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he National Bureau of Standards' was established by an act of Congress on March 3, 1901. The

Bureau’s overall goal is to strengthen and advance the nation’s science and technology and facilitate
their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a
basis for the nation’s physical measurement system, (2) scientific and technological services for industry and
government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety.
The Bureau’s technical work is performed by the National Measurement Laboratory, the National
Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Center for Materials

Science.

The National Measurement Laboratory

Provides the national system of physical and chemical measurement;
coordinates the system with measurement systems of other nations and
furnishes essential services leading to accurate and uniform physical and
chemical measurement throughout the Nation’s scientific community, in-
dustry, and commerce; provides advisory and research services to other
Government agencies; conducts physical and chemical research; develops,
produces, and distributes Standard Reference Materials; and provides

~ calibration services. The Laboratory consists of the following centers:

The National Engineering Laboratory

Basic Standards®
Radiation Research
Chemical Physics
Analytical Chemistry

Provides technology and technical services to the public and private sectors to
address national needs and to solve national problems; conducts research in
engineering and applied science in support of these efforts; builds and main-
tains competence in the necessary disciplines required to carry out this
research and technical service; develops engineering data and measurement
capabilities; provides engineering measurement traceability services; develops
test methods and proposes engineering standards and code changes; develops
and proposes new engineering practices; and develops and improves
mechanisms to transfer results of its research to the ultimate user. The
Laboratory consists of the following centers:

The Institute for Computer Sciences and Technology

¢ Applied Mathematics

® Electronics and Electrical
Engineering?
Manufacturing Engineering
Building Technology

Fire Research

Chemical Engineering®

Conducts research and provides scientific and technical services to aid
Federal agencies in the selection, acquisition, application, and use of com-
puter technology to improve effectiveness and economy in Government
operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant
Executive Orders, and other directives; carries out this mission by managing
the Federal Information Processing Standards Program, developing Federal
ADP standards guidelines, and managing Federal participation in ADP
voluntary standardization activities; provides scientific and technological ad-
visory services and assistance to Federal agencies; and provides the technical
foundation for computer-related policies of the Federal Government. The In-
stitute consists of the following centers:

The Center for Materials Science

® Programming Science and
Technology

e Computer Systems
Engineering

Conducts research and provides measurements, data, standards, reference
materials, quantitative understanding and other technical information funda-
mental to the processing, structure, properties and performance of materials;
addresses the scientific basis for new advanced materials technologies; plans
research around cross-country scientific themes such as nondestructive
evaluation and phase diagram development; oversees Bureau-wide technical
programs in nuclear reactor radiation research and nondestructive evalua-
tion; and broadly disseminates generic technical information resulting from
its programs. The Center consists of the following Divisions:

¢ Inorganic Materials

e Fracture and Deformation
® Polymers

¢ Metallurgy

e Reactor Radiation
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"Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address

Gaithersburg, MD 20899.
2Some divisions within the center are located at Boulder, CO 80303.
3.ocated at Boulder. CO. with some elements at Gaithersbure. MD.



Standard Reference Materials:

A Fine-Grained, Isotropic Graphite
for Use as NBS Thermophysical
Property RM’s from 5 to 2500 K

Jerome G. Hust

Center for Chemical Engineering
National Engineering Laboratory
National Bureau of Standards
Boulder, CO 80303

Sponsored by:

Office of Standard Reference Materials
National Measurement Laboratory
National Bureau of Standards
Gaithersburg, MD 20899

eNT OF o
< s,

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary
NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued September 1984



Library of Congress Catalog Card Number: 84-601106

National Bureau of Standards Special Publication 260-89
Natl. Bur. Stand. (U.S.), Spec. Publ. 260-89, 116 pages (Sept. 1984)
CODEN: XNBSAV

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1984

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402



PREFACE

Standard Reference Materials (SRM's) as defined by the
National Bureau of Standards are "well-characterized materials,
produced in quantity, that calibrate a measurement system to
assure compatibility of measurement in the Nation." SRM's are
widely used as primary standards in many diverse fields of
science, industry, and technology, both within the United
States and throughout the world. For many of the Nation's
scientists and technologists it is of more than passing interest
to know the measurements obtained and .nethods used by the analyti-
cal community when analyzing SRM's. An NBS series of papers, of
which this publication is a member, called the NBS Specjal Publi-
cation - 260 Series is reserved for this purpose.

