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ABSTRACT 

The duality that exists between the basic equations and the 

dependent var iables  of the problems of stretching and of bending 

of plates is applied to the finite element method. 

method in the stretching problem is a s t r e s s  function method in the 

bending problem and vice-versa.  

A displacement 

The displacement method for the stretching problem and the 

dual s t r e s s  function method for the bending problem a r e  applied to 

orthotropic tr iangular elements.  

stiffness -flexibiltity mat r ix  is ca r r i ed  out explicitly. 

The derivation of the dual purpose 

Various boundary conditions a r e  considered including elast ic  

supports and edge beams in both stretching and bending problems. 

is found that e las t ic  supports in one problem a r e  dual of an edge beam 

in the other  problem and vice-versa.  

It 

A t reatment  of dislocations in 

the stretching of multiplyconnected plates is a l so  included. 

The s t r e s s  function method uses  two equations per node whereas  

It has  the three  equations per node a r e  used in displacement methods. 

s a m e  propert ies  of accuracy and convergence a s  the well established 

dual displacement method for plate stretching. 

the same problem of both a s t r e s s  function method and of a displacement 

method allows obtaining upper and lower bounds on flexibility coefficients. 

The availability for  

A program originally written for  the analysis of plane s t r e s s  and 

plane s t ra in  problems by the dieplacement method is used to solve 

plate bending problems. 

may be achieved f o r  the s t r e s s  couples. 

tion and slopes is made f rom the curvatures  and involves no lo s s  of 

accuracy.  

ment  method are presented. 

Results show that a high degree of accuracy 

The determination of the deflec- 

Comparisons with resul ts  of the fully compatible displace- 
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I. Introduction 

The analysis of plate and shel l  s t ruc tu res  by the finite element 

method is generally associated with the u s e  of a st iffness mat r ix  fo r  

tr iangular o r  rectangular elements and with the determination of the 

displacements at the ver t ices  o r  nodes of the elements into which 

the s t ruc ture  is subdivided. 

sat isfactory resu l t s  a r e  reported (1)  with u s e  of tr iangular elements 

and of element displacements that a r e  l inear  functions of the Cartesian 

coordinates,  whereas  some difficulties s e e m  to be encountered in ob- 

taining as sat isfactory resu l t s  in the problem of plate bending ( 2 ) ( 3 )  

In the problem of stretching of plates 

(4)(5 1. 
In contrast  to the displacement method, force  methods where 

s t r e s s e s  o r  s t r e s s  functions are  the unknowns have recieved compara-  

tively l i t t le o r  no attention. 

of the s t r e s s  field and the use  of the theorem of stationary complement- 

a r y  potential energy is presented in re ference  ( 6 )  but s t r e s s  functions 

have apparently not been used yet in formulating a finite element 

method. 

s t re tching and plate bending problems(7) a s t i f fness  method for  the 

s t re tching problem may  be interpreted a s  a flexibility method for  the 

bending problem if the displacements a r e  replaced by s t r e s s  functions. 

Similar ly ,  a stiffness method f o r  plate bending may be used to solve 

plate stretching problems if the deflection of the plate is interpreted 

as Airy ' s  s t r e s s  function. 

A s t r e s s  method based on the discret izat ion 

In view of the duality that exis ts ,  however, between the plate 

The use  of stress functions in the finite element method is p re -  

sented h e r e  within the context of the stretching-bending duality and of 

the application of one mathematical method to the solution of both 

stretching and bending problems. 

s t r e s s  functions for  the analysis of plates in  bending leads to a finite 

e lement  method that has the same propert ies  and charac te r i s t ics  as 

Because of this duality the use  of 



the dual displacement method fo r  the analysis of plates in  stretching. 

In particular,  the use  of tr iangular elements and of piece-wise 

l inear  s t r e s s  functions in  the bending problem should lead to a s  s a t i s -  

factory a finite element method a s  the dual displacement method for 

the stretching problem. 

accuracy(  1) and is monotonically convergent(8). 

equations per node whereas three equations per node a r e  used in 

displacement methods for  plate bending. 

This la t ter  method has been tested for 

It involves two 

The derivation of the stiffness mat r ix  and of the dual flexibility 

ma t r ix  for  the stretching and bending, respectively,  of an orthotropic 

tr iangular plate is h e r e  based on dual variational formulations and is 

c a r r i e d  out explicitly. 

The duality between the basic equations, dependent var iables ,  

loadings and boundary conditions of the stretching and bending problem 

is presented in detail in re ference  7. 

to plates supported elastically o r  bounded by edge beams.  

It is h e r e  extended and applied 

2. Variational Formulation of the Stretchinv Problem in T e r m s  of the 

Dis placements 

Consider a plate, Fig. 1, in equilibrium under a surface load of 

vector intensity - - - 
p = p i + p j  

X Y 

and a n  edge load of vector intensity 

N = N  i t N  j 
n n x  nY 

The displacement vector 
- - - 
u = ui t vj 

makes  stationary the potential energy of the plate considered as a 

functional of the displacements.  

( 3 )  

I 
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We consider l inear ly  elastic orthotropic plates having the coor-  

dinate planes as planes of elastic and thermal  symmetry  and for  

which the s t r a in  energy density function has the f o r m  

+-k) & E l f Z G h 6 '  

2 
E E h  x y  

XY xx YY 
X 

E 
X 

E w =  

t N o g  + N o  E 
x x x  Y YY (4) 

where E and E 

and V a r e  Poisson ' s  ra t ios .  

a r e  Young's moduli, G is the shear  modulus and JJx 
X Y 

These a r e  re la ted through the relation Y 

Yx Y =- 
E 

X Y 
E ( 5 )  

E , E and a r e  the l inear components of s t r a in  and a r e  r e l a -  
xx YY XY 

ted to the displacements through the relations 

= v  
E Y Y  , Y  

2 c x Y  , y  , x  
= u  t v  

No and N o  a r e  initial s t r e s s  resultants re la ted to thermal  s t r a ins  6 "  

and eo through the relat ions 
X X Y 

Y 

We consider boundary conditions of the fo rm 
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where B is a function of the displacements. If N and N a r e  
nx nY 

specified at the boundary then 

B = - N  U - N  v 
nx nY 

In the c a s e  of e las t ic  boundary conditions of the f o r m  

S S 
N = k  ( U  - ~ ) t k  ( V  - v )  

nx xx XY 

S S 
N = k  (U - ~ ) + k  ( V  - v )  

"Y YX YY 

where the stiffness coefficients k , k = k and k and the support 

displacements u 

B takes the f o r m  

S S xx XY Yx YY 
and v ar.e given functions of position on the boundary, 

(16) 
1 s 2  S s 1  s 2  
2 x x  XY 2 YY 

B = - k  ( u - U )  t k  ( u - u ) ( v - v ) + - ~  ( v - V )  

Letting 

pYv 
P = - p u -  

X 

w = WdA 
t (I 

P t =((,,A 

and 

B = Bds 
t f 

where the a rea  integrals  extend over the domain of the plate and the 

curvil inear integral extends over the boundary, the total potential 

energy of the plate is 

The displacements of the plate sat isfy the variational equation 

srr = o  
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3. Stretching of a Triangular Plate 

An approximate solution of the problem of stretching of a 

tr iangular plate, Fig.  2 ,  is now obtained by applying a d i rec t  method 

to the variational equation 22. 

The s t r e s s  resul tants  a r e  specified on the three  s ides  of the 

triangle. On side m we le t  

N = N m  
nx X 

N = N m  
nY Y 

The displacements a r e  sought as  l inear  functions of the coordinates. 

It w i l l  be convenient to use  t r iangular  coordinates f 1’ f,, and z3. 
They a r e  related to the Cartesian coordinates through the l inear r e l a -  

tions aiy - b.x t c 

2A 
1 i F =  i 

i = 1 , 2 , 3  

where a. and b. a r e  the components of side (i) of the triangle considered 

as a vector and oriented counterclockwise when seen  f rom the positive 

s ide of the Z axis ,  F ig .  3. A is the a r e a  of the triangle. c . /2A a r e  the 

tr iangular coordinates of the origin and a r e  not needed in what follows. 

The triangular coordinates a r e  non-dimensional distances a s  shown in 

F ig .  3. They satisfy the relations 

1 1 

1 

‘f 1 t T 2 t F  3 = 1  

JYdA =F A 
1 

A 
l j F i F j d A  = -  12 i f j  
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It is a l so  noted that 

a t a  f a  = O  

b + b  t b 3 = 0  

c t c  t c 3 = 2 A  

1 2 3  

1 2  

1 2  

The displacements u and v a r e  expressed in t e r m s  of their  values at  the 

nodes through the relations 

u = U i F i  

v = v. F i  
1 

(33) 

(34) 

in whichu. and v.  a r e  the displacements a t  node i and the summation convention 

pertaining to a repeated index is used. 
1 1 

The total potential energyKwi11 now be expressed in t e r m s  of the 

nodal values of the displacements and will be made stationary with 

regard  to them. In computing the s t ra ins  the chain rule  of par t ia l  

differentiation is used in the f o r m  

yielding 
b u. i i  E = - -  

xx 2A 

a u  b v .  

