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The HAPL team is developing the science, technology and 
architecture needed for a laser fusion power plant...

as if we will be called upon to build one

Universities
1. UCSD
2. Wisconsin
3. Georgia Tech
4. UCLA
5. U Rochester, LLE
6. UC Santa Barbara
7. UC Berkeley
8. UNC
9. Penn State Electro-optics

Government Labs
1. NRL
2. LLNL
3. SNL
4. LANL
5. ORNL
6. PPPL
7. SRNL
8. INEL

Industry
1. General Atomics
2. L3/PSD
3. Schafer Corp
4. SAIC
5. Commonwealth Tech
6. Coherent
7. Onyx
8. DEI

9. Voss Scientific
10. Northrup
11. Ultramet, Inc
12. Plasma Processes, Inc
13. PLEX Corporation
14. FTF Corporation
15. Research Scientific Inst
16. Optiswitch Technology
17. ESLI
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The HAPL program is developing two lasers:
Diode Pumped Solid State Laser (DPPSL)
Electron beam pumped Krypton Fluoride Laser (KrF)

Both have run at rep rates (1-10 Hz), for > 10,000 shots
Both have the potential for meeting all the requirements for fusion energy

Electra KrF Laser  (NRL) Mercury DPPSL Laser  (LLNL)

300-700 J @ 248 nm
120 nsec pulse
1 - 5 Hz
25 k shots continuous at 2.5 Hz
Predict 7% efficiency

55 J @ 1051 nm*
15 nsec pulse
10 Hz
100 k shots continuous @ 10 Hz
* Recently demo 73% conversion at 2ω

see talk by John Caird
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KrF Lasers- summary of progress
Last FPA meeting 10/2005

Demonstrated long term continuous operation at 1-5 Hz
300 J,    1 Hz     @ 10,000 shots
700 J,    1 Hz     @     400 shots
250 J,     5 Hz    @  7,700 shots (total of four runs)

Limited by cathode failure and/or released gasses

Predict Overall efficiency of IFE system ∼ 7% (meets goal)
Based on Electra R & D of the individual components
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KrF Lasers- summary of progress
since last FPA meeting

New carbon electron emitter dramatically increases durability
25,000 laser shots at 2.5 Hz (continuous)
Much less evolved gas (> 10 x)

First rep-rate focal profile measurements
Focal profile "recovers" < 200 msec (i.e. 5 Hz)

"First Light" on Electra Pre-Amplifier (input to main amplifier)
23 J laser output
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First rep-rate focal profile measurements:
Experimental set up using "Pseudo ISI"

Beam size:
15 cm x
15 cm
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e-beam

New carbon electron emitter significantly
increases durability

See no change after > 31,000 shots (~25 k continuous)

Ceramic
Honeycomb*

"Primary" emitter

*325 ppi cordierite honeycomb with
gamma-alumina wash coat

3 mm gap

Old: velvet primary emitter

10 k shots...lots of burn marks

New: all carbon primary emitter

31 k shots...no change
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First rep-rate focal profile measurements:
Focal profile "recovers" < 200 msec after e-beam fires
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"First Light" on Electra Pre-Amplifier 
23 J laser output

0.0

5.0

10.0

15.0

20.0

25.0

30.0

8 12 16 20
Pressure (psi)

(80% Ar, 0.3% F2)

La
se

r O
ut

pu
t (

J)

Laser:  
Orestes Prediction (0.5 J input)
Measured Output (~0.5 J input)

Pulsed power:
100,000 shots @ 5 Hz continuous
< 800 psec jitter
Test bed for advanced pulsed power
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We are evaluating several types of final optics

GIMM (Grazing Incidence Metal Mirror)
More resistant to neutrons

but...
Large 
More neutrons on window

Dielectric Mirror
Highest damage threshold
Less neutrons on window

but...
Less resistant to neutrons

Fresnel lens
Must be thin and run hot to anneal neutron damage
May not work for 248 nm (KrF)

UCSD
PLEX Corp
Wisconsin
Penn State
LLNL

Window

target
chamber

shield Final Optic
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Target fabrication progress (1 of 2):
Made foam capsules that meet all specifications
Produced gas tight overcoats
Demonstrated smooth Au-Pd layer
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Target fabrication progress (2 of 2):
Nearing completion of MPLX Fluidized Bed
Will demonstrate mass production layering of cryo targets

General Atomics

Key features:
Permeation cell to fill targets with D2
Target manipulator
Fluidized bed with IR layering
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We have a concept to "engage" the target
Key principles demonstrated in bench tests

("engage" = tracking the target and steering the laser mirrors)

Target

Coincidence sensors
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General Atomics
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We use many experimental / computational tools to develop a 
first wall that can resist the "threats" from the target 

Thermo-mechanical
(ions & x-rays)

Armor/substrate interface stress

Helium Retention

Modeling

IEC (Wisconsin)

Laser: 
Dragonfire

(UCSD)

X-rays:
XAPPER
(LLNL)

Plasma Arc Lamp
(ORNL)

Van de Graff (UNC)

Ions:
RHEPP
(SNL)

HEROS Code
(UCLA)
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"Magnetic Intervention" offers a way to keep the 
ions off the wall

1. Cusp magnetic field stops expanding ion shell. 
2. Ions never get to wall.
3. Field is resistively dissipated in wall
4. Ions, at reduced energy and power, escape through cusp poles and belt
5. Ions at reduced power, are absorbed in toroidal dump

Coils (4 MA each ~ 1T)--
form cusp magnetic field

Expansion of plasma in cusp field:
2-D shell model

A.E. Robson
Toroidal

Dump
5.5 m

~ 13.0 m
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1979 NRL experiment demonstrated principal of MI. 
Recent simulations predict plasma & ion motion

NRL
Voss Scientific (D. Rose)
A.E. Robson*R. E. Pechacek, et al., Phys. Rev. Lett. 45, 256 (1980).

15

10

5

0

r (cm)

0        1         2        3        4        5
t (μsec)

NRL data

2D EMHD
Simulation



18

We have a conceptual design for as system to recover, 
process, refine and supply Tritium

PPPL
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Many students are getting advanced degrees
through the HAPL program

UCSD
UCLA
Wisconsin
Georgia Tech
U Rochester
U North Carolina
Duke
Princeton
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