This 260 Series is dedicated to the dissemination of
elemental concentration data for NBS biological, geological, and
environmental SRM's. More information will be found in this 260
than is generally found in NBS Certificate of Analysis. This
260 enables the user of these SRM's to assess the validity of
data not available in the Certificate of Analysis. We hope that
this 260 will provide sufficient additional information so that
new applications of these SRM's may be sought and found.

Inquiries concerning the technical content of this compila-
tion should be directed to the authors. Other questions concerned

with the availability, delivery, price of specific SRM's should be
addressed to:

Office of Standard Reference Materials
National Bureau of Standards
Gaithersburg, MD 20899

Stanley D. Rasberry, Chief
Office of Standard Reference Materials
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A FINE-GRAINED, ISOTROPIC GRAPHITE FOR USE AS NBS THERMOPHYSICAL PROPERTY RM'S
FROM 5 to 2500 K*

J. G. Hust
Chemical Engineering Science Division
Center for Chemical Engineering
National Engineering Laboratory

National Bureau of Standards
Boulder, Colorado 80303

ABSTRACT

The Chemical Engineering Science Division (Boulder, Colorado) in conjunction
with the Office of Standard Reference Materials (Gaithersburg, Maryland) of the
National Bureau of Standards, and the CODATA Task Group on Thermal Transport
Properties have investigated graphite as a potential, extended temperature range,
Research Material (RM). A large number of isotropiq, fine-grained graphite rods
in various diameters were obtained for these investigations.

In Phase I, electrical resistivity and density measurements were performed
on numerous rods at temperatures from 4 to 300 K. In Phase II, thermal conduc-
tivity measurements were performed on thirteen specimens at about 20 °C. These
measurements show that transport property variations, both between and within
these rods, is relatively large (approximately 10%). However, a correlation be-

_tween these variables is shown to exist which will allow the calculation of
thermal conductivity from simpie and inexpensive electrical resistivity and den-
sity measurements to within about +2%. In Phase III, a large number of specimens
were characterized for room temperature electrical resistivity and density.

These measurements were in preparation for the worldwide distribution of speci-
mens to participants that agreed to make thermal and electrical property measure-
ments. Phase IV describes the results of the measurements from the various par-

ticipants. Phase V describes the analysis of these data.

*This work was sponsored by the National Bureau of Standards, Office of Standard
Reference Materials (NBS-OSRM), Gaithersburg, MD.



Key Words: characterization; density; electrical resistivity; graphite; Lorenz
ratio; Research Materials; thermal conductivity.



1. INTRODUCTION

Considerable interest has been shown in establishing a fine-grained, iso-
tropic graphite for use as a Research Material (RM) for thermophysical proper-
ties. Preliminary work on the Air Force Materials Laboratory-Advisory Group for
Aerospace Research and Development, NATO (AFML-AGARD) program showed that
graphite is a promising material. It is especially interesting because of its
relatively low cost, ease of fabrication, and its wide temperature range.

The AFML-AGARD program (1965 to 1975) resulted in extensive thermophysical
property measurements on several materials including graphite. These measure-
ments have been reported in detail by Fitzer [1] and Minges [2]. The graphite

portion of that program is summarized below:

- AFML-AGARD PROGRAM (1965-1975)

Material

Fine-grained-isotropic graphite Ave. density = 1.757 g/cm3
10 cm dia. x 30 cm Tong cylinders - Max. variations = +1.3%

5 cm x 10 cm x 15 cm blocks Heat treated at 2500 °C

Measurements
Property Temp. Range Variations No. of Investigators

Thermal Diffusivity 400-2600 K +7% 9
Thermal Conductivity 300-2500 K +10% 5
Thermal Expansion 300-2800 K +3% 10

Heat Capacity 1900-2800 K -—- 1
Electrical Resistivity 400-2600 K +4% at 1300 K 2