2A 
i i -  i - 1  

2 €  = 
XY 

(39)  

The potential energies  of the sur face  load and of the boundary load, 

Eqs. 1 9  and 20, and the t e r m  involving the initial s t r e s s  resul tants  in  
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Eq. 1 8 ,  take the f o r m  

P t = - P . u * - P  v 
XI 1 yi i 

B = - R . u . - R  v 
t x1 1 yi i 

( ( ( N o €  + N o  )dA = - o x i u i  - @ v x xx Y YY yi i 

where 

tm 
N m s  ds , m # i  

x m m  R xi  =I N T F i  d s m =  

0 

Pm 

0 

4, 
N m s  d s  , m # i  

Y m m  
0 0 

oyi - - - 2A 2 [ N o  Y dA 

In Eqs.  4 5  and 46 m r e f e r s  to the two s ides  of the tr iangular plate 

intersecting at node i ,  and on each side s 

towards node i. 

is oriented positively m 

The potential energy of the plate, Eq. 2 1 ,  may now be written 

in the f o r m  
3 3 

t @.)ui - (P . t R to . )v (49) - bivi) ‘ - ( P . t R  x1 xi  x1 yi y i  yi i 
Gh 
A i i  

t - (a.u 



-8 - 

The variational equa t ionJV= 0 yields a t  each node k the two equations 

-- - 0  an 
a Uk 

o r ,  explicitly 

E 3 b a .  t G(1 - 3 9 )akbi] viJ = 4A(1- P 3 ) [[E x b k b. 1 + G(1 - 3 X py)akad ui - [ X Y  
X Y  

P t R  t @  (53) 
Yk Yk Yk 

In the case  where p , 

in Eqs.  43, 44, 47 and 48 may  be expressed in t e r m s  of the nodal values 

No and N o  where i r e f e r s  to any of the three  nodes, accord-  ‘xi’ ‘yip xi yi’ 
ing to the relations 

, N o  and No are  l inear in x and y the integrals  
x py x Y 
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It is convenient to cal l  Eqs. 52 and 53 equilibrium equations 

and the t e r m s  on their  right hand s ides  generalized nodal forces  a t  

node k. 

angular plate f o r m  a sys tem in six unknown nodal displacements.  

This sys t em of equation's is  singular,  however, because the homo- 

geneous sys tem admits non-trivial solutions that a r e  the nodal dis-  

placements in an a rb i t r a ry  rigid body displacement of the plate. It 

m a y  be verified,  as it is to be expected, that the thermal  generalized 

nodal fo rces  a r e  self equilibrating, and that fo r  the non-homogeneous 

sys t em to admit a solution the generalized nodal forces  associated 

wi th  the sur face  and edge loads mus t  be statically equivalent to zero.  

This condition is equivalent to the condition that the surface and edge 

load be self-equilibrating. In that c a s e  the general  solution of the non- 

homogeneous sys t em consists of a particular solution superimposed on 

an a r b i t r a r y  rigid body displacement. 

solution is obtained. 

The six equilibrium equations a t  the three nodes of the t r i -  

By fixing the la t ter  a definite 

In the c a s e  where only the thermal generalized forces  a r e  not 

z e r o  the solution for  the displacements represents  a f r e e  deformation 

of the tr iangular plate. 

4. Application to a P la te  of Arbi t ra ry  Shape 

The derivation of Eqs. 52 and 53 may  be viewed a s  a s tep  in 

applying the variational equation6 fl = 0 for  a plate of a r b i t r a r y  shape. 

The domain of the plate is , Fig. 5,  subdivided arb i t ra r i ly  into t r i -  

angular elements and the displacements a r e  sought as piecewi,se l inear  

functions. The boundary of the plate, if curved, is replaced by an  

approximating polygon and the boundary conditions a r e  formulated for  

the polygonal boundary. 

placed over each side joining two consecutive nodes by approximating 

linear functions. 

Known displacements a t  the boundary a r e  r e -  
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The potential energy of the plate is equal to the s u m  of the 

potential energies of the tr iangular elements.  In forming this s u m  

the potential energies of the boundary loads of the tr iangles cancel 

each other  over a l l  s ides  in the inter ior  of the plate because the s t r e s s  

resul tants  along a side common to two elements ac t  in opposite d i rec-  

tions on the two elements.  

The variational equation 6 TT = 0 for  the plate yields a se t  of 

simultaneous equations for determining the nodal displacements.  

each node k belonging to n elements two equations a r e  obtained by 

superposition of n pairs  of equations such a s  Eqs. 52 and 53. 

two equations a r e  conveniently r e fe r r ed  to a s  equilibrium equations 

and their right hand s ides  as generalized nodal forces  a t  node k. 

F anf F be the generalized nodal fo rces  due to the edge loads,  i e . ,  

At 

These 

Let  

xk Yk 

where the summation extends over the elements having node k in 

common. At an interior node we  obtain 

Fxk = 0 

F = O  
Yk 

because the s t r e s s  resultants on a side common to two elements con- 

tr ibute opposite quantities to the sums in Eqs.  58 and 59. At a boundary 

node k l e t  m and n denote the two s ides  issuing f r o m  that node, Fig. 6. 

F r o m  Eqs.  45 and 46 we can write 

t m  

0 0 

. 
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Pm en 
. F ='I N m s  d s  .'( N n s  d s  

yk 4, Y m m Q n  Y n  n 
0 0 

In Eqs.  6 2  and 6 3  sides  m and n a r e  oriented towards node k, Fig. 6. 

Writing two equations per node yields a s  many equations a s  

nodal displacements. The right hand s ides  of these equations a r e  

known a t  all inter ior  nodes if the externally applied load is known. 

At boundary nodes F 

on the boundary conditions. 

and F may  o r  may not be known depending 
xk Yk 

a )  Stress Boundary Conditions 

If the s t r e s s  resultants a r e  specified on the two s ides  

issuing f r o m  node k, the two equilibrium equations a t  that node have 

known right hand sides.  

In the case  where the stress resul tants  are known on al l  the 

boundary, i t  is necessary  to specify the elements  of a rigid body 

displacement in o rde r  to avoid treating wi th  a singular matrix. 

will be  examined in m o r e  detail subsequently. 

This 

b)  Displacement Boundary Conditions 

If the displacements of a boundary node a r e  specified, the 

two equilibrium equations associated with that node are not par t  of the 

sys t em of simultaneous equations. They are used after solving this 

sys t em to compute the unknown edge reactions F It may 

be noted that the preceding applies as well to an interior node whose 

displacements a r e  specified and a t  which there  are therefore unknown 

reactions.  

and F 
xk Yk' 

c )  Mixed Boundary Conditions 

If the s t r e s s  resultant component in a direction (a) is 

specified on the two s ides  issuing f r o m  node k and if  the displacement 

of node k in a different direction (p) is specified, one equation at node 

k is obtained by projecting the two equilibrium equations on the direction 

(a) and a second equation is obtained by expressing the known displace- 
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k' ment  component in t e r m s  of the Cartesian components u and v 
k 

In the case where s t r e s s  boundary conditions a r e  specified on 

all the boundary, a rigid body displacement must  a lso be specified 

i f  the displacements a r e  to be determined in a definite manner.  This 

may be done by specifying a s  zero  the displacements of a node i and the 

rotation about that node. 

placement component of a node j in the direction perpendicular to the 

line i j  may  be specified a s  zero.  

node i and the equilibrium equation at node j in the direction perpen- 

dicular to line i j  a r e  deleted f r o m  the sys t em of simultaneous equations. 

They may be used to perform a statical  check by computing the react ions 

In o rde r  to specify ze ro  rotation the d is -  

The two equilibrium equations a t  

d )  Elastic Boundary Conditions 

Elastic boundary conditions a r e  specified by means of the 

S 
t '  function B, Eq. 16, to which corresponds the potential energy B 

Eq. 20. Using  piecewise l inear  functions to represent  u ,  v, u and v 

and re fer r ing  to the notation defined in Fig. 7 we obtain at node 2 

generalized nodal forces  of the fo rm 

S 

where 

i=l  i= 1 

- 6  i= 1 

4 
i = l  

k22 - 

xx -'I k X x l l  s 2 d s  ti[, xx s 2 d s  3 3 

0 

i =  1 , 3  
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By using in  turn  k , k , and k instead of k in Eqs. 66 and 67 
YY XY Yx xx 

we obtain the remaining stiffness coefficients. It is noted that 

i = 1,3 

the place in the equilibrium 

fo rces  F and F due 
x2 Y 2  

The right hand s ides  of Eqs.  64 and 65 take 

equations at node 2 of the generalized nodal 
S S to the edge load. 1.1 and v. a r e  assumed known. If, instead, the 

spr ing forces  a r e  known the boundary conditions are then of the stress 

t Y  Pea 

i 1 

5. P la te  Bounded by an Edge Beam 

Formulated analytically the boundary conditions for a plate with 

a n  edge beam are the differential equations of equilibrium of the edge 

beam expressed in t e r m s  of plate edge displacements.  

assumed that the edge of the plate coincides with the centerline of 

the beam. 

It will be 

The problem may  be discretized by adding to the potential energy 

of the plate the potential energy of the edge beam and applying the d i rec t  

variational method. The piece-wise l inear displacements need however 

a special  interpretation when used to compute the potential energy of 

the beam because they imply no change of curva ture  of a side joining 

two adjacent boundary nodes. In o rde r  to compute the s t r a in  energy 

due to bending a numerical  integration may be made where the change 

of curvature  is computed in t e rms  of nodal displacements by means of 

differences of side rotations. 

