,
and fzz and fss are flexibility coefficients. z and s refer to the directions

normal to the plate and tangent to the boundary, respectively. It will

be convenient to write Eqs. 194 and 195 in the form

w=f (Q°-Q ) (196)
2Z ne
w _=f (M°-M ) (197)
, SS nn
where
S WS
Q® -~ (198)
ZZ
=W S
M = f’n (199)
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The complementary potential energy of the spring forces per unit
length of boundary is obtained from Eqs. 196 and 197 in the form

1 s 2 1 s 2
Vo= f - + = -
B > ZZ(Q Qne) > fss(M Mnn) (200)
Let Qne and Mnn be separated into the parts due to the stress functions

and the parts due to the particular solution of the equilibrium equation

i.e. let
o P
Q =0t +Q (201)
ne ne ne
M =Mx +MP (201)
nn nn nn

B' takes the form
1 2 1 2

B'=of (Q°-Qf ) 4sf (M° - M) (202)
2 zz ne 2 ss nn
where
° S P
Q°=Q -Q (203)
ne
Me =M° - M (204)
nn

The above expression of B' replaces that given in Eq. 121 for use in
the functional (T', Eq. 115. As was done in paragraph 7,IT' may be

put in the form

gt =“(W” + P)dA +¢ B'ds (205)

where W'" and P' are given as before through Eqs. 147 and 151 and

B! takes now the form

B'"=-Ky SU +ny SV+ B! (206)
x , ]
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The dual of -IT" is the total potential energy of a plate bounded by
an edge beam. Letting ﬁnx and ﬁn be the force intensity compo-
nents applied externally on the edge beam and using the notation of

paragraph 5 the duality is summarized in the table below.

Table 2

EA, EI -f , -1

ss ZZ
E,. X Mk , Q

nn ne
E_O, fxo MO, Qo
— — -K ,
N , N xy,s ny,s

10. Plate Bounded by an Edge Beam

Consider the beam isolated as a free body and subjected to the

load -Qne, - Mnn at its junction with the plate and to the external
load Q and M__. The resultant load is formed of
ne nn
AQ =Q -0 =q -0F .o (207)
ne ne ne ne ne ne
AM =M -M =M -M’ _wMx (208)
nn nn nn nn nn nn

b b

Let P be the transverse shear and Cx and Cs be the x and y components
Z

of the moment vector acting on a positive cross section. Using Eqs. 178

to 180 we can write

Pb=£).-(.0. +Pb)-P' (209)
Z o z0 z

b b b , :
C,=U-(U_+C_)+(y-y)Q_ +P )-Cl (210)

— b b 1
c -V-(VO+CYO)-(x-x°)(_Qo+PZO)-CY (211)
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where subscript o refers to an arbitrary cross section o and P:'a,
C! and C;’ are the resultant and the moments, respectively, at a
x L
cross section(s) of the forces (Q - Qp ) and moments (M - MmP )
ne ne nn nn
acting on the portion of the beam oriented positively between 0 and
b b .
(s), Fig. 21. Let Mb and Mt be the normal and tangential components,
respectively, of the moment vector at a positive cross section, Fig.

22. Mb is the bending moment and Mlt) is the torsional moment. They

b
are related to Cx and Cy through the vector transformation formulas

b b b
= - +
Mb Cx Y,s Cy X,s (212)
b b b
= +
Mt CX x’s CY y,s (213)

The complementary strain energy of the beam is taken in the form
b.2 2
BNEY (g R4 Vi
1 ——
W= 2 EI 2 GJ (214)

where EI and GJ are the bending and torsional rigidities, respectively.