It was concluded as a result of the program that this graphite is very promising,
but that further work should be performed. The remaining stock of this AFML
material was donated to NBS for further study and/or use. The remaining quantity

of material, however, was quite limited. Unfortunate]y,'also, the specimens that



were distributed to participants of the program were neither individually charac-
terized prior to measurement, nor were they collected after measurement for post-
characterization. Because of this, NBS decided to purchase a supply of the same
fine-grained graphite (AXM-5Q1) for further study. To establish a reasonable
supply, 400 6.4 mm diameter rods, 150 12.7 mm diameter rods, and 70 25.4 mm diam-
eter rods were purchased. All rods are 30 cm in length. In addition, some AXM-
5Q and AXM-9Q material was purchased for research purposes. This material was
specified to have a density in the range 1.72-1.75 g/§m3.

This fine-grained graphite is produced by molding into blocks or plates.
Rods are then cut and machined from the blocks. Petroleum coke is the source of
the graphite, and the final graphitization is performed at 2500 °C, or in the
case of the 9Q material at 2900 °C. Further preparation details are considered
proprietary by the supplier. The supplier indicated that the most homogeneous
product will come from relatively thin plates. These rods were machined from
5 cm x 10 cm x 30 cm plates.
2. PHASE T - PRELIMINARY ELECTRICAL RESISTIVITY AND DENSITY CHARACTERIZATION

2.1 Specimen Preparation

To perform electrical resistivity and density measurements, specimens of
6.4 mm diameter and 50 mm length were required. Rods were randomly selected from
the 6.4 mm diameter rods and notched with a code indicating the pack and rod from
which they came. The code is a three digit number corresponding to the number of
notches on each end and on the side near end 1, i.e., lst digit = notches on
end no. 1, 2nd digit = notches on end no. 2, 3rd digit = notches on side no. 1.
Rods 50 mm in length were cut from the 25.4 mm diameter rods. These were quar-
tered and machinea to 6.4 mm diameter rods. Also some scrap blocks from the
AFML-AGARD material were machined to 6.4 mm diameter specimens for intercom-

parison with the new rod material. A total of 39 specimens were prepared: 21 from



the 6.4 mm diameter rods, 12 from three 25.4 mm diameter rods, and six from a
single slab of AFML material.
| 2.2 Measurements

A1l electrical resistivity measurements were performed with four-terminal
D.C. potentiometric apparatus. The imprecision of this apparatus is estimated at
10.5%. (For inhomogeneity determinations the imprecision, not the uncertainty,
is paramount). Electrical resistivities were determined at 4 K, 76 K, and 273 K
on most of the specfmens. Some of the specimens were measured only at 76 K.

Densities were first calculated from air weight-volume measurements. This
was done because it was suggested that the usual hydrostatic weighing technique
could not be used on graphite. This seemed reasonable because it was assumed
that the graphite would absorb water and give incorrect bulk densities. After
the initial tests, hydrostatic weighings to check the previous statement were
performed. Surprisingly, the hydrostatic weighing method yielded results en-
tirely consistent with the air weight-volume method. No water absorption was ob-
served during the measurements. The densities reported here are, therefore,
based on the hydrostatic weighing method which is considered to yield more pre-
cise resu\ts.' A1l density measurements were performed at ambient temperature,
approximately 20 °C. These measurements are estimated precise to jp.l%.

After the NBS-Boulder electrical resistivity and density measurements, re-
corded in Table 1, a group of seventeen specimens was selected from the 39 speci-
mens. These were sent to Mr. Pears of Southern Research Institute (SoRI) for an-
nealing at 3180 °C (5750 °F). Mr. Pears suggested that the variability in den-
sity and electrical resistivity could be considerably reduced after such an
anneal. The electrical resistivities and densities were measured at 26 °C both
prior to and after the 3180 °C anneal at SoRI. These results are also listed in

Table 1. It is noted that the densities of NBS and SoRI agree quite well and the



Table 1.

Resistivity and Density Data for AXM-5Q1 Graphite Specimens.

