High-Power, Short-Pulse Microlaser - Power Amplifier System

Yelena Isyanova, Kevin F. Wall, John H. Flint, and Peter F. Moulton

Q-Peak, Inc.,135 South Road, Bedford, MA 01730 isyanova@qpeak.com

John J. Degnan

Geoscience Technology Office NASA Goddard Space Flight Center Greenbelt, MD 20771 USA

1

Technical Objectives

Phase II Goals:

Develop a Subnanosecond-Pulse MOPA System Including diode-laser-pumped, passively Q-switched, 1064-nm Nd-doped microlaser, multipass amplifier and SHG to generate pulses with

 \square Pulse energy: 150 µJ @ 532 nm (200 µJ achieved- 60% eff.)

□ Pulse rate: 2 kHz (achieved)

□ Pulsewidth \leq 200 ps (370 ps achieved)

Phase III Goals:

Reduce laser footprint to about 50 x 25 cm Eliminate all water cooling Increase pulse energy to 270 -300 µJ @532 nm Further reduce laser pulsewidth Provide additional computer control and monitoring interfaces Delivery expected January 2003

2

Optical layout

Pumping and mounting the microchip

NASA

Microchip designs

Microchip design	Q-Peak-1	Q-Peak-2	Synoptics	
Nd:YAG doping	2.8%	2.8%	1.9%	
<i>t</i> (mm)	0.5	0.5	1.25	
Cr:YAG	0.25	0.5	0.25	
<i>t</i> (mm)	0.23	0.5	0.23	
Cr:YAG	57	57	6.0	
α (cm ⁻¹)	5.7	5.1	0.0	
R _{oc} (%)	80	80	80	
T _{p calcls} (ps)	304	204	200	
$T_{p measur}(ps)$	700	440	440	

Microlaser output pulse profile

0.7 W pump power at 809.0 nm 440 ps pulse duration

Microlaser characteristics

Microlaser parameters	Microlaser 1,	Microlaser 2,	Microlaser 3,
	4:3 telescope	2:1 telescope	4:3 telescope
Average power, mW	4.4	3.1	6.4
Pulse energy, ^µ J	2.2	1.55	3.2
Pulse width, FWHM, psec	700	400-440	400-440
Delay, ^µ sec	90	40	70
Pump pulse width, ^µ sec	120	60	120
Jitter, ns	± 100	± 100	± 100
Drift, 5 min, ns	± 300	± 200	± 200

Optical layout of a multi-pass Nd:YVO4 slab amplifier

Theoretical double-pass gain curves for cw-pumped Nd-doped multi-pass slab amplifiers

CW Nd:YVO₄ oscillator output power versus pump power

Single-pass amplifier performance at different repetition rates

The average power extracted as a function of pulse rate is 10%, 42%, and 67% at 2 kHz, 10 kHz, and 50 kHz

Output beam profile for single-pass and double-pass amplifier

Nonlinear conversion results

Nonlinear conversion	SHG	THG	FHG
Crystal & sizes	LBO	LBO	BBO
Crystal & sizes	3x3x15 mm	3x3x12 mm	3x3x7 mm
Commenter Armo	Type I,	Type II, CPM	Type I, CPM
Conversion type	NCPM	$\theta = 42.7^{\circ}, \phi = 90^{\circ}$	$\theta = 47.6^{\circ}, \varphi = 0^{\circ},$
Conversion efficiency	60%	36%	12%

Phase II Transmitter

Phase II XMTR Installed on SLR2000 Transceiver Bench

Phase III Microchip System Development

Using the Unique Mode diode laser as a pump source, we were able to achieve lasing with the new microchips. Using a 4:3 telescope, and pumping with 2.0 W, we measured a 350-ps pulsewidth and an e nergy per pulse of ~15 iJ . The pulsewidth measurement was made with the system that had a measured pulse response of 40 - 50 ps. Measurements of M ² resulted in values of ~1.4 for each axis. Frequency doubling a small fraction of the light to 532 -nm using a KTP crystal resulted in pulses with widths of ~270 ps.

15

Mechanical design of Phase III Nd:YVO₄ amplifier

- The pump diode lasers and Nd:YVO₄ crystal mount on a solid block of Ni-plated copper
- A Ni-plated copper clamp holds the crystal in place
- The bottom copper plate is cooled by thermo-electric coolers
- The air-cooled fins of the heat sink dissipate the heat from the thermo-electric coolers

Preliminary Design of Phase III Air-Cooled System

Phase II Summary

- A Cr: YAG passively Q-switched Nd: YAG microchip laser that generated 3.2µJ, 400-ps pulses at a 2 kHz rate. The microlaser, quasi-cw end-pumped by a 1-W fiber-coupled laser diode, combines high peak power output, good beam quality, and compactness and reliability.
- □ An efficient cw transversely-diode-pumped double-pass Nd : YVO4 amplifier. The amplifier multipass gain module is based on the design developed by Q-Peak for the MPS commercial series of lasers. It combines high-power output, and freedom from optical distortion of the laser material caused by the pumping process. The amplifier produced 370-ps output pulses of 335^µJ energy at a 2 kHz rate.
- A 60-% conversion efficiency second harmonic generator (SHG) based on a NCPM Type I LBO crystal mounted in a temperature-stabilized oven. The average output power of the 532-nm beam was 400 mW (200 ^µJ per pulse) that is ~1.3 times the proposed value. The M² values characterizing the beam quality were 1.17 and 1.14 in the horizontal and vertical plane, respectively.
- □ *Third and fourth harmonic nonlinear devices* based on critically-phase-matched LBO and BBO crystals, respectively, operating at room temperature. The output powers at 355 nm and 266 nm were 240mW and 66 mW, respectively.