In terms of C: and Cs obtain

= )° x
Wlb_[(Y,S ¥ X’S ] (Cb)2 +[ ,SY’S _ x,sy,S]Cbe
L 2EI 2GJ X GJ EI Xy
2 2
x 0 (y ) b 2
2 + ]
¥ [ 2EI 2GT ] (cy) (215)
Introducing the notation
s b .
= + P!
Qo + on z (216)
= (U +C o)y -y NQ +P ¢, (217)

_(V +c )+(x-x)(_Q +P )+c;r (218)
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2 2
(y ;b (x )
1) 1 2
fxx El GJ (219)
1 1
- —— 220
fxy X,s y,s( GJ EI ( )
2 2
x )7 (v )
1 + t]
fyy EI GJ (221)

W'b takes the form

w =

N[v—-

s 2 ] ] 1 5,2
f - +{ - - +=f -
XX(U U ) Xy(U U v -V) > yy(V V) (222)
b, . . .
the dual of -W' is the strain energy, B, of the springs in the case
of a plate with elastic boundary conditions, Eq. 16. The duality is

summarized in the table below.

Table 3
k , k k -f , -f , -f
xx'  xy vy xx' “xy' yy
u, v U’V
us, VS Us, Vs
N -.9B Xt = 2wP
nx = du sy 20U
N =-.2B o =2 b
ny = 2V sx 2V

In order to be able to use the duality established above the quantities
b b b
, + + i .
(L o + PZO) (Uo Cxo) and (Vo cyo) in Eqs. 216 to 218 must be
determined. Their dual quantities characterize a rigid body displace-
ment of the spring support. For a simply connected domain this rigid

body displacement is arbitrary. Uo’Vo and Qo may therefore be chosen

such that
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b
Qo + on =0 (223)
U+ Czo =0 (224)
Vo + C?ro =0 (225)

C}'{ and C;r are then dual of the support displacements us and vs.

For a multiply-connected domain Eqs. 223 to 225 may be
kept for one of the boundary curves. For each of the remaining
boundary curves three equations are needed for the determination of
(Q.o + P:o)’ (Uo + C:o) and (VonL C?o) . These characterize in the
dual stretching problem a rigid body displacement of the boundary
curve and are therefore related in that problem to the resultants and
moment of the spring forces. If the parts of the spring forces that are
attributable to Airy's stréss function Y are not self equilibrating,
and its first derivatives are multivalued. Returning to the bending

problem where the plate is assumed to be free of dislocations, the

three equations per boundary curve that are necessary for the deter-

b b
mination of (2 + Pb ), (U +C  )and (V_+ C_ ) are therefore single-
o z0 53 X0 o yo
valuedness conditions for w, w < and w v These are expressed in

terms of the stress functions by equating to zero the resultants and
the moment with regard to some point of the generalized nodal rotations

1 t
ka and Fyk'

11. Formulation of a Stretching Problem Dual of a Given Bending

Problem. Choice of a Particular Solution.

The stretching analogue of a bending problem is uniquely defined
once adefinite particular solution of the bending equilibrium equation

is obtained.
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It is recalled that the transverse shears and the stress couples
of the particular solution, as defined through Eqs. 126 to 130, are
the internal forces that would occur in two families of strips parallel
to the coordinate axes and supporting together but independently of
each other the load q. In order to obtain a definite particular solu-
tion the boundary conditions of the strips and the part of the load q
carried by one family of strips must be specified. If c(x,y) is the
proportion of the load carried by the strips parallel to the x axis,Eq.

131 may be replaced by the two equations

[DX(KY ¥ vxKx)] -

cq (226)

K ]
[Dy(Kx+ v y)] gy = (1-c)a (227)

y

Solving the above equations is the same as determining the shear and
bending moment in the two families of strips. With Kx and KY deter-
mined the dual stretching problem is well defined.

The simplest choice for ¢ is a constant. The casesc =0 andc =1
correspond to one family of strips only in the y and x directions, respec-
tively. The case ¢ = 1/2 corresponds to two families of strips, each
family in equilibrium under the load q/2. Although the exact solution
does not depend on the particular choice of c, it may be expected that
more accurate results are obtained if, everything else being equal, the
behavior of the strips is nearer to that of the plate. The influence of the
choice of ¢ on the accuracy of the analysis is discussed in the next
section.