Density* Density P2g3 Density P293
Py P16 P213 NBS3 SoRI SoRI SoRI SoRI
Specimen Identification uQem uRe-m uRem g/cm (Pre) (Pre) (Post) (Post)
100 29.42 24.02 15.23 1.75%
200 AFML Scrap 29.28 23.92 15.27 1.751
300 blocks 29.91 24.47 15.67 1.742 1.741 14,59 1.747 11.58
400 (6.4 mm dia) 29.35 23.91 15.21 1.754 1.752 14.56 1.746 11.46
500 29.15 23.67 15.08 1.754
600 28.50 23.27 14.85 1.765 1.757 14.03 1.757 11.16
101 Rod 28.59 23.28 14.81 1.721 1.720 13.96 1.717 12.74
201 No. 1 29.51 24.10 15.32 1.706
301 28.93 23.57 15.07 1.713 1.713 14.32 1.709 12.74
401 29.60 24.12 15.29 1.707 1.705 14.85 1.703 13.19
102 AXM-5Q1 26.52 21.24 13.12 1.751
202 Rod POCO 26.87 21.52 13.27 1.749
302 No. 2 25.4mm to 27.06 21.69 13.49 1.746
402 6.4 mm dia 26.65 21.34 13.25 1.752
103 29.63 24.20 15.49 1.721
203 28.90 23.58 14.99 1.735
303 28.90 23.55 15.00 1.734
403 29.45 24.04 15.34 1.722
110 Rod end a 28.23 23.04 14.74 1.732
210 No. 1 b 26.46 21.47 13.53 1.782 1.783 12.95 1.781 12.20
310 Rod No. 2 AXM-5Q1 33.80 28.12 18.56 1.698
111 Pack 1A 22.30 1.768
121  Rod 23.35 1.750 1.744 14.30 1.748 13.48
131 No. 1 24.69 1.721 1.722 15.30 1.720 14.27
141 23.94 1.732
151 Rod No. 1 31.94 26.06 16.61 1.727 1.732 15.80 1.730 13.12
211 Rod No. 2 Pack 29.77 24.12 15.20 1.709
311 Rod end a 2A 32.28 26.66 17.27 1.709 1.713 16.42 1.711 13.98
411 No. 3 b 28.22 23.02 14.67 1.775 1.778 14.09 1.775 12.19
152 Rod end a 32.00 26.14 16.68 1.697 1.700 16.18 1.697 13.28
212 No. 1 b 29.41 23.78 14.99 1.716
312 Rod No. 2 30.55 25.13 16.26 1.747
412 Rod No. 3- Pack 31.40 25.95 16.80 1.725 1.723 16.12 1.720 14.15
112 3A 25.22 1.706
122 Rod 24.65 1.717 1.719 14.86 1.717 12.76
132 No. 1 24.17 1.724 ‘
142 23.91 1.728 1.727 14.34 1.725 12.50
113 Rod No. 1 Pack 4A 29.34 23.99 15.38 1.727
104 Rod No. 1 Pack 5A 31.38 26.22 17.31 1.751 1.753 16.49 1.748 12.94

*A11 NBS densities measured near 20 °C.



effectrof the high temperature anneal is small on density. However, the elec-
trical resistivities were affected considerably by the anneal.
2.3 Results and Discussion

To determine the consistency of the NBS measurements and the SoRI measure-
ments, graphs were made of the resistivity as a function of temperature. These
plots, Figures 1, 2, and 3 illustrate several important points. First they con-
firm a measurement imprecision of near +0.5%. (They also indicate a comparable
accuracy). These plots also indicate that the differences between specimens are
temperature independent to within the measurement imprecision from 4 to 300 K.
Since the SoRI measurements were performed at 293 K and the NBS measurements were
done at 4, 76, and 273 K, direct intercomparison is not possible. However, these
plots showvexcellent correspondence between the two sets of data.

The second set of plots, Figures 4, 5, and 6 illustrate the dependence of
electrical resistivity on density at 4, 76, and 273 K, respectively. The lines
drawn on these figures show the resistivity-density correlation for groups of
specimens coming from single rods or plates. As can be seen, very strong corre-
lation (intra-rod correlation) exists for such groups. It is also clear that the
electrical resistivity-density correlation between such groups (inter-rod corre-
lation) is very weak. Obviously electrical resistivity is strongly dependent on
density but also on a density independent parameter which varies from rod-to-rod
but is fairly constant within each rod. This may be related to the chemical
purity, the degree of graphitization, or the void (vacancy) concentration and
distribution of each rod. At this time, the source of these inter-rod differ-
ences are not clear. The intra-rod correlation corresponds to a four percent
change in electrical resistivity per one percent change in density at all tem-

peratures.
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Figure 7 illustrates the resistivity-density data taken at SoRI. The arrows
between pairs of data points are directed from the preanneal to the post-anneal
data. The average change in density was about 0.2%, and the average change in
resistivity about 15%. No significant improvement in homogeneity is observed as
a result of the 3180 '°C anneal. The intra-rod electrical resistivity-density
correlation also remained the same after the high temperature anneal. It is
clear that a high temperature anneal is necessary to stabilize the specimens for
use above 2500 °é; but, it is also clear that such an anneal does not appreciably
improve the homogeneity.

In addition to the above described results on AXM-5Q1, several measurements
were performed on one rod of AXM-9Q1l and one rod of AXM-5Q. Each of these rods
were cut into six specimens. The densities and electrical resistivities of these
specimens are listed in Table 2 and plotted in Figures 8 and 9. These figures
show a uniform change in property from one end of the rod to the other.

Figure 10 shows the electrical resistivity vers;Js density corre]atfon for these
two rods. Again a strong correlation is observed and the value of the slope is
in agreement with the results from the AXM-5Q1 measureménts.

2.4 Other Graphites'

Three rods of AXF-5Q material and two rods of spectroscopic purity graphite,
designated as FXI material, were obtained for measurement. The FXI material is
higher purity and density than the AXF and AXM material. The average density of
each of the five rods and the resistivity as a function of position along these
rods at 2.5 cm intervals was measured. These data are illustrated in Figure 11.
The results show that the intra-rod variability in electrical resistivity for the
AXF material is about 13%, and the inter-rod variability is about the same.

These results are comparable to those obtained with the AXM materia]. The results

on the spectroscopic purity rods show the rate of change in resistivity as a
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Table 2. Resistivity and Density Data for AXM—SQ and 9Q1 Graphite Specimens.

Specimen p76K Density
Identification uS2em g.cm
410 19.64 1.724
510 JPack 6A 19.18 1.734
610 |AXM-9Q1 18.93 1.736
220 | (Rod 1) 18.95 1.737
320 18.71 1.742
420 19.15 1.731
520 21.32 1.739
620 JPack 7A 21.55 1.733
330 )AXM-5Q 22.01 1.721
430 { (Rod 1) 22.49 1.716
530 23.01 1.708
630 23.15 1.696
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function of position (i.e., slope of p vs X) is of comparable magnitude. How-
ever, these rods were only 15 cm long compared to 30 cm for the AXF material, and
therefore the total change was not as great for the FXI material. The difference
between the two FXI rods is near 10% in resistivity. Thus it appears that
neither of these materials is better than the AXM material from a homogeneity
standpoint.

2.5 Conclusions and Recommendations

The inhomogeneity in electrical resistivity of these graphite rods is dis-
couragingly high. It is clear that this lot of graphite cannot be used as an
electrical resistivity SRM Without characterizing each rod. If the thermal con-
ductivity correlates with electrical resistivity, as expected, the same state-
ments are applicable to thermal conductivity. Thermal expansion and specific
heat are not expected to be sensitive to these inhomogeneities and, therefore,
this lot of graphite may be acceptable for these properties.

Because Qf the merits of using graphite for various RM's, it was recommended
that further work be done on this lot of graphite to investigate the thermal
conductivity-electrical resistivity-density correlations. This work represents
Phase II of this investigation.

2.6 Summary of Phase I

1. The inhomogeneity in electrical resistivity (and of thermal conductivity
by association) of this lot of graphite rods is excessively high for use as SRM's,
unless each piece is certified.

2. A strong intra-rod caorrelation exists between electrical resistivity and
density. This correlation is practically non-existent over this range of den-

sities for inter-rod specimens.
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3. Annealing the specimens at 3180 °C produces an average decrease of 16%
in electrical resistivity and 0.2% in density, but statements (1) and (2) above
are still applicable to essentially the same degree for the annealed specimens.

4. The electrical resistivity-dénsity correlation is essentially the same
for AXM-5Q1, AXM-5Q, and AXM-9Q graphite.

5. The validity of the above statements is independent of temperature (from
4 to 300 K). Therefore, subsequent homogeneity characterization measurements are
conducted at ambient temperature.

6. Further work is recommended to investigate the thermal conductivity-
electrical resistivity-density correlation and the feasibility of characterizing
each specimen of graphite for SRM use.

3. PHASE II. PRELIMINARY THERMAL CONDUCTIVITY CHARACTERIZATION
3.1 Measurements

A series of ambient temperature thermal conductivity measurements with com-
parative apparatus was completed. This comparative apparatus is schematically
illustrated in Figure 12. Prior to the measurements on graphite, a series of
runs on two specimens of electrolytic iron (SRM-1463) was conducted to ascertain
the accuracy and precision of this apparatus. These measurements showed that the
thermal conductivity results are precise to within +1% with no measurable sys-
tematic bias.

The thermal conductivity of thirteen graphite specimens was measured
covering the entire range of electrical resistivity and density of the previously
characterized specimens. Replicate runs were performed to further study the im-
precision of the comparative apparatus. These measurements confirm our estimate
of imprecision with this comparative apparatus to be t1% for thermal conduc-
tivity. The measured results on the thirteen graphite specimens are listed in

Table 3.
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by the form factor determinations, cancels in the calculation of L. The uncer-
tainty in measuring density on these specimens is estimated to be about +0.8%.
The corresponding ellipse of imprecision and error band are shown in Figure 14,
and it is noted that none of the data points lie outside the estimated error
band. A preliminary result of a single measurement performed at ORNL (Peyton
Moore, Private Communication) is included in Figure 14, and is in excellent
agreement with the NBS measurements.

The scatter of the data points in Figure 15 is large enough that one cannot
be sure of any Lorenz ratio dependence on electrical resistivity. In an ORNL re-
port by McElroy, et al. [3] an equation is given describing the observed rela-
tionship between thermal and electrical conductivities for a group of graphite
specimens with resistivities ranging from 5 to 100 uQ°m. This equation reduces
toL = (1.56 x 10-3 - 2.66 x 10'9/p)/T and is shown on Figure 15. The
agreement of this line with the average of our data for resistivities from 11 to
18 p@*m is good, but the trend with respect to p is inconsistent with our data.
Howevef, McElroy indicated that their equation described their data to within +8%
and our data fall within that range.

The Lorenz ratio-density behavior of the AXF and FXI materials was also in-
vestigated. Lorenz ratio results for these five specimens deviate by as much as
16% from the line obtained for the AXM material, as shown in Figure 16.

3.3 Conclusions and Recommendations

The work described in Phase II shows that it is possible to characterize
this Tot of graphite, including AXM-5Q1 as received, AXM-5Q1 after anneal at
3180 °C, AXM-5Q and AXM-9Ql, to obtain ambient temperature thermal conductivity
values accurate to better than +2% using simple electrical resistivity and den-

sity measurements on each specimen. It is now believed that graphite material
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which is sufficiently homogeneous in transport properties to avoid individual
specimen characterization is not available. The inhomogeneities can be reduced
through a selection process, but this will necessitate the type of characteriza-
tion described above.

Further evidence that our inhomogeneity results based on electrical
resistivity measurements are not atypical is found in a report by Wilkes [4].
This report is the result of an investigation on the effects of radiation on the
transport properties of graphite materials. As part of this research, the
electrical resistivity changes along the lengths of numerous rods were determined.
Changes on the order of 1%/cm were not uncommon. Such changes are comparable to
those observed on the rods reported here.

Although the correlation between L and d reported here for ambient tempera-
ture is highly encouraging; considerable research still needs to be performed be-
fore we can be certain that the correlation applies to the entire temperature
range.

4, PHASE III - COOPERATIVE MEASUREMENTS

In view of the encouraging result found in Phase I and II, that thermal con-
ductivity could be accurately predicted at room temperature from simple elec-
trical resistivity and density measurements, the decision was made to proceed
with wide-scale cooperative measurements at temperatures from 4 to 3000 K. This
phase of the program was conducted in cooperation with the CODATA Task Group on

Thermophysical Properties. Dr. M. Minges of the Air Force Materials Laboratory,

Dayton, Oh anizin

ayton, Ohio was instrumental in or

tion of this effort, including other SRM's, see reference 5.
4.1 Specimen Characterization
In preparation for the specimen distribution, a large number of rods were

characterized for electrical resistivity and density. This step was completed
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with the measurement bf 50 rods of each available diameter (6.4, 12.7, and
25.4 mm). The average densities of these rods are presented in Table 4. These
rods were notched and assigned numbers as follows: The "one's" digit was notched
in the side of end 1, the "ten's" digit was notched on end 1, and the "hundred's"
digit was notched on end 2. The one's digit was never "zero", so end 1 is always
- uniquely defined. The 1500 measured electrical resistivities as a function of
position along these specimens are plotted in Figures 17 through 33. Since the
variation of resistivity along each rod was of primary interest, no attempt was
made to measure all of these rods at exactly the same temperature. The measure-
ments were conducted in a thermally lagged box which slowly varied in temperature
with room conditions. The box temperature for each set of measurements is indi-
cated in parentheses on Figures 17 through 33. The temperature in the box,
during the measurement of each specimen, remained constant to within 0.05 °C.
The most homogeneous of these specimens will be used for transport property
SRM's. Corrections to a fixed temperature (say 20 °C) can be made By using the
slope indicated in Figures 1, 2, and 3, 0.034 u@*m/K. In all cases, the cor-
rection to 20 °C is less than 1%.
4,2 Specimen Distribution and Results

Dr. Minges (AFML) arranged the participétion of 18 experimentalists from
around the world. Specimens were prepared to the desired approximate sizes and
distributed to these participants. When possible, further electrical resistivity
and density characterization measurements were performed at NBS on the actual
specimens distributed. In some cases, adjacent pieces were characterized.
Nearly all of the participants that were able to report results also published
their resuits in the open 1iterature and are iisted in the references. iUp to the
present time, some reported their results only to the committee, and these will
be referred to as participant 1, 2, etc., to maintain confidentiality. A summary

of the reported results and pre-characterization data is given in Table 5.
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Table 4. Densities of 30 cm long AXM-5Q1 graphite rods at 20°C.

Specimen Density, g/cm3
Identification 6.4 mm dia 12.7 mm dia 25.4 mm dia
001 1.695 1.718 1.696
002 1.729 1.715 1.728
003 1.733 1.731 1.727
004 1.733 1.722 1.728
005 1.753 1.726 1.720
006 1.736 1.718 1.709
o 1.732 1.728 1.704
012 1.737 1.725 1.706
013 1.734 1.753 1.728
014 1.734 1.737 1.718
015 1.736 1.737 1.709
016 1.746 1.717 1.710
021 1.734 1.735 1.722
022 1.731 1.743 1.741
023 1.734 1.718 1.732
024 1.742 1.741 1.736
025 1.739 1.769 1.709
026 1.744 1.742 1.732
031 1.725 1.738 1.728
032 1.722 1.728 1.716
033 1.747 1.742 1.706
034 1.728 1.745 1.731
G35 1.730 1.737 1.722
036 1.739 1.732 1.710
041 1.717 1.720 1.717
042 1.750 1.743 1.711
043 1.739 1.712 1.7n6
044 1.741 1.744 1.728
045 1.719 1.744 1.739
046 1.743 1.709 1.737
051 1.746 1.726 1.735
052 1.637 1.709 1.726
053 1.754 1.725 1.729
054 1.737 1.740 1.717
055 1.749 1.740 1.716
056 1.736 1.725 1.710
061 1.717 1.725 1.735
062 1.748 1.742 1.723
063 1.749 1.731 1.718
064 1.737 1.728 1.732
065 1.762 1.738 1.708
066 1.754 .1.723 1.727
101 1.726 1.727 1.739
102 1.722 1.727 1.731
103 1.709 1.728 1.740
104 1.747 1.742 1.746
105 1.719 1.714 1.741
106 1.720 1.731 1.733
m 1.730 1.728 1.737
112 1.719 1.724 1.745
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Figure 25. Electrical resistivity versus position of 12.7 mm diameter
AXM graphite rods.
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Figure 26. Electrical resistivity versus position of 12.7 mm diameter
AXM graphite rods.
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Figure 27. Electrica) resistivity versus position of 12.7 mn diameter
AXM graphite rods,
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Figure 28. Electrical resistivity versus position of 6.4 mm diameter
AXM graphite rods.
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Figure 29, Electrical resistivity versus position of 6.4 mm diameter
AXM graphite rods.
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Figure 30. Electrical resistivity versus position of 6.4 mm diameter
AXM graphite rods. '
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Figure 31. Electrical resistivity versus position of 6.4 mm diameter
AXM graphite rods.
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Figure 33. Electrical resistivity versus position of 6.4 mm diameter
AXM graphite rods.
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Table 5.

Summary of reported results on AXM-5Q1 graphite.

Characterization Data

Electrical

Participant *Properties Temperature Density Resistivity

(Ref.) Measured Range (K) (g/cm3) (ur*m)
Brandt (6) D 1100-2315 1.733 14.31
Brandt (6) D 1085-2240 1.723 14.88
Hust (7) AspsS 4-300 1.728 12.58
Hust (7) AspsS 4-300 1.722 14.46
Hust (7)--13 specimens Asp 296 only 16.9 to 17.6 11.3 to 17.5
Isaacs 1 (8) C 83-290 1.721 15.49
Maglic (9) D 480-1713 1.755 14.59
Mirkovich (10) D 273-1073 1.724 15.00
Moore (11) x5S 80-950 1.770 12.60
Taylor (12) Asp,Cra,D 400-2400 1.744 13.80
Taylor (12) " " 1.789 13.00
Taylor (12) " 300-2500 1.698 14.40
Taylor (13) A,D 530-2933 1.751 13.12
Taylor (13) " 481-2247 1.707 15.29
Participant 1 C 373-873 1.757 -
Participant 1 p,C 1350-2900 1.706 18.81
Participant 3 Xsp 300-2100 1.738 13.39
Participant 4 D 553-2460 1.666 15.00
Participant 4 D 593-1343 1.666 15.00
Participant 5 A 363-1067 1.696 14.20
Participant 5 A 343-1124 1.708 13.50
Participant 5 A 1085-2605 1.717 13.91
Participant 5 A 1077-2615 1.716 14.40
*D) = thermal diffusivity, A = thermal conductivity

p
S

<51~

electrical resistivity, a = thermal expansion, C = specific heat
Seebeck coefficient



The data from the participants are reported in various forms. Some data are
in SI units and others are in British units, some are corrected for thermal ex-
pansion and others are not, some are closely-spaced direct experimental values
and others are more widely-spaced smoothed values. To achieve sets of data for
convenient comparison and representation, the following modifications were per-
formed:

1. A1l data were converted to SI units.

2. A1l data known to be uncorrected for thermal expansion were corrected

with the following equations:

A= Aobs/(l + aAL/L)
P = pgpg(l + AL/L)

D=D, (1+al/L)2

obs(
The values for AL/L were taken from Touloukian et al. (14). The cor-
rections amount to -0.2% at 0 K, 0% at 293 K, and 2.1% at 2600 K.
3. When very closely-spaced data were reported, a subset was selected that
a) covered the entire reported range, b) reflected the scatter in the
entire data set, and c) was spaced in temperature for convenient
graphical illustration with no Toss in the detailed temperature depend-
ence.
A1l of the data reported and modified in this way are given in Tables 6
through 19.
5. PHASE IV - DATA ANALYSIS AND RECOMMENﬁED VALUES
5.1 Thermal Conductivity
Figures 34 through 37 show the thermal conductivity data from Tables 6

through 19. It is clear that large variations in \ exist throughout the
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ABLE 6. -THERMOPHYSICAL PROPERTIES FOR AXM-5Q1 GRAPHITE AS REPORTED BY BRANDT (6).

THERMAL ELECTRICAL  SPECIFIC THERMAL SEEBECK
TEMPERATURE CONDUCTIVITY  RESISTIVITY HEