Radiation Countermeasures: The Need for Predictive Biomarkers

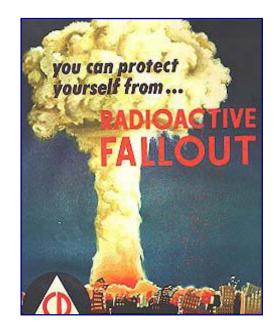
March 17, 2008

Richard J. Hatchett, MD Associate Director for Radiation Countermeasures Research and Emergency Preparedness NIAID

Outline

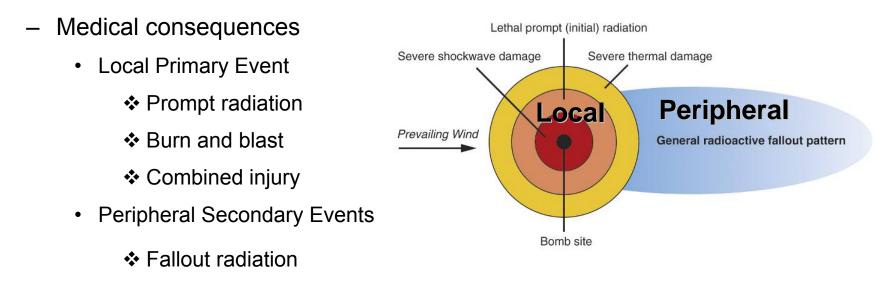
Threats

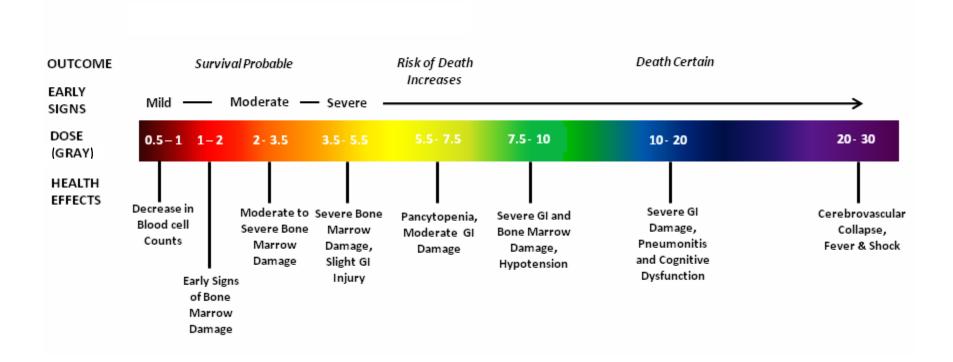
Medical Countermeasures Enterprise


Program

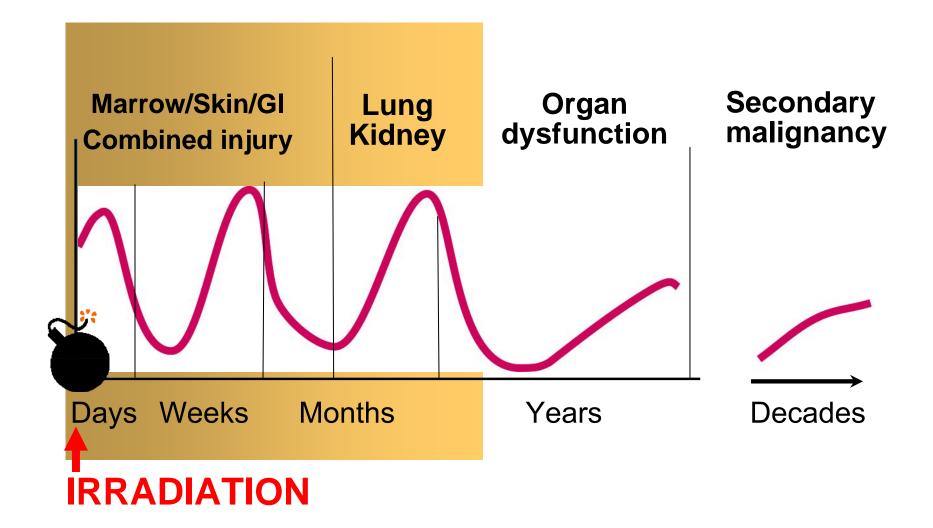
Predictive Biomarkers

Radiological/Nuclear Threats


- Nuclear Detonation
- Radiologic dispersive devices ("dirty bombs")
- Industrial and shipping accidents
 - Power plant releases
 - Food and medical irradiators
 - Sealed sources


Improvised Nuclear Device (IND)

If a 10 KT IND is detonated in a major U.S. city hundreds of thousands of victims will need treatment for effects of radiation exposure – and many times that many may request evaluation ("worried well").


10 KT IND scenario

Spectrum of Radiation Health Effects

Syndromes Manifest Over Time

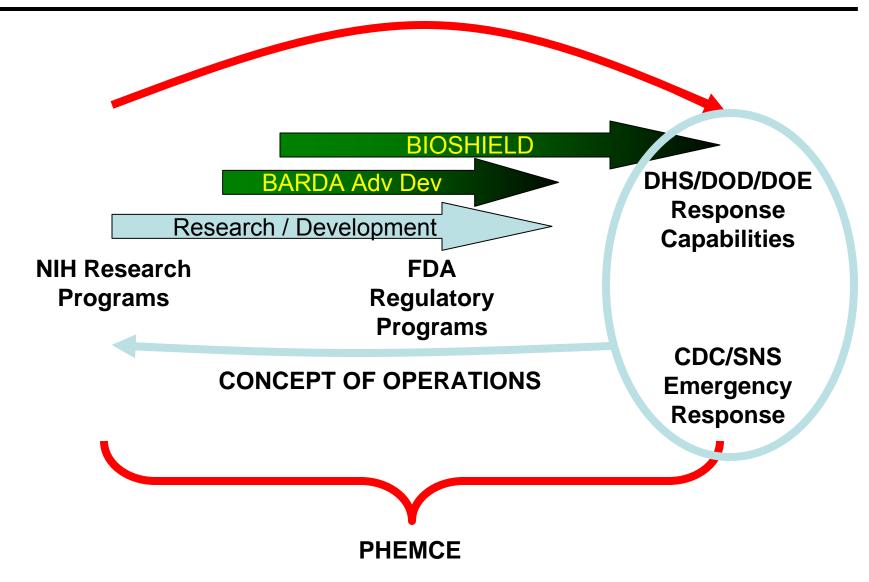
Radiation Countermeasure Mission Space

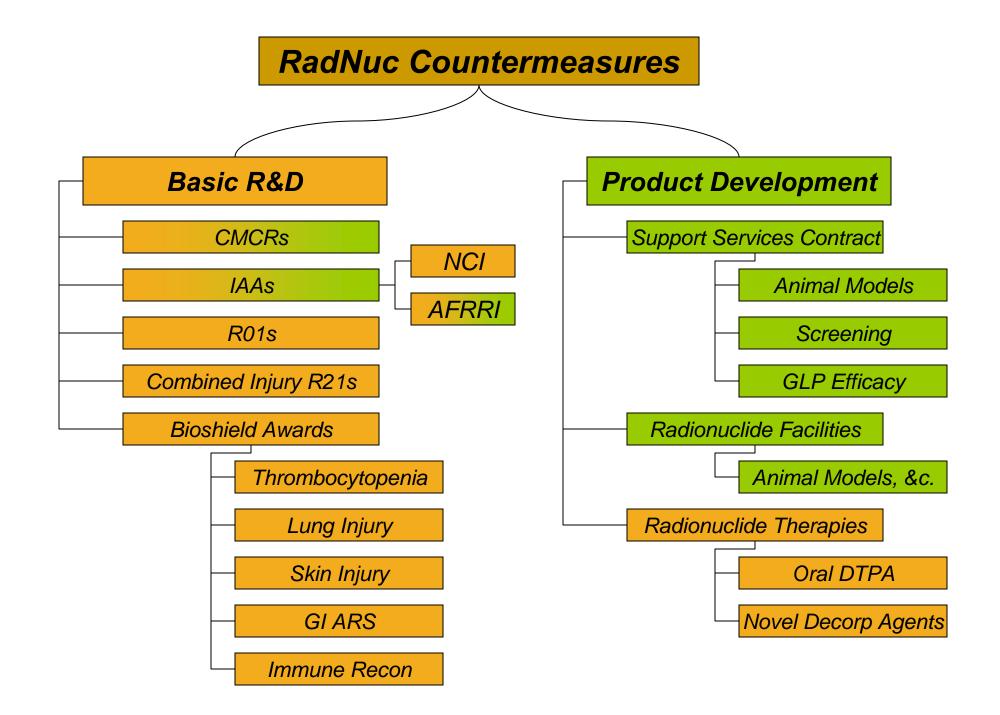
- ARS/DEARE
 - Hematopoietic ARS:
 - Neutropenia
 - Thrombocytopenia
 - Anemia
 - Lymphopenia
 - GI ARS
 - CNS Injury
 - Lung Injury
 - Kidney Injury
- Cutaneous Radiation Syndrome
- Combined Injury

- Radionuclide Threats
 - Co-60
 - Cs-137
 - Sr-90
 - **I**-131
 - Ir-192
 - Po-210
 - Ur-235
 - Pu-239
 - Am-241
- Carcinogenesis
- Cataractogenesis

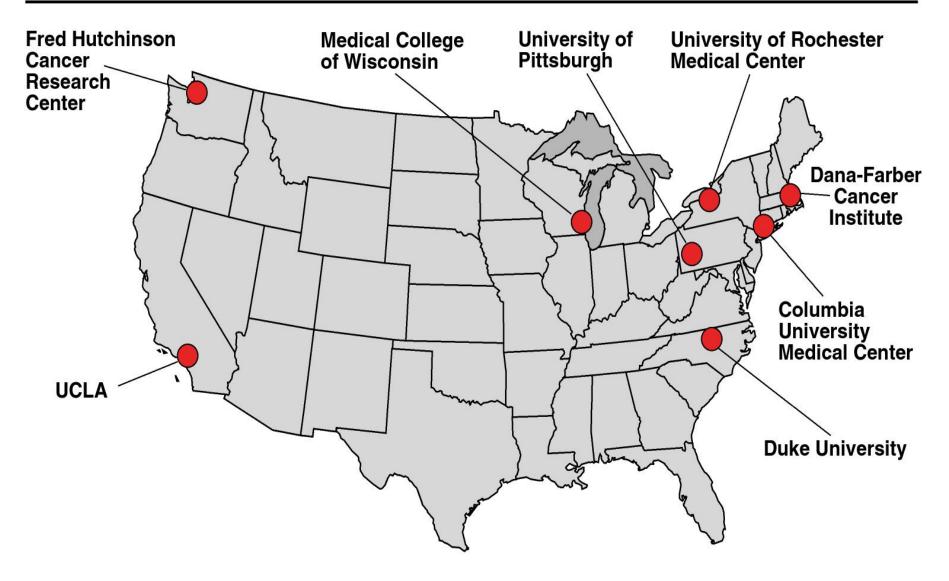
HHS Public Health Preparedness: Complementary Roles

- Surveillance and Detection
- Train Local Response Teams
- Maintain Vaccine/Antimicrobial Stockpiles
- Conduct Basic Research
 Develop Medical Interventions
- Develop Research Infrastructure
 - Regulatory Approval
 - Vaccines


CDC


NIH

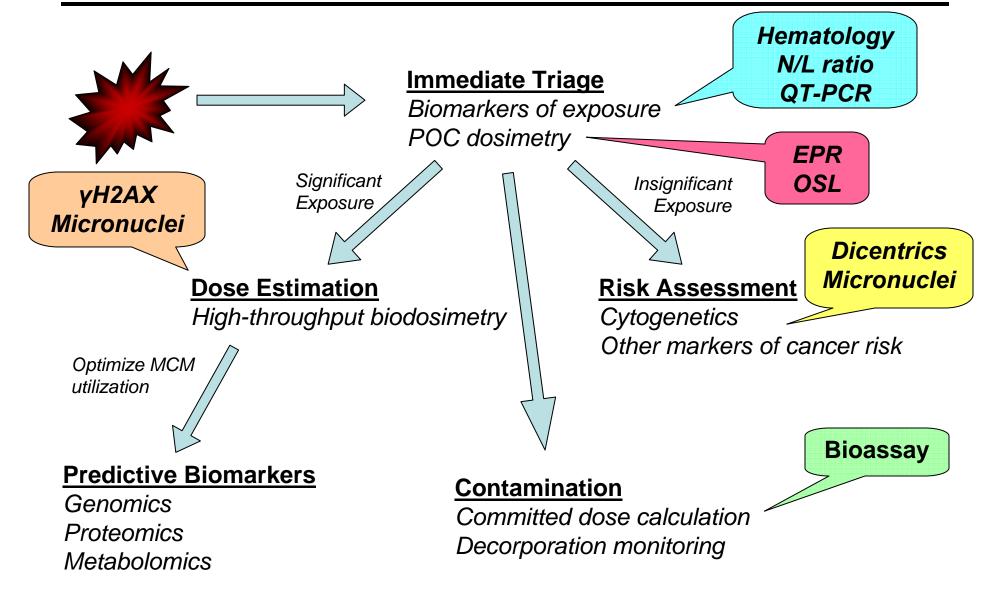
FDA


- Therapeutics
- Diagnostics
- ASPR HHS-Wide Coordination of Emergency Preparedness Activities

The Big Picture

Centers for Medical Countermeasures Against Radiation (\$28.0M in FY08)

Diagnostics Program


Technical Requirements of a Diagnostics Architecture

- Capability for rapid screening of large populations
- Sufficiently accurate to guide clinical decision-making
- Sufficiently flexible to address different needs for different types

Medical / Operational Impact

- Optimization of resource allocation
- Identification of patients requiring urgent medical assessment
- Reassurance for anxious individuals
- Improved risk assessment for delayed or late effects of radiation exposure
- Monitoring of therapy (bioassays)

Diagnostics architecture

NIAID Rad/Nuc Website

http://www3.niaid.nih.gov/research/topics/radnuc

Questions?

EPR Dosimetry

- Current Status: in vivo calibrations for doses 100- 3000 cGy with a SEM 50 cGy completed
- Precision: In radiotherapy patients EPR measurements are within 10% of calculated dose
- Time to dose estimate: 10 min
- Signal stability: millennia
- Current research
 - Improving precision of dose estimates
 - Designing field-portable instruments
 - Development of capability to estimate absorbed dose from anterior teeth
 - Development of technique for measuring signal in fingernails (X-band EPR)

EPR Dosimetry

Technical challenges:

Developing transportable magnets

- Intraoral magnet
- Helmet magnet
- Flat permanent magnet
- Developing field-deployable electronics sufficiently robust for use by first-responders
 - Dartmouth instrument lacks necessary stability and ruggedness
 - Software for data acquisition and processing requires modification
- Validation under field conditions
 - Initial simulation planned for early 2008
- Understanding effects of partial body irradiation

Time to fieldable assay:

Scientifically, probably 3-5 years, but likely longer to obtain full FDA approval

Fully-automated ultra high-throughput, robotics controlled image acquisition systems to analyze:

- Micronuclei : 0.5-5 Gy
 - Lymphocytes: 2-3 days
 - Reticulocytes: 16 hours
 - Exfoliated buccal and urinary bladder cells: same day
- γ-H2AX foci: 0.1- >10Gy
 - Lymphocytes: 3 hours

Current Status (Phase I device – micronuclei only)

- System design complete
- Biological assay optimized for high-throughput handling
- Subsystems designed; assembly and integration in progress
- Pre-IDE meeting with FDA took place in October 2007
- Scheduled for clinical trials in 2008, expected to be complete by 2009
- Useful dose range
 - Micronuclei: 0.5-5 Gy
- Time to dose estimate: 70 hours after samples received
- Signal stability: Years
- Technical challenges: Primary technical challenge is logistics of sample collection

Current Status (Phase II device – micronuclei and γ-H2AX foci)

- System is in design stage (system will maintain duplicate many components of Phase I device, so development time is reduced)
- Optimization of γ -H2AX assay for high-throughput handling is underway

Useful dose range

- Micronuclei: 0.5-5 Gy
- γ-H2AX: 0.1-10 Gy
- Time to dose estimate
 - 3 hours for samples obtained up to 36 hours post-irradiation
 - 70 hours for samples obtained thereafter
- **Signal stability:** ~36 hours for γ-H2AX, years for micronuclei
- Technical challenges
 - Logistics of sample collection
 - Increasing the throughput of cell harvesting requires parallel processing
- Timeline: Scientifically complete by 2010; field deployable device within 3-5 years

Current Status (micronucleated reticulocytes)

- Baseline data for healthy adults obtained
- Initial studies in patients receiving partial body irradiation completed
- Human 3-D marrow culture being optimized for determination of human dose-response curve
- Still need to understand kinetics of appearance/disappearance of MN-RET in humans; determine useful dose range in humans; determine threshold doses for signal in humans
- Useful dose range: 0.125-3 Gy
- Time to dose estimate
 - 16 hours (primarily for fixation; analysis takes 3 minutes)
- Signal stability: ~48 hours
- Technical challenges
 - Saturation of response above a certain threshold
 - Short-lived signal
- Timeline: Scientifically complete in <3 years; fieldable assay in 3-5 years

Gene Expression Signature 1

- Identified a single 74-gene signature that distinguishes radiation doses between 0 and 8 Gy, separating pre- and post- exposure samples from cancer patients undergoing TBI
- Investigating possibility of differential response to radiation in smokers
- Preliminary analysis of a variety of inflammatory responses indicate limited overlap with non-radiation conditions.
- Useful dose range: 0 8 Gy
- Time to dose estimate: Hours
- Signal stability: 6 48 hours
- Technical challenges
 - Extrapolation between ex vivo and in vivo results.
 - Population variability and other potential confounding factors
 - Understanding effects of partial body irradiation
 - Exploitation of gene expression data to reveal individual differences in susceptibility and radiation injury
- Timeline: Scientifically complete in 3-5 years; fieldable assay in >5 years

Gene Expression Signature 1 Device

Current Status

- 16-gene panel selected for qNPA
- Integrated sample preparation front module and microarray detection module design and prototype completed
- Small batch production of cartridges, now undergoing characterization and QC validation
- Blood treatment protocols under development
- Instrumentation recently redesigned and electronic circuitry transferred to microchip based electronics

Technical challenges

- Optimization of blood protocol
- Minimizing population and other sources of variability
- Validating the signatures
- Timeline: Scientifically complete in 3-5 years; fieldable assay in >5 years

Gene Expression Signature 2

- Current Status
 - Refinement of 25-gene human peripheral blood radiation signature
 - Development of a portable qRT-PCR radiation assay
 - Initiation of large, prospective validation trial of human radiation signature in health individuals and irradiated patients
 - Evaluation of time, gender, and genotype effects underway in mice
- Useful dose range: 0.5, 2, 10 Gy
- Time to dose estimate: 24 hours
- Signal stability: Unique signals identified at 6 hr, 24 hr, 7 d
- Technical challenges
 - Development of a microarray-based assay with 24-hour turnaround
 - Development of a fixed template of 25 radiation response genes v. a computer-based algorithm for analysis of samples
 - Development of a portable qRT-PCR radiation assay
- Timeline: Scientifically complete in 3-5 years; fieldable assay in >5 years

Metabolomic Biomarkers

- Consistent metabolomic markers identified in urine of mice
- Extending technique to saliva and serum
- Currently processing urine, blood, and saliva samples from patients receiving 1.5 Gy TBI
- Useful dose range: 3, 8 Gy
- Time to dose estimate: 24 hours
- Signal stability: Unknown
- Technical challenges
 - Combination of differential ion-mobility spectrometry with a low-cost, portable, miniature mass spectrometer is required; current devices unsuitable
 - Improvements in sample handling and electrospray procedures to improve stability and simplicity
 - Detailed comparison of DMS-MS and LC-MS results needs to be performed
- Timeline: Scientifically complete in >5 years; fieldable assay in >5 years (within 3 years of identification and validation of target biomarkers)

Proteomic Biomarkers

- Envision blood- or urine-based protein diagnostics similar to UPT
- 5 proteins (of 160 studied) with complimentary dosimetry profiles selected
- Rabbit monoclonal antibodies being developed
- Useful dose range: 9 Gy
- Time to dose estimate: Minutes
- Signal stability: 24 hours
- Technical challenges
 - Generation of rabbit monoclonal cell lines
 - Development of ELISA assays
 - Generation of protein standards to normalize assays
 - Validation of assays
 - Conversion of assays to fieldable test strips
- Timeline: Scientifically complete in 3-5 years; fieldable assay in >5 years

qRT-PCR Dosimetry

- 25 potential genes with radiation dose-dependent responses selected
- In vitro validation of qRT-PCR assays for these genes in progress
- Preliminary in vivo validation studies of candidate genes in progress
- Useful dose range: 0.15 6 Gy
- Time to dose estimate: 6 hours
- Signal stability: Up to 24 hours demonstrated
- Technical challenges
 - Development of large-scale whole-blood RNA extraction systems for use in mass casualty setting
 - Development of robotic systems to increase throughput (current technology may permit screening of 200-500 individuals every 5-6 hours)
 - Development of high-throughput qRT-PCR assays
- Timeline: Scientifically complete in 3-5 years; fieldable assay in >5 years

Hematopoietic Syndrome

Neutropenia

— Filgrastim	Licensed
— Pegfilgrastim	Licensed
— Sargramostim	Licensed
— Maxy-G34	Phase II Clinical Trial
— Human Growth Hormone	Licensed
— EA-230	Phase Ib Clinical Trial
 Endothelial Cell Transplantation 	Preclinical
 Myeloid Progenitor Cell Transplantation 	Preclinical

Hematopoietic Syndrome (cont.)

Thrombocytopenia

- AMG 531
- AKR 501
- Peg-TPOmp
- Fab59
- TPIAO
- NIP-004

Phase III Clinical Trial Phase II Clinical Trial Phase III Clinical Trial Preclinical, on hold Licensed in China Preclinical

Gastrointestinal Syndrome

- Protectan (CLBL 502)
- FGF-20
- R-spondin 1
- SOM230
- Mesenchymal Stem Cells

Preclinical Phase II Clinical Trial Preclinical Phase II Clinical Trial Phase III Clinical Trial

Cutaneous Radiation Syndrome

Ulceration/Necrosis

- Curcumin
- Eseculentoside A (EsA)
- Celecoxib
- Mesenchymal Stem Cells

Fibrosis

- Pentoxifylline (+ Vitamin E)
- MnSOD

Phase I/II Clinical Trial Preclinical Licensed Phase III Clinical Trial

Licensed Phase I/II Clinical Trial

Radiation-induced Lung Injury

Pneumonitis

- Genestein
- KGF (palifermin)
- Pentoxifylline
- AEOL 10150
- EUK-189
- MnSOD Gene Therapy
- Fibrosis
 - KGF (palifermin)
 - Pirfenidone
 - AEOL 10150
 - Imatinib

Nutraceutical Licensed Licensed Phase Ib Clinical Trial Preclinical Preclinical

Licensed Phase III Clinical Trial Phase Ib Clinical Trial Licensed

New Radionuclide Therapies

Oral DTPA

— Prodrug	Preclinical
— Nanoparticles	Preclinical
— Enhanced Absorption	Preclinical
Novel Decorporating Agents	
— Biomaterials	Preclinical
— Nanoporous Sorbants	Preclinical
 Biomimetics (HOPO cmpounds) 	Preclinical
— Desferrithiocin Analogues	Preclinical
— Amphipathic Oral Chelators	Preclinical

Strategy

Program Strategy

- Top priority: Developing treatments and diagnostics for ARS
- Focus on product development
 - Products with viable commercial markets
 - Products in late stages of development
 - Partners encouraged to identify commercial markets for their compounds and devices
- Emphasis on collaboration, transparency, and economy
 - Interagency: close coordination with RadNuc partners
 - NIH: improving interdisciplinary coordination (with, e.g., medical and radiation oncology, innate immunity, inflammation, biomedical imaging, mucosal biology programs)
 - RadNuc Program: collaborations and coordinated use of resources across CMCRs and between grant and contract programs

Example: Intestinal Side Effects of RT What a GI Countermeasure Can Do for Us

Acute Intestinal Radiation Toxicity

- —>300,000 patients at risk per year (US)
- Up to 20% treatment alteration due to acute GI toxicity

Chronic Intestinal Radiation Toxicity

- Up to 15% incidence of severe (grade 3-4) GI toxicity
- 60-90% incidence of chronic GI dysfunction
- >2.5 million cancer survivors with chronic radiation-induced GI dysfunction

Radiation Effects Research Foundation

- Successor to Atomic Bomb Casualty Commission (estab.1947)
- Facilities in Hiroshima and Nagasaki, Japan
- Jointly funded and managed by US and Japan
- Rich history of studying A-bomb surviv
 - Life Span Study Sample (120,000)
 - Adult Health Study Sample (23,000)
 - In Utero Sample (3600)
 - F1 Sample (88,000)

Staff of more than 280 scientists

Biodosimetry