As an example consider a homogeneous and isotropic rectangular
plate with a uniform load such as shown in Fig. 23a. It will be assumed,
for simplicity of presentation of the boundary forces in the dual problem,

that the plate is clamped along its edges. Considering the case c =1
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Eqs. 226 and 227 are satisfied by letting

K =- VK | (228)
x y

.
K = (229)
VR p

The strips are taken as simply supported. Whence

K =——-—‘1——é— (x% - a%) (230)
Y 2p(1 -¥)

The dual of the load components py and P, in the stretching problem

are K and K , respectively, i.e.
s Y X,y ’
K =0 (231)
Y,y
and
Kx. X= __g.ﬂ}_;._._z._. (232)
? 2D(1-»")

Because q is independent of y Eqs. 226 and 227 may also be satisfied

by letting
K =0 (233)
x
K, o = -% (234)
whence
(- a%)

This particular solution is that of cylindrical bending in the x direction.
There are only boundary forces in the dual stretching problem as shown
in Fig. 23b.

In order to illustrate the case where the function q is discontin-
uous, consider the plate of the above example loaded partially with a

uniform load over the shaded area, Fig. 24a. Taking one family of
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strips in the x direction Eqs. 228 and 229 remain valid if q is
interpreted as the loading function of the present case. It is seen

that KY is discontinuous across lines AB and A'B'. This discontinuity is
dual of the intensity of a line load along AB and A'B' as shown in

Fig. 24b.

If q is a line load a particular solution may be obtained as
in the case above by means of one family of strips crossing the line
load.

It is noted that in the two examples above the stress functions
are continuous as the displacements are in the dual stretching problem.
If the load function q is a concentrated load it is treated as dual of a
characteristic of dislocation.

The computation of the generalized nodal rotations at an interior
node due to Kx, « and KY: v is dual of the computation of the generalized
nodal forces due to P, and py. It is however possible to use directly Kx
and KY in this computation. The contribution of one element to the gen-

eralized nodal rotations P'. and P'_ at node k is
xk vk

S ﬂKx,#Ede (236)

P;rk = f]Ky’ v deA | (237)

Using Green's theorem and the expression, Eq. 25, of"fk in terms of

x and y, Eqgs. 236 and 237 take the form

i [xen o4
Vo= + d :
ka ZA deA KX 'fk y (238)
*k
! = -
Pyk = -ZA ﬁ KydA f KyEkdx (239)
The total generalized nodal rotations G!' I and G'Yk at node k are ob-
x

tained by superposition of P:'ck and of P! K’ respectively. At an interior
Yy
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node the boundary integrals in Eqs. 238 and 239 add up to zero because

Ek = 0 on the sides opposite to node k and the integrands take opposite

values on sides common to the triangular elements. Thus

Py

G =27 [ %2 (240)
K

Gl =) s f K aa (241)

where the summation extends over the elements having node k in common.
At a boundary node the superposition of the boundary integrals in

p

Eqgs. 238 and 239 yields the same values as F'x and F'P » respectively,

Eqgs. 166 and 167. From Eqs. 162 and 163 it algpears Zl'lfat the use of

Eqgs. 240 and 241 at a boundary node takes account completely of the

contribution of the particular solution to the generalized nodal rotations.
The type of particular solution of the equations of equilibrium consid-

ered earlier is restricted by the requirement sz = 0. This is not

necessary and a more general form of the particular solution is obtained

- by letting instead of Eq. 134

M =M+ +MP (242)
Xy Xy - Xy
where
MP =MP = (243)
Xy yx Xy Xy
and Gh3
i (244)
xy 6 :

Instead of Eq. 131 K , K and K. must now satisfy
x |y Xy

+ +2(D K +|1D (K +¥y K -q=0 245
[DX(K_Y yXKX)]axx ( Xy XY)»XY [ Y( X Yy Y)-]!YY 4 ( )

The form of the functional [T'" remains unchanged but Eqs. 151, 153
and 154 are replaced by