The s t r a in  energy of the beam is taken in the f o r m  

Wb = #FA ( €  - E o ) 2  + EI( X -  d s  
2 

... where  E and % a r e  the extensional and curvature  s t ra ins ,  respectively.  
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and%' a r e  thermal  s t r a ins ,  A is the c r o s s  sectional a r e a ,  I i s  the 

moment of inertia with regard  to the axis perpendicular to the plane 

of the beam and passing through the centroid and E is Young's modulus. 

The potential energy of the distributed load applied on the beam 

is of the form 

(70) 
b 

P = - f  ( A N  u + A N  v)ds 
X Y 

In Eq. 70 AN and AN a r e  the components of the distributed load which 

consists of the load applied externally on the beam and of the s t r e s s  

resul tants  a t  the plate edge. Using piece-wise l inear  displacements 

and a piece-wise constant thermal  s t ra in  to compute the s t ra in  energy 

due to axial stretching we obtain 

X Y 

2 '4 2 EA( €-E" )de = 42 EiAi( E i  - E ; )  e i 
i 

where i re fers  to a boundary segment and the summation extends over a l l  

such segments. Referring to Fig. 8 we can write 

Letting w .  denote the rotation of side i we have 
1 

w .  p .  = - (Ui t l  - u . ) c o s q  - bitl - v . ) s i n p .  
1 1  1 

and letting a t  node k 

(73) 

The s t ra in  energy due to bending is expressed in the f o r m  

. 

J 
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where the summation extends over the boundary nodes. 

The potential energy of the applied load is obtained as a s u m  of 

products of generalized nodal forces  and nodal displacements in the 

f o r m  
b P = - D F x k u k  -+ AF v 

Yk k 
k 

where 
- 

A F y k = F  - F  
Yk Yk 

and F a r e  the generalized nodal forces  a r i s ing  f r o m  the s t r e s s  

a r e  
Fxk Yk - 
resul tants  acting on the plate edge, Eqs. 62 and 63. 

the generalized nodal fo rces  arising f r o m  the load applied externally 

Fxk and F 
Yk 

- m  on the edge beam. 

load on side m, F 

to Eqs. 62 and 63. 

Denoting by N and N-the components of that - X Y 
and F are  obtained through formulas  similar 

xk Yk 

By making stationary the potential energy of the beam with regard  

to the displacements of node 3, Fig. 9 ,  force-displacement relations 

a r e  obtained in the f o r m  
5 5 

xx u. t kxyv A Fx3 x3 1 3i i 
= F "  t 2 k3i 

i= 1 
5 

i= 1 
5 

h F  = F" t z  k:: ui t x  kyy 3i v i Y3 Y 3  
i=l i= 1 

Introducing the notation 

2E- I. 

dk =e k- 1 k= 2,  3,4 

i = l ,  ..., 4 a = E.A. 
i 1 1  i 
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i =  1, . . .  , 4  
a .  
1 - -  _ -  sin@i 

s =  

i ei e: 
-I cos& = -  bi (84) 

i e, e2 c -  

i 

The stiffness coefficients in Eqs. 79 and 80 are obtained in the f o r m  

1 1  

2 2 2 
- a s t a s2 t d ( C  t c3)  t d 2 c i  i- d4d3 k Z - 2 2  3 3  3 2 

2 
- a s  - d c ( c  + c 3 ) - d d ( c  4 3  3 f c 4 )  k z  - - 3 3  3 3  2 

k:; = a s c - d s ( c  t c3)  - d c ( s  t s l )  2 2 2  3 2  2 2 2  2 

k:: = a s c - d s (c  t c3)  - d c ( s  t s4) 3 3 3  3 3  2 4 3  3 

kYYand kyx i = 1, . . . , 5 are obtained from Eqs. 85 to 94 by in te r -  3i 3 i’ 
changing x and y and s and c j = 1 ,  . . . , 4. 

j j ’  
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The quantities F" and F" in Eqs.  79 and 80  a r i s e  f r o m  the 
x3 Y3 

the rma l  s t r a ins  and a r e  obtained in the f o r m  

When writing the two equilibrium equations for  the plate a t  a boundary 

node k the generalized nodal forces F and F a r e  replaced by 
xk Yk 

Fxk = Fxk - OF xk 

- AFyk F = F  
Yk Yk 

( 9 7 )  

and A F  

Eqs. 79 and 80. 

and A F  a r e  expressed in t e r m s  of the displacements through 
xk Yk 

6. Multiply-connected P la te  w i t h  Dislocations 

Consider a multiply-connected plate bounded on the outside by a 

curve (C) and on the inside by curves (C ), (C ), . . . , (C ) .  S u c h a  

plate may have, in the absence of external  loads,  initial s t r e s s e s  

corresponding to n independent dislocations. 

consider one dislocation such as shown in Fig. 10. 

of the dislocation may be brought to coincide with the negative face 

through a rigid body displacement that may  be defined by means of the 

t ranslat ion components duo and d v o  at the or igin of coordinates and of 

1 2 n 

It will be  sufficient to 

The positive face 
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the rotation angle &do. 

resu l t s  in multivalued displacements and in singlevalued s t r e s s e s  (10).  

It is known that the closing of the dislocation 

Geometrically the 2 faces  of the dislocation a r e  considered a s  

one curve a s  shown in F ig .  l l a .  Consider a cut made in the s t r e s sed  

plate along the dislocation curve and a node q on that curve.  

q- the node belonging to the negative face of the cut and by q'the node belong- 

ing to the positive face,  F ig .  l l b .  The displacements of nodes q-and  q 

that a r i s e  from closing the dislocation a r e  re la ted through the relations 

Denote by 

t 

where x , y a r e  the coordinates of node q. Letting 
q q  

t 

g q q  
d u  = u  - u -  

t -  
q q q  

d v  = v  - v  

Eqs.  99 and 100 may be written in the f o r m  

d u  = duo - y q d w o  
q 

Consider now the two equilibrium equations associated wi th  node k- ,  

F ig .  12. They may be written using ma t r ix  notation in the f o r m  

U k t K -  U - t K  - U -  tx K U = F i  
K k k  ki i kj  j km m 

t 
Similar ly  at node k we may wri te  
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t 
k 

' 
KkpUp = F 

U t K  . U . t K t U  t 
t t  t t  

Kkk k kl I kj j 

t 
k k 

where F- and F 

to the s t r e s s  resultants acting on the negative and positive faces  of 

the dislocation, respectively. If surface forces  o r  thermal  effects 

a r e  present  the corresponding generalized nodal fo rces  a r e  added to 

the right hand s ides  of Eqs.  105 and 106. 

an ts  a r e  continuous a c r o s s  the dislocation we have 

a r e  the matr ices  of the generalized nodal fo rces  due 

Because the s t r e s s  resu l t -  

t 
k k  (107) F - t F  = O  

Letting 
du = u  t - u -  

q q 5l 

1 u - = u  - - d u  
9 q 2  q 

q = i ,  j , k  

we  can write 

where f r o m  Eqs. 103 and 104 

and U is the matrix of the average displacements.  
t .  

9 q 

9 
Superimposing Eqs. 105 and 106 and substituting for U 

using Eqs. 109 and 110 obtain a ma t r ix  equation of the f o r m  

and U-, 

m P 
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q = i , j , k  

In writing the two equilibrium equations a t  a node k not situated 

on the dislocation but belonging to e lements  having one o r  two nodes 

such as node q on the dislocation, the displacements of node q a r e  

replaced by the right hand side of one of Eqs. 109 and 110. Eq. 109 

is used if  node k is on the positive side of the dislocation and Eq. 110 

is used if  node k is on the negative side. 

In summary,  the presence of dislocations does not a l te r  the pro- 

cedure of forming the stiffness ma t r ix  of the s t ruc ture .  

contribute only fictitious generalized nodal forces .  

The dislocations 

7. Variational Formulation of the Bending P rob lem in T e r m s  of S t r e s s  

Functions 

A variational formulation of the bending problem and i t s  applica- 

tion to establish what may be called a flexibility mat r ix  for  a triangular 

element may  be directly obtained f rom the preceding by replacing the 

dependent variables and the elast ic  constants of the stretching problem 

by their  dual dependent variables and elast ic  constants in  the bending 

problem according to the correspondence established in reference ( 7 ) .  

Because the resulting variational formulation s e e m s  to differ,  however, 

f rom the form i t  takes when based on the principle of vir tual  forces  it 

is established he re  direct ly  s tar t ing f r o m  this la t te r  form.  

Consider a plate subjected to a normal  distributed load of intensity 

q,  an edge deflection w and an edge rotation w 

the boundary curve, Fig. 13. The s t r e s s  couples in  the plate and the 

s t r e s s  couples and t r ansve r se  shear  on its boundary make stationary 

in the plane normal  to 
, n  
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the functional 

fl I = ( I W ' d A  tf B'ds (115) 

where W '  is the complementary s t ra in  energy density and B'  may be 

called the complementary potential energy density of the boundary 

fo rces .  n' is a functional of the s t r e s s  couples and t r ansve r se  s h e a r s  

whose variations a r e  constrained to satisfy the homogeneous differen- 

tial equations of equilibrium but a r e  otherwise a rb i t r a ry .  

Fo r  a plate made of the same mater ia l  a s  in the stretching 

problem and with no t ransverse  shear  deformability W '  takes the 

f o r m  

M2 
4 - 2  

E 
h X Y 

+ % O M  + % O h  

x x x  Y 

M2 
- ($ +*)M M t 2 7  

E xx YY G 
X Y 

(116 
YY 

where M , M and M a r e  the s t r e s s  couples, Fig. 14, and T o  

and X " a r e  thermal  curvatures.  
X xx YY XY 

To ?Lox and X "  correspond the ini- 
Y Y 

t i a l  s t r e s s  couples 

M" = - D  X " )  (117) 
X X X Y  

M" = - D ( X o  + x i )  (118) 
Y Y Y  Y 

E h3 where 

(119) 
X D =  x 1 2 ( 1 - 9  3 ) 

X Y  

and 
E h3 

D =  Y 
y 12(1 - 3  3 1 

X Y  

(120) . 
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For  prescribed w and w a t  the boundary B' is expressed 
, n  

in t e r m s  of the bending s t r e s s  couple M 

couple M and the t ransverse  shear  Q Fig. 15a, in the f o r m  

, the twisting s t r e s s  
nn 

ns  n, 

B ' = M  w t M  w - Q w  
nn , n  ns , s n 

Alternatively, using the Cartesian components M and M of the 

s t r e s s  couple vector ,  F i g .  15b, and the Cartesian components 
rlx nY 

w and w , B '  takes the f o r m  
, x  ,Y 

In o rde r  to vary a rb i t ra r i ly  the internal fo rces  in tl' without violating 

the s ta t ical  constraints the s t r e s s  couples and t r ansve r se  shea r s  a r e  

expressed  in t e r m s  of two s t r e s s  functions U and V and a particular 

solution of the differential equations of equilibrium. These a r e  

t M  - Q  = O  
xx, x YX,Y x 

M 

M t M  - Q  = O  
xy, x Y Y P Y  Y 

Q t Q  + q ' =  0 
x , x  Y , Y  

The particular solution of Eqs.  123 and 124 is taken in the form 

P = - [ D  (K t P K ) ] ,  Qx = Mxx, x x y  x x  x 

Q p = M p  = - [ D  (K t Y K ) ] ,  
Y YY, Y Y X  Y Y  Y 
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Mp = - D ( K  + P K )  
xx x y x x  

' 

M~ = - D ( K  + U K )  
Y X  Y Y  YY 

and in o rde r  to satisfy Eq. 125, K and K mus t  satisfy the differential 

equation 
X Y 

[D (K t P K ) ]  t [ D ( K  t Y K ) ]  - q = O  (131) 
x y x x ,xx  Y x Y Y , Y Y  

The s t r e s s  couples and t ransverse shea r s  of this particular 

solution a r e  those that would occur in two families of s t r ip s  parallel  

to the coordinate axes.  

the two famil ies  of s t r ip s  and the end conditions of the s t r ip s  a r e  a lso 

a rb t i r a ry .  

problem is determined in a definite manner.  

the functions K and K is that K and K a r e  dual of the load com- 

ponents p and p , respectively, in the stretching problem. K and 

K 

va tures  of the plate in the y and x directions respectively. 

pa r t s  a r e  contributed by the s t r e s s  functions and a r e  such that the cu r -  

va tures  and twist of the plate a re  geometrically compatible and the boundary 

conditions a r e  satisfied. 

The load may  be subdivided arb i t ra r i ly  between 

It wi l l  be assumed that the particular solution f o r  a given 

The reason for  introducing 

X Y x, x Y* Y 

X Y X 

have the dimensions of curvatures  and are  par t s  of the actual c u r -  
Y 

The remaining 

The general  solution of the equilibrium equations may  be writ ten 

i n  the f o r m  

M = M *  
XY XY 



-24- 

Q = Q:: f Q P 
X X x 

Q = Q ; ' : + Q  P 
Y Y Y  

where 

and 
1 n = p x  - u 1 

z , Y  

At the boundary we have the relations 

M = - -  M t x  M 
nx y , s  xy 9 s  YY 

where s denotes the arclength of the boundary curve.  

The functional If' may now be expressed in  terms of the s t r e s s  

functions. The complementary s t r a in  energy density, Eq. 116, takes 

the f o r m  
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1 2 1  
W ' = W " - K U  - K V  t - D K  + - ( P D  t 3 D ) K K  

x , x  y , y  2 x y  2 x x  y y  x y  

1 2 t - D K  - D q " ( K  t Y K ) - D  % " ( K  + P K )  (146) 
2 y x  x x y x x  Y Y X  Y Y  

4 G  

where 

X Y X Y 

The t e r m s  that do not involve the s t r e s s  functions in Eq. 146 may be 

deleted when forming the functional TT '  because they do not vary,  

The a r e a  integral  of the l inear t e r m s  in  U and V in Eq. 146 may be 

expressed  through use  of Green's theorem, assuming the s t r e s s  

functions to be singlevalued, i n  the f o r m  

I ( ( -K  U - K  V ) d A = I ( ( K  U t K  V)dA 
x ,x y t y  x ,  x Y, Y 

tf (KyVdx - K x Udy) 

Multivalued s t r e s s  functions a re  considered subsequently. 

Similarly,  the t e r m s  not involving the s t r e s s  functions may  be 

deleted f r o m  the boundary integral in the functional n'. 
integral ,  a f te r  successive integrations by par t s ,  is expressed in the 

f o r m  

The remaining 

f (M* w + M *  w - Q*w)ds = f ( w  U - w V)ds , (149) 
nx , Y  xy S X  n 9 Y S  9 xs 

c 
Finally, the functional takes  the f o r m  

= I / (W" t P")U + f B"ds 

where W!' is given through Eq. 147 and 
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where 

It may be readily observed that - fl'' is obtained f rom the poten- 

t ial  e n e r g y m o f  the stretching problem if in the la t te r  the interchange 

indicated below is made. 

E h, E h, Gh 
Y X 

gx ,  y, 

Table 1. a 

u ,  v 

-1 
Y X 

- D , -D-', - (Gh3/3)- l  

- lJ 9 - 9  

Y X 

The duality indicated above may be completed to include all 

the dependent variables of the stretching and of the bending problem (7 ) .  

For this purpose let  % +  , x:k , and X be related to M* M:: and M 

as shown below. Obtain 
XY w xx X Y  YY xx 
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M = - w  
12 

% =  
XY Gh3 xy 9 XY 

(157) 

The superscr ip t  :: is associated with the solution of the homogeneous 

equations of equilibrium in t e rms  of s t r e s s  functions. The quantities 

X , X and X a r e  the curvatures  and twist of the plate, i. e. 
YY xx XY 

and -w , respectively. 
- w ¶ Y Y ’  - w  J x x  9 XY 

The table below indicates the dual correspondence between 

dependent variables of the stretching and of the bending problem. 

Table 1.b 

2, X 
= R  -Q:: = - M::: - M:: = w  

Y xy, x YY, Y 

nn’ ne z ns , s  

x = €  - E .  xz  yx ,x  xx, y z , x  

M:k Q:k = (R +M<:  ) E s s J  = (CJ z - €sn), 

If subscr ipts  n and s indicate the directions of the outward normal  and 

of the tamgent, respectively, at a point of the boundary curve,  the co r -  

respondence between quantities at the boundary defined wi th  respec t  to 

the directions n and s is obtained by changing in the table above sub- 

scr ip ts  x and y into n and s ,  respectively. 

to x and y may not in general  be changed into derivatives with r ega rd  

to n and s i f  the boundary is curved. 

with u s e  of curvil inear coordinates may  be found in reference (7) .  

Derivatives with regard  

The appropriate formulas  obtained 

Of 
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in te res t  is the duality between the extensional s t r a in  & 

boundary curve and the s t r e s s  couple M:; 

the in-plane change of curvature  N o f  the boundary curve and the 

effective t ransverse  shear  Q:: . 
Table 1. b. 

of the 
s s  

and the duality between 
nn 

This is indicated in the l a s t  line of 
ne 

8 .  Bending of a Triangular Element 

The duality mentioned above is now used to apply to the bending 

problem of a tr iangular element the equations established for  the 

stretching problem. The equations dual of Eqs. 52 and 5 3  a r e  

- RZk -@Ixk 
Ah Y Y 

where P I  PI R’::: R’:: @ k k  and 0’ a r e  dual of P P 
xk’ yk’ xk’ yk’ Yk xk’ yk’ 

and 8 respectively,  and may  be expressed through 
Rxk’ Ryk’ ‘xk Yk’ 
equations dual of Eqs. 4 3  to 4 8 .  

t e r m s  on the right-hand s ides  of Eqs.  158 and 159 generalized nodal 

rotations.  

It appears  appropriate  to call  the 

The three pa i r s  of equations associated with the three  nodes of 

the triangular plate f o r m  a sys t em of six equations in six unknowns. 

This system is singular,  however, because the homogeneous sys tem 

has a non-trivial solution that i sdua l  of the a r b i t r a r y  rigid body dis-  

placement in the stretching problem. Such a solution f o r  the s t r e s s  

functions yield zero  s t r e s s  couples. 

have a solution the generalized nodal rotations must  sat isfy three 

For the sys tem of six equations to 
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compatibility equations that a r e  dual of the three  equilibrium equa- 

tions to be  sat isf ied by the generalized nodal forces  in  the stretching 

problem. Two of these equations a r e  conditions of singlevaluedness 

of w and w 
, x  , Y  

and the third equation is a condition of singlevalued- 

nes s  for  w. 

9. Application to a Plate  of Arbi t ra ry  Shape 

As in the stretching problem two equations a r e  associated with 

each  node k. 

tions such a s  Eqs. 158 and 159, n being the number of elements having 

node k in common. These two equations may  conveniently be r e fe r r ed  

to as compatibility equations. 

of R’:: and R’::: yields zero  values because each of the quantities 

They a r e  obtained by  superposit ion of n pa i r s  of equa- 

At an  inter ior  node the superposition 

xk Yk 
- w t Kxy and%:: = - w t K x take two opposite 

*:sY - - 9 YS 3 s  sx 9 xs Y 7 s  

values on an edge common to two elements.  At a boundary node, Fig. 16,  

the superpositions of RI:: and of R’:< , respectively,  yields the gener-  
xk Yk 

alized nodal rotations. 

Qm e, 
0 0 

(%:% ) s ds 
s x n n  n 

“1:: = - ( X : :  ) s d s  
s x m m  m yk Pm 

0 0 

F I +  and F I : ’ E  a r e  dual of the generalized nodal forces  F and F 

respectively.  

W e  let 

xk Yk xk Yk’ 

where 
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Pm en 

(w ) s d s  t d ( w  , y s  ) n S n d s  n (164) Fh= , y s m  m m 
0 0 

4m Pn 

Pm Pn 

It is possible to express  F' and F' in t e r m s  of the slopes w and xk Yk 9 Y  

w respectively, through integration by par t s  in Eqs. 164 and 165. 
. x  

In doing this i t  is  noted that the positive sense of s coincides with that 

of s but is opposite to that of s Fig. 16. Obtain 
m A A n  

Yn Ym 

F:k = 
w d s - I (  w ds  

l n  , Y  Pm 9 Y  

0 0 

Pn Pm 

It is seen  that F' 

n and my respectively, of the slope with regard  to the y axis. 

is the difference between the averages over  s ides  xk 
A 

similar statement holds for  F' 
Yk' 

Various types of boundary conditions a r e  now examined. 

a. Displacement Boundary Conditions 

F r o m  specified values of w and w 

possible to compute w and w through the relations 
YX t Y  

a t  the boundary it is 
, n  

then w and w through differentiation 
1 xs 9 YS 
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with regard  to s. X : :  and a r e  computed through Eqs.  153 and 

154 and finally the generalized nodal rotations F'a and F ' ; F  a r e  

computed through Eqs. 160 and 161. 

sx SY 

xk Yk 

The computation of the generalized nodal rotations f r o m  X:; and 
sx 

x :: 
specified s t r e s s  resul tants .  An al ternate  way, however, is to 

is dual of the computation of the generalized nodal forces  f r o m  
S Y  

compute Flp and F" through Eqs. 166 and 167, then F' and FI 
xk Yk xk Yk 

through Eqs.  168 and 169 and finally F ' : F  and F'::: through Eqs.  162 

and 163. 
xk Yk 

In this a l ternate  method it is not necessa ry  to determine 

the curvature  components w and w . 
9 xs 1 Y S  

It is recal led that in  the stretching problem with s t r e s s  conditions 

on al l  the boundary, th ree  equilibrium equations are deleted and a r e  

replaced by three corresponding conditions specifying the elements of 

a rigid body displacement. A dual procedure is followed in the bend- 

ing problem if displacement conditions a r e  given on a l l  the boundary. 

b. S t r e s s  Boundary Conditions 

F o r  a plate without t r ansve r se  shea r  deformabili ty s t r e s s  

boundary conditions specify the values of the bending s t r e s s  couple 

M and of the effective t ransverse shear  Q . Having determined the 
nn ne 

par t icular  solution of the equilibrium equations, M:: 

determined through the relations 

and Q:he a r e  nn 

F r o m  the known values of M::: 

a r e  determined and the boundary conditions a r e  then t reated as the 

displacement boundary conditions a r e  in the stretching problem. 

determining U and V consider the boundary= A A,  oriented positively 

f r o m  A to A, Fig. 17, and le t  

and Q:' the s t r e s s  functions U and V nn ne 

F o r  

0 

0 
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S 

p::: = 
z (1  74) 

0 

c::: = x p *  t/ (-xQ:ke t M* y S)ds  
Y nn 9 

0 

P : k  is the resultant of the effective t r ansve r se  shear  Q::: on a r c  A A. 

C::: and C:k are  the moments,  with regard  to axes x and y ,  respectively,  

passing through A ,  of the t r ansve r se  shear  (2;; 

Z ne 0 

X Y 
and of the s t r e s s  

ne 
couple M::: on a r c  A A. Letting nn 0 

It is found that (1  1)  

Q = Q t p:I: 
0 Z 

u = u  - (y  - y )R t C>k 
0 0 0  X 

(1  7 9 )  

v = v  t ( X ’ X ) Q  t C > k  (180) 
0 0 0  Y 

where U , Vo, a n d n  a r e  the values of U ,  V ,  a n d f i a t  point A . 
It may be noted that the determination of U and V f r o m  h4! 

0 0 0 

and Q:k 
nn ne 

is dual of the determination of u and v f r o m  the extensional s t ra in  

and the change of in-plane curvature  ‘x of the boundary curve.  
s s  

The 

constants U and V a r e  dual of the displacements of point A and f2 
0 0 0 0 

is dual of the rotation of the boundary curve  at point A . 
connected domain U , V , and n may be chosen a rb i t r a r i l y  a t  one 

point A . 
one point such as A 

F o r  a simply 
0 

0 0  0 

U and V a r e  then fully determined i f  there  a r e  not m o r e  than 
0 

i. e.  i f  the s t r e s s  boundary conditions a r e  given 
0 
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either on all the boundary curve o r  on only one continuous a r c  of i t .  

The determination of U and V through Eqs. 179 and 180 yields 

singlevalued functions. if Q. and M* f o r m  a sys t em statically 

equivalent to zero.  

domain without singularit ies since the applied distributed load is 

equilibrated by the particular solution of the equilibrium equations. 

The c a s e s  of a multiply-connected domain and of s t r e s s  boundary 

conditions given on more  than one a r c  of the boundary a r e  t reated 

subs e que n t l  y . 

ne nn 
This is always the c a s e  in a simply connected 

An al ternate  w a y  of treating s t r e s s  boundary conditions is to 

express  average values over the boundary s ides  of M+ and Q:: in 
nn ne 

t e r m s  of the nodal values of the s t r e s s  functions. 

through formulas  dual of those expressing the extensional s t r a in  and 

the in-plane change of curvature of a boundary curve in t e r m s  of nodal 

displacements,  Eqs.  72 to 74. The equation for M:: is associated 

with a side and uses  the nodal values of U and V a t  the two nodes 

defining the side. 

u s e s  the values of fi a t  the two sides issuing f r o m  the node. 

the subscr ipts  in M:: 

and Q:L be associated with node k, F i g .  18, the equations dual of Eqs.  

72 to 74 take the f o r m  

This is done 

nn 

The equation for Q* is associated with a node and 

Deleting 
ne 

and Q+ and letting MQ be associated with side i 
nn ne 1 

c .  Displacement Boundary Conditions Alternating with S t r e s s  

Boundary Conditions 

Consider the boundary curve  shown in Fig. 19 and le t  d i s -  

placement conditions be given on a r c s  ( D  ) (D ), . . (D ) including 
1 2  n 
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points A 1,  B1, A2, B2, . . . , An, B 

given on a rc s  ( S  ), (S ), . . . , (S ). 1 2 n 
conditions must be equal to twice the number of boundary nodes. 

each node of a r c  (D.) except the end nodes B 

bility equations a r e  written a s  explained in (a ) .  

be done at B. and A 

sides  of a node in o rde r  to be able to compute the generalized nodal 

rotations. 

U and V may be expressed,  as explained in (b) ,  in t e r m s  of their  

values U. and V. a t  node A. and in t e r m s  of the value n .  of R a t  the 

side joining A. to the next node. 

th ree  conditions per  a r c  (S.) corresponding to the three  unknowns 

U . ,  V.,  and fi i. In o rde r  to wri te  these three  conditions we will make 

use  of a property of w that is m o r e  conveniently presented in i t s  dual 

s ta t ical  form as a property of Ai ry ' s  s t r e s s  function 

and le t  s t r e s s  conditions be 
n 
The total number of boundary 

At 

two compati- and A 
1 i i t 1  

The same cannot 

because w and w must  be known on both 
1 i+ 1 t n  

At each node of a r c  (S.) and a t  node B. the s t r e s s  functions 
1 1 

1 1 1 1 

There remains  therefore  to write 
1 

1 

1 1  

. 
Consider an a r c  AB of a boundary curve oriented positively f r o m  

A to B, F i g .  20.  Let  PAB and PAB be the resultants.and CAB be the 

moment with regard  to point B of the s t r e s s  resul tants  N* 

acting on a rc  AB and due only to the s t r e s s  func t iony  . 
relations may be established (12). 

X Y z 
and N:k 

nx nY 
The following 

AB = - p  B A 
K x -  v ,x Y 

AB A 
t p  

Y y - Y , =  x 
B 

If A and B are  appropriately placed on s ides  i i and ipiptl, respec-  

tively, 
0 1  AB F i g .  20 ,  then P A B  , PAB and C a r e  statically equivalent 

X Y z 

I 
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to the generalized nodal forces ,  due to N* and N::: , a t  the nodes 
nx nY 

situated between A and B. 

and B a r e  a t  the mid-sides ,  which implies that N::: 

constanton s ides  i i and i i 

We w i l l  a ssume for  simplicity that A 

and N::: a r e  
nx nY 

In the bending problem the quan- 
0 1  P P + l '  ~- 

t i t ies  dual of \y, N:* and N:* are  w, w and -w, , respectively,  
rlx "Y 1 YS xs 

and the quantities dual of thegeneralized nodal fo rces  due to N::: and 

N:: a r e  the generalized nodal rotations F' and F' Eqs. 164 and 

165 o r  Eqs. 168 and 169. 

nx 

"Y xk Yk ' 

1 P  1 
Letting a r c  i i in Fig. 20 represent  an  a r c  (S.), Fig. 19, with 

i and i coinciding with A .  and B respectively,  we can write the 

th ree  relations 
1 P 1 i' 

i 
P 

i 
P 

i 
P 

In using Eqs. 187 to 189 as part of the simultaneous equations of the 

finite element method the right hand s ides  a r e  replaced in t e r m s  of 

the nodal values of the s t r e s s  functions and in t e r m s  of the known gen- 

e ra l ized  nodal rotations due to the K 

effects ,  if any. 

and K 
X Y 

t e r m s  and to thermal  

The left hand sides a r e  replaced by their known values. 

The three equations above a r e  written for  a l l  a r c s  (S.) except 

an  a rb i t r a ry  one for  which U ,  V, and fi a r e  specified a rb i t r a r i l y  a t  
1 

one point. 
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d. Multiply-connected Plate  

The boundary forces  due to the s t r e s s  functions a r e  self- 

equilibrating on the boundary a s  a whole but not necessar i ly  on each 

boundary curve if the plate is multiply-connected. 

Consider one closed boundary curve and an a r b i t r a r y  point A 

on that curve. Let RS , M::<, and Ma be the resul tant  and the moments,  

respectively,  that are statically equivalent a t  point A 

forces  Q:k and M:g . Eqs. 178 to 180 show that U ,  V,  and a r e  multi-  

valued and experience at A 

the boundary curve the discontinuities 

0 

X Y z 
to the boundary 

0 

ne nn 
af te r  a turn in the positive sense around 

0 

The stretching analogue is a plate with a dislocation whose charac te r i s t ics  

d u ,  6 v  and &W at point A a r e  dual of 6 U ,  6 V ,  and &?, respectively. 

This problem was t reated in paragraph 6 .  The positionof point A and 

the shape of the dislocation curve a r e  a rb i t r a ry  (10). 

0 

0 

If s t r e s s  boundary conditions a r e  given on the boundary curve,  

R::: , M:: and M:: a r e  known. They a r e  statically equivalent to the 

difference between the specified boundary fo rces  and the boundary 

forces  due to the particular solution of the equilibrium equations. 

If R::, M:k and M+ a r e  unknown the extremit ies  of the dislocation 

curve may be placed at two points where w,  w , and w a r e  known. 

Applying Eqs. 187 to 189, in the present  ca se  along one face of the 

dislocation, yields the required three additional equations for  the 

determination of R:::, M::: and M*. 
z X Y 

z X Y 

z X Y 

, x  , Y  

e .  Mixed Boundary Conditions 

Two cases  of mixed boundary conditions a r e  considered. 

In the f i r s t  case w and M a r e  specified on the boundary. In the dual 
m 
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stretching problem Airy ' s  s t r e s s  function and the extensional s t r a in  

a r e  known at the boundary. F o r  each boundary s ide i one equa- 
9 s  

tion expressing M4: in t e r m s  of nodal values of U and V is writ ten 

using Eq. 181. Another equation is obtained by using Eq. 189 where 

now A is an  a rb i t r a ry  fixed point a t  the middle of a side and B is a 

variable mid-side point. F o r  a simply connected domain w and 

1 

A 
YX A 

, Y  
w may be chosen arbi t rar i ly .  The left hand side of Eq. 189 is thus 

known and the right hand s ide is expressed in t e r m s  of U and V. 

last equation, where B coincides with A ,  is a condition of singlevalued- 

nes s  for  w. 

node. 

of a s imply connected domain. 

r igid body displacement a r e  a rb i t ra r i ly  specified. 

The 

The above procedure yields two equations per  boundary 

Three of these equations a r e  omitted, however, in the c a s e  

Instead the three  elements  dual of a 

A A 
, x  , Y  

In the case  of a multiply-connected domain w and w cannot 

be  chosen arbi t rar i ly .  Two corresponding additional equations a r e  

obtained by equating to zero the resul tants  on  the boundary curve of 

F' and F' respectively. These equations a r e  singlevaluedness 

conditions for  w and w as shown by Eqs.  187 and 188. 

An al ternate  method consists in using instead of Eq. 189 the three  

xk  Yk ' 

, x  t Y  

equations 187 to 189 where A and B a r e  a t  the mid-points of two con- 

secutive s ides  and w 

The sums  on the right hand sides of Eqs. 187 to 189 involve then 

and w 
YX , Y  

a r e  two additional unknowns per side. 

one node only. 

following s impler  relation obtained f r o m  them. 

One of Equations 187 and 188 may be replaced by the 

B A  B B 

, x  S Y  
(XB - XA)W f (YB - YA)W = w - w (193) 

The al ternate  method involves more  equations than the f i r s t  

method but these equations have the possible advantage of following the 

s a m e  pattern as other equations a s  regards  the nodes they involve. 

The method also includes implicitly the singlevaluedness conditions for  

w, w a n d w  . 
, x  t Y  
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It is interesting to note that the boundary conditions w = 0 

and M::: 

boundary curve is inextensible and is the funicular of the boundary 

s t r e s s  resultants due only to Airy ' s  s t r e s s  function. The cases  of 

a rectangular boundary and of a c i rcu lar  boundary under axisyl -metr ical  

cc~nditions a r e  particularly simple to t reat .  

= 0 have a s  dual conditions 'y = 0 and e = 0 i. e .  the 
nn ss 

The second case  of mixed boundary conditions is one in which 

w and Q a r e  specified on the boundary. Eqs. 183 and 182 provide 

a t  each node k one equation expressing Q>: in t e r m s  of nodal values of k 
U and V. 

, n  ne 

A second equation may be associated with each side i by 

expressing w in t e r m s  of w and w and then using Eqs. 187 and 188 
t n  , x  9 Y  

to express  these in t e r m s  of the s t r e s s  functions. 

f .  Elastic Boundary Conditions 

Consider a plate supported along its boundary by distribu- 

ted elast ic  springs. The boundary conditions a r e  taken in the f o r m  

S 
w - w = f  Q 

z z  ne 

S 
- W  + W  = f  M , n  , n  s s  nn (195) 

S where ws is the displacement and w the rotation of the spring support, 
, n  

and f and f a r e  flexibility coefficients. z and s r e fe r  to the directions 

normal  to the plate and tangent to the boundary, respectively. 

be  convenient to write Eqs. 194 and 195 in the f o r m  

z z  s s  
It will 

w = f  ( Q S - Q  1 
zz  ne 

- w  = f  ( M S - M  ) 
, n  ss nn 

where 
S 

s w  
Q =- 

Z Z  
f 

s s  



- 3 9 -  

The complementary potential energy of the spring fo rces  per  unit 

length of boundary is obtained from Eqs. 196 and 197 in the f o r m  

B' = - f  1 (Q S - Q  ) -I--f (M S - M  ) 2 2 1  
2 zz ne 2 ss nn 

Let  Q 

and the pa r t s  due to the particular solution of the equilibrium equation 

i. e. let 

and M 
ne nn 

be separated into the par t s  due to the s t r e s s  functjons 

Q = Q:$ 
ne ne f QP ne 

B' takes the f o r m  

Bl = - f  1 (Q" -Q:$ ) 2 1  f - f  (M" - Ma ) 2 
nn 2 z z  ne 2 ss 

where 
S 

Q o  = Q  - Q" 
ne 

S P M " = M  - M  
nn 

The above expression of B' replaces that given in Eq. 121 for use  in 

the functional n', Eq. 115. 

put in the f o r m  

A s  w a s  done in paragrabh 7 , n '  may be 

where W" and PIt a r e  given as before through Eqs. 147 and 151 and 

B" takes. now the f o r m  
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The dual of -ITtn is the total potential energy of a plate bounded by 

an edge beam. Letting N and be the fo rce  intensity compo- 

nents applied externally on the edge beam and using the notation of 

paragraph 5 the duality is summarized in the table below. 

L 

nx nY 

Table 2 

-f  , - f  
ss  zz EA, E1 

E - " ,  x "  - L 

Nnx' Nny 

M::: Q :: 
nn' ne 

M", Q"  

-KxY, s '  KyX, s 

10. P la te  Bounded by an  Edge Beam 

Consider the beam isolated a s  a f r e e  body and subjected to the 

load -Qne, - M at  nn 
load Qne and M . nn 

A Q  = Q  - ne ne 

its junction with the plate and to the external 

The resul tant  load is formed of 

ne ne ne ne 

b b b 
Z X Y 

Let  P 

of the moment vector acting on a positive c r o s s  section. 

to 180 we can wri te  

be the t r ansve r se  shea r  and C and C be the x and y components 

Using Eqs.  178 

b b 
P = R - ( Q  t P  ) - P I  

z 0 ZO z 

b b b c = u - ( U  t c  ) t ( y - y ) ( R o t P  ) - C l  
X 0 xo 0 20 X 

b b Cb = v - (V  t c ) - (x - xo)(R i- p ) - C' 
Y 0 YO zo Y 
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c 

I 

where subscr ipt  o r e f e r s  to an  a r b i t r a r y  c r o s s  section o and P I ,  z 
C1 and C’ a r e  the resultant and the moments,  respectively,  a t  a 

c r o s s  sect ion(s)  of the fo rces  (Q - Q ) and moments  (M - Mp ) 
I P Y - X 

ne ne nn nn 
acting on the portion of the beam oriented positively between 0 and 

( s ) ,  Fig. 21. Le t  M and M be the normal  and tangential components, 

respectively,  of the moment vector at a positive c r o s s  section, Fig. 

22. M is the bending moment and M is the torsional moment. They 

a r e  related to C 

b b 
b t 

b b 
t b b b 

and C 
X Y 

through the vector t ransformation formulas  

The complementary s t ra in  energy of the beam is taken in the f o r m  

1 (MQ2 
+-- 

2 GJ 

where E1 and GJ a r e  the bending and torsional r igidit ies,  respectively. 

In t e r m s  of C and C obtain 
b b 
X Y 

X , s ’, s 7 CbCb 
X 

2 

E1 X Y  2GJ X 

2 

2GJ Y 
t 

Introducing the notation 

Q S = Q o t P b  t P ’  
ZO z 
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xx E1 G J  

1 1 
f XY = x, Y, ( GJ- 5) 

b 
W '  takes the f o r m  

b 1  s 2  S s 1  s 2  
w1 = - f  (U - u  ) t f  (U - u ) ( V -  v ) t y f  ( V  - v ) (222)  

2 xx XY YY 

b 
the dual of -W' is the s t ra in  energy, B, of the spr ings in the case  

of a plate with elast ic  boundary conditions, Eq. 16. 

summarized in the table below. 

The duality is 

Table 3 

s s  
u , v  

-f , - f  , -f  

u, v 
xx XY YY 

us, vs 

In o rde r  to be able to use  the duality established above the quantities 

(Q 

determined. 

ment  of the spring support. 

body displacement is a rb i t ra ry .  U ,V a n d R  m a y  therefore be chosen 

b b b 
) ,  (Uo t Cxo) and (Vo f C t P ) in Eqs. 216 to 218 must  be 

0 20  YO 

Their  dual quantities charac te r ize  a rigid body displace- 

For a simply connected domain this rigid 

0 0  0 

such that 
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b tP = o  n0 20 

u t C b  = o  
0 xo 

v t C b  = o  
0 YO 

S S C' and C '  a r e  then dual of the support displacements u and v . 
X Y 

F o r  a multiply-connected domain Eqs.  223 to 225 may be 

kept for  one of the boundary curves.  

boundary curves  three equations a r e  needed for the determination of 

For each of the remaining 

b b b (n t P ), (U t C ) and (V 7t C ) .  These charac te r ize  in the 
0 zo 0 xo 0 YO 

dual stretching problem a rigid body displacement of the boundary 

curve and a r e  therefore  re la ted in that problem to the resul tants  and 

moment  of the spring forces.  

attributable to Airy ' s  s t r e s s  function 

and its first derivatives are multivalued. Returning to the bending 

problem where the plate is assumed to be f r e e  of dislocations, the 

three  equations per boundary curve that a r e  necessary  f o r  the de te r -  

If the par t s  of the spring fo rces  that a r e  

a r e  not self  equilibrating, y/  

b b b 
mination of (fi t P ), (U t C ) and (V t C ) a r e  therefore  single- 

0 zo 0 xo 0 YO 
valuedness conditions for  w, w and w . These a r e  expressed in 

, x  * Y  
t e r m s  of the s t r e s s  functions by equating to ze ro  the resul tants  and 

the moment with regard  to some point of the generalized nodal rotations 

Fkk 

11. 

and F' 
Yk' 

Formulation of a Stretching Problem Dual of a Given Bending 

Problem. Choice of a Part icular  Solution. 

The stretching analogue of a bending problem is uniquely defined 

once a.definite par t icular  solution of the bending equilibrium equation 

is obtained. 
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It is recalled that the t r ansve r se  s h e a r s  and the s t r e s s  couples 

of the particular solution, as defined through Eqs. 126 to 130, a r e  

the internal forces  that would occur in two famil ies  of s t r ip s  parallel  

to the coordinate axes  and supporting together but independently of 

each other  the load q. 

tion the boundary conditions of the s t r ip s  and the par t  of the load q 

ca r r i ed  by one f ami ly  of s t r ip s  must  be specified. If c ( x , y )  is the 

proportion of the load ca r r i ed  by the s t r ip s  paral le l  to the x axis,Eq. 

131 may be replaced by the two equations 

In o r d e r  to obtain a definite par t icular  solu- 

[D  x (K y t 3 x x  K ) I ,  xx = c q  (226)  

[ID (K f V K  ) ]  = (1-c)q Y x Y Y , Y Y  

Solving the above equations is the same a s  determining the shear  and 

bending moment in the two families of s t r ips .  With K and K de ter -  

mined the dual stretching problem is well defined. 
X Y 

The simplest  choice for  c is a constant. The c a s e s  c = 0 and c = 1 

correspond to one family of s t r ip s  only in the y and x directions,  respec-  

tively. The case  c = 1 / 2  corresponds to two famil ies  of s t r ips ,  each 

family in equilibrium under the load q/2.  Although the exact solution 

does not depend on the particular choice of c ,  i t  may be expected that 

m o r e  accurate resu l t s  a r e  obtained if,  everything e l se  being equal, the 

behavior of the s t r ip s  is nea re r  to that of the plate. 

choice of c on the accuracy of the analysis is discussed in the next 

section. 

The influence of the 

As an example consider a homogeneous and isotropic rectangular 

plate with a uniform load such as shown in Fig. 23a. It will be assumed,  

for simplicity of presentation of the boundary forces  in the dual problem, 

that the plate is clamped along its edges. Considering the case  c = 1 
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Eqs. 226 and 227 a r e  satisfied by lett ing 

K = - P K  
X Y 

The s t r ip s  a r e  taken as simply supported. Whence 

2 2  
K =A (x - a )  2 

2D(1 - Y  ) 

The dual of the load components p 

a r e  K and K ¶ respectively, i. e. 

and p 
Y X 

in the stretching problem 

Yt  Y xt x 

K = o  
Yt Y 

and 
Y qx K = -  

x.y x 2 2D(1-3  ) 

Because q is independent of y Eqs. 226 and 227 may also be satisfied 

by letting 

2 2  
(x - a )  

2D 

whence 

K = '  
Y 

(235) 

This par t icular  solution is that  of cylindrical  bending in the x direction. 

There  a r e  only boundary forces  in the dual stretching problem as shown 

in  Fig. 23b. 

In o r d e r  to i l lustrate  the case where the function q is discontin- 

uous¶ consider the plate of the above example loaded partially with a 

un i form load over  the shaded area,  Fig. 24a. Taking one family of 
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s t r ip s  in the x direction Eqs. 228  and 229 remain  valid if q is 

interpreted as the loading function of the present  case .  

that K 

dual of the intensity of a line load along AB and A'B'  as shown in 

F i g .  24b. 

It is seen  

is discontinuous a c r o s s  l ines  AB and A'B' .  This discontinuity is 
Y 

If q is a line load a par t icular  solution may  be obtained as 

in the c a s e  above by means of one family of s t r ips  c ross ing  the l ine 

load. 

It is noted that in the two examples above the s t r e s s  functions 

a r e  continuous as the displacements a r e  in the dual stretching problem. 

If the load function q is a concentrated load i t  is t reated a s  dual of a 

character is t ic  of dislocation. 

The computation of the generalized nodal rotations a t  an inter ior  

node due to K 

nodal forces  due to p and p . 
and K in this computation. 

eral ized nodal rotations F' and P' at node k is 

and K 
XI x Y, Y 

is dual of the computation of the generalized 

It is however possible to use  direct ly  K 
X Y X 

The contribution of one element to the gen- 
Y 

xk Yk 

P' = I K  'FkdA 
Yk Ys Y 

( 2 3 7 )  

Using Green's theorem and the expression, Eq. 2 5 ,  o f T k  in t e r m s  of 

x and y, Eqs. 236 and 2 3 7  take the f o r m  

P1 xk =%JKXdA 2A 

a 
PI = -"[I KydA -$ K S k d x  

+ f K  X Zkdy 

yk 2A Y ( 2 3 9 )  

The total generalized nodal rotations G' 

tained by superposition of P' and of P' respectively.  At an inter ior  

and G' at node k a r e  ob- 
xk Yk 

xk Yk' 



-47- 

node the boundary integrals in Eqs. 238 and 239 add up to zero  because 

Fk = 0 on the s ides  opposite to  node k and the integrands take opposite 

values on s ides  common to the tr iangular elements.  Thus 

G' = > =  bk f K x d A  
xk 

a 
GI =I-" 2A (IKydA 

Yk 

where  the summation extends over the elements having node k in common. 

At a boundary node the superposition of the boundary integrals in 

Eqs.  238 and 239 yields the same values as FfP and F" , respectively,  

Eqs.  166 and 167. F r o m  Eqs. 162 and 163 it appears  that the use  of 

Eqs.  240 and 241 a t  a boundary node takes  account completely of the 

contribution of the particular solution to the generalized nodal rotations. 

x k  Yk 

The type of particular solution of the equations of equilibrium consid- 

e r e d  ea r l i e r  is res t r ic ted  by the requirement  Mp 

necessa ry  and a m o r e  general  f o r m  of the par t icular  solution is obtained 

by  letting instead of Eq. 134 

= 0. This is not 
XY 

where  

and 
Gh3 

Dxy =6 (244) 

Instead of Eq. 131 K , K and K must  now satisfy 
X Y  XY 

[D (K tL, K )] + 2 ( D  K ) t [ D  (K f Y  K )] -q  = 0 (245) 
x y x x , x x  XY XY 9XY Y x Y Y , Y Y  

The f o r m  of the func t iona ln"  remains unchanged but Eqs. 151, 153 

and 154 a r e  replaced by 
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The change to the duality is that (K - K ) instead of K and 

(K - K ) instead of K a r e  now dual of the load components 
x , x  x y , y  x,  x 

Y9 Y X Y , X  Y9 Y 
and p , respectively. Also X * instead of ',Y is dual of N , where 

pX Y XY XY XY 

The generalized nodal rotations a t  node k due to one element a r e  now 

given through the relations 

As was done before in obtaining Eqs. 238 and 239 f r o m  Eqs. 236 and 

237, Eqs. 250 and 251 may be t ransformed into the form 

a 
(252) 

- - bk [KxdA t $1 KxydA t f Fk(Kxdy t K dx) 
pkk - 2A XY 

(253)  
k bk 

a 
PI = - - KydA - 2~ 1 KxydA - #  f (K dx + K dy) 

yk 2A k Y  XY 

The total generalized nodal rotations GI 

a r e  obtained by superposition in the f o r m  

and G' at an interior node 
xk Yk 

(255) 
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where the summation extends over the elements having node k in 

common. 

At a boundary node the superposition of the boundary integrals  

i n  Eqs. 252 and 2 5 3  yields, as before, the contribution of the particular 

solution to the generalized nodal rotations a r i s ing  f r o m  the boundary 

conditions. 

The la t te r  f o r m  of the particular solution m a y  be used to advan- 

tage i f  a solution to the plate problem satisfying equilibrium and com- 

patibility but not the boundary conditions is known. In such a case  K , 
K , and K a r e  compatible curvatures i. e. they a r e  re la ted to a deflec- 

tion function w'  through the relations 

X 

Y XY 

K = w l  
X * YY 

Ky = w '  
9 =  

K = w l  
XY a XY 

As may be expected in such a case,  Eqs. 250 and 251 show that P' 

and P' 

at all interior nodes. 

xk 
a r e  zero.  The generalized nodal rotations a r e  therefore  ze ro  

Yk 
At a boundary node Eqs. 247 and 248 yield 

and the generalized nodal rotations Fly& and F':: 

160 and 161 in a f o r m  similar to that of Eqs. 168 and 169. 

a r e  obtained f r o m  Eqs. 
xk Yk 
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If the particular solution to a problem is recycled by identifying 

K , K and K in a second cycle with the curva tures  - 
and -sxy, respectively, obtained f r o m  a f i r s t  cycle,  the generalized nodai 

rotations should all be zero.  This f o r m s  a compatibility check 

dual of an equilibrium check in the stretching problem. 

Xyy. - L x ,  X Y  XY 

12. Computation of the S t r e s s  Couples and of the Deflection 

The use of piece-wise l inear  s t r e s s  functions implies constant 

s t r e s s  couples M:: , M:: , and M:: in each element. These values 

cannot be associated with any particular point of the element but 

represent  global  measu res  o r  averages fo r  the element  a s  a whole. 

It may,  however, be necessary  f r o m  a pract ical  point of view to obtain 

values of the s t r e s s  couples at definite points. 

for  an element may then be associated,  fo r  lack of more  prec ise  infor- 

mation, with its centroid and the values of the s t r e s s  couples at other 

points may be obtained through interpolation. 

xx YY X Y  

The constant values 

A different and preferable method based a l so  on interpolation 

and whose application is s implest  i f  the distribution of the nodes is 

regular  consists in  evaluating M* , M:k , and M:: a t  a point by means 
xx YY XY 

of finite differences. The values of M , M and M a t  a point a r e  

obtained by superimposing Mp Mp and 2' on M:: , M:: and M:k 
xx XY 

XX YY XY xx YY XY' 
respectively. 

The determination of the alopes w and w 
, x  3 Y  

and of the deflection 

w may be made by means of Eqs. 187 to 189. 

two a rb i t r a ry  mid-side points joined by a broken l ine A i i 

along element s ides  as shown in Fig. 25. 

cut along A i i i B and the right hand s ides  of Eqs. 187 to 189 

may be evaluated once the solution for the nodal values of the s t r e s s  

functions is obtained. 

mining w , w 

In these A and B a r e  

i B  
P 1 2  . ' .  

The plate may be imagined 

1 2  ." P 

It may be noted that the above method of de t e r -  

and w is a generalization of the so-called conjugate 
P X  J y  

beam method. 
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13. Results and Conclusion 

Results of bending analysis of isotropic rectangular and square  

plates under various loadings and boundary conditions a r e  presented 

in Figs.  2 6  to 33. 

wri t ten for  the analysis of plane stress and plane s t r a in  problems by 

the displacement method (13). 

compute the element stiffness matr ix  a s  established in this paper and 

to accept dislocations and arb i t ra r i ly  specified boundary displacements.  

They are obtained by means of a computer program 

The program was modified so a s  to 

Because of symmetry only a quar te r  of the plate is used in each 

The par t  of the s t r e s s  couples due to the s t r e s s  functions is analysis.  

computed a t  the nodes by means of finite differences. 

except that of the concentrated load the particular solution of the equili- 

b r i u m  equations is that of cylindrical bending in the x direction. 

c a s e  of the concentrated load at the center  of a clamped square  plate 

is t reated a s  shown in  Fig. 31 for the dual stretching problem. 

In all cases  

The 

It may  be seen that in all c a s e s  wi th  a uniform load a relatively 

c o a r s e  mesh  of 4 x 4 is sufficient to determine wi th  sat isfactory 

accuracy  the stress couples and therefore  also the curvatures  and 

the deflection. In the case  of a concentrated load, Fig. 32, a f iner  

m e s h  is needed in the vicinity of the point of application of the load in 

o r d e r  to represent  the singularity with sufficient accuracy. 

The determination of the deflection in Fig. 33 is made by the 

conjugate beam method using linear interpolation for determining the 

curva ture  between nodes. 

A comparison with results obtained by the displacement method 

using the so called (HCT) triangular element may be made through 

Figs. 26 and 33. 

on  a displacement expansion satisfying compatibility of displacement 

and of normal  slope between adjacent elements.  

as the best  available stiffness mat r ix  fo r  a triangular element. 

The stiffness matrix of this tr iangular element is based 

It is established in (5) 
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A test  ca se  for displacement methods (5)  not represented h e r e  

is that of a n  isotropic square  plate supported a t  three co rne r s  and 

acted upon by a force a t  the fourth corner .  

method solves this problem exactly with M 

M 

the r e su l t s  obtained he re  compare favorably with those of the d is -  

placement method as regards  both accuracy  and convergence. 

should also be noted that there  a r e  three equations per node in the 

la t ter  method but only two in the s t r e s s  function method used here .  

The s t r e s s  function 

constant and M 
XY xx 

= 

= 0. Although more  t e s t s  a r e  needed for  a thorough comparison, 
Y Y  

It 

The availability of both methods for the solution of a given problem 

may provide a means of estimating the distance of the approximate 

solutions f r o m  the exact solution. 

and the s t r e s s  function methods provide minimizing sequences to the 

potential energy and to the complementary potential energy functionals, 

respectively. 

method used he re  have this property. 

tion of the clamped plate under a unit concentrated load, Fig. 3 3 ,  is 

equal to minus twice the potential energy and is therefore  l a r g e r  than 

the value obtained by the (HCT) displacement method. 

to twice the s t ra in  energy and, by Castigliano's theorem, is sma l l e r  

than the value obtained by the s t r e s s  function method. 

This is possible if the displacement 

The (HCT) triangular element and the s t r e s s  function 

F o r  example, the cent ra l  deflec- 

It is a lso equal 

The s t r e s s  function method may also be applied to plate stretching 

problems and to shell  problems. 

Ai ry ' s  s t r e s s  function 

plate bending. 

methods using a formulation of shel l  theory in t e r m s  of both displacements 

and s t r e s s  functions (14)(15). 

equations of shallow shells in t e r m s  of the normal  deflection and of 

Ai ry ' s  s t r e s s  function. If the curvature  of the shel l  element is neglect- 

ed the method would reduce to a combination of the displacement method 

In the f o r m e r  case  the method u s e s  

and is dual of the displacement method for  

F o r  shell  problems,  it is also possible to develop mixed 

A basis for such a method could be the 
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for bending and of the dual s t r e s s  function method for stretching of 

a flat element. Similarly the displacement method for  stretching 

and the s t r e s s  function method for  bending developed he re  may be 

combined to t rea t  the shell  problem by means of flat tr iangular e le-  

ments. 
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