P" = (K - U + (K - K
Ky x - Ky, U+ (K v (246)

X Yy Xy, X
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% = o + + 247
X sy v, ys ny, s nyx, s ( )

* o= - + 24
X sx w,xs nyy, s ¥ ny, s (248)

The change to the duality is that (K - K ) instead of K and

X, X Xy,y X, X
(K - K ) instead of K are now dual of the load components
Y, Y Xy, X Y,V

p. and p , respectively. AlsoX * instead of X 1is dual of N , where
X Yy Xy Xy Xy

12
X * __——?TM>I>< =-WX+KX (249)
XY Gh y o y y
The generalized nodal rotations at node k due to one element are now

given through the relations

P =ff(Kx,x Ky ¥ dA (250)

H

p;,k :]{(Ky’y - ny ) Faa (251)

?

As was done before in obtaining Eqs. 238 and 239 from Eqs. 236 and
237, Eqs. 250 and 251 may be transformed into the form

Pk K
vz — +=— A+
po=ot fK da +— foyd <f> E (K dy + K_ dx) (252)
K Py
o= - A-— [l K dA -{ + d
Pyk 2A ﬂ Kyd 2A ﬁ Xy Fk(Kydx ny y) (253)
The total generalized nodal rotations G'xk and G‘Yk at an interior node
are obtained by superposition in the form
b a
k k
- = = K
Gk ZZAﬁde‘”E ZAK xy 8 (254)

a
G'yk=-z 2‘; deA Z fK dA (255)
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where the summation extends over the elements having node k in
common.

At a boundary node the superposition of the boundary integrals
in Egs. 252 and 253 yields, as before, the contribution of the particular
solution to the generalized nodal rotations arising from the boundary
conditions.

The latter form of the particular solution may be used to advan-
tage if a solution to the plate problem satisfying equilibrium and com-
patibility but not the boundary conditions is known. In such a case Kx,
Ky’ and K are compatible curvatures i. e. they are related to a deflec-

Xy
tion function w' through the relations

Kx =w' vy (256)
KY = W:xx (257)
ny = w:Xy (258)

As may be expected in such a case, Egs. 250 and 251 show that P}'{k

and P'k are zero. The generalized nodal rotations are therefore zero
y

at all interior nodes. At a boundary node Eqgs. 247 and 248 yield

* =w' - 25
X sy W,ys W,ys (259)

>,‘< = ¥ -
X SX W’ XS W,XS (260)

and the generalized nodal rotations F'x*k and F';fk are obtained from Eqs.

160 and 161 in a form similar to that of Eqs. 168 and 169.

In {m

1 f 1 '
F'% = (w -w'!' )ds - ——( (w - w!' )ds (261)
xk z_; o s Y » Y (m o s Y '
[n -.prn
S S - w! 1 !
F);kk = - én ( (w’x w’x)ds +7—r:f(w'x w,x)ds (262)
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If the particular solution to a problem is recycled by identifying

K , K and K in a second cycle with the curvatures - X, - X _
x Yy yy XX

Xy
and _xxy' respectively, obtained from a first cycle, the generalized nodai
rotations should all be zero. This forms a compatibility check

dual of an equilibrium check in the stretching problem.

12. Computation of the Stress Couples and of the Deflection

The use of piece-wise linear stress functions implies constant
stress couples M>l;:x, M>'-;ry, and Mﬂ;Y in each element. These values
cannot be associated with any particular point of the element but
represent global measures or averages for the element as a whole.

It may, however, be necessary from a practical point of view to obtain
values of the stress couples at definite points. The constant values
for an element may then be associated, for lack of more precise infor-
mation, with its centroid and the values of the stress couples at other
points may be obtained through interpolation.

A different and preferable method based also on interpolation
and whose application is simplest if the distribution of the nodes is
regular consists in evaluating M*;X, M>:;ry’ and Mx at a point by means

of finite differences. The values of Mxx’ M and MX at a point are

obtained by superimposing sz, MP

, and M_ on M¥ , M*¥ and M% ,
Yy Xy x

X yy Xy
respectively.

The determination of the alopes w < and w  and of the deflection

’ ) Y

w may be made by means of Eqs. 187 to 189. In these A and B are

two arbitrary mid-side points joined by a broken line A iliZ ... 1 B
, p
along element sides as shown in Fig. 25. The plate may be imagined

cut along A iliZ e
may be evaluated once the solution for the nodal values of the stress

ipB and the right hand sides of Eqs. 187 to 189

functions is obtained. It may be noted that the above method of deter-

mining w o ¥ y and w is a generalization of the so-called conjugate

’

beam method.
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13. Results and Conclusion

Results of bending analysis of isotropic rectangular and square
plates under various loadings and boundary conditions are presented
in Figs. 26 to 33. They are obtained by means of a computer program
written for the analysis of plane stress and plane strain problems by
the displacement method (13). The program was modified so as to
compute the element stiffness matrix as established in this paper and
to accept dislocations and arbitrarily specified boundary displacements.

Because of symmetry only a quarter of the plate is used in each
analysis. The part of the stress couples due to the stress functions is
computed at the nodes by means of finite differences. In all cases
except that of the concentrated load the particular solution of the equili-
brium equations is that of cylindrical bending in the x direction.  The
case of the concentrated load at the center of a clamped square plate
is treated as shown in Fig. 31 for the dual stretching problem.

It may be seen that in all cases with a uniform load a relatively
coarse mesh of 4 x 4 is sufficient to determine with satisfactory
accuracy the stress couples and therefore also the curvatures and
the deflection. In the case of a concentrated load, Fig. 32, a finer
mesh is needed in the vicinity of the point of application of the load in
order to represent the singularity with sufficient accuracy.

The determination of the deflection in Fig. 33 is made by the
conjugate beam method using linear interpolation for determining the
curvature between nodes.

A comparison with results obtained by the displacement method
using the so called (HCT) triangular element may be made through
Figs. 26 and 33. The stiffness matrix of this triangular element is based
on a displacement expansion satisfying compatibility of displacement
and of normal slope between adjacent elements. It is established in (5)

as the best available stiffness matrix for a triangular element.
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A test case for displacement methods (5) not represented here
is that of an isotropic square plate supported at three corners and
acted upon by a force at the fourth corner. The stress function
method solves this problem exactly with Mxy constant and Mxx =
MYY = 0. Although more tests are needed for a thorough comparison,
the results obtained here compare favorably with those of the dis-
placement method as regards both accuracy and convergence. It
should also be noted that there are three equations per node in the
latter method but only two in the stress function method used here.

The availability of both methods for the solution of a given problem
may provide a means of estimating the distance of the approximate
solutions from the exact solution. This is possible if the displacement
and the stress function methods provide minimizing sequences to the
potential energy and to the complementary potential energy functionals,
respectively. The (HCT) triangular element and the stress function
method used here have this property. For example, the central deflec- -
tion of the clamped plate under a unit concentrated load, Fig. 33, is
equal to minus twice the potential energy and is therefore larger than
the value obtained by the (HCT) displacement method. It is also equal
to twice the strain energy and, by Castigliano's theorem, is smaller
than the value obtained by the stress function method.

The stress function method may also be applied to plate stretching
problems and to shell problems. In the former case the method uses
Airy's stress function and is dual of the displacement method for
plate bending. For shell problems, it is also possible to develop mixed
methods using a formulation of shell theory in terms of both displacements
and stress functions (14)(15). A basis for such a method could be the
equations of shallow shells in terms of the normal deflection and of
Airy's stress function. If the curvature of the shell element is neglect-

ed the method would reduce to a combination of the displacement method
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for bending and of the dual stress function method for stretching of
a flat element. Similarly the displacement method for stretching
and the stress function method for bending developed here may be

combined to treat the shell problem by means of flat triangular ele-

ments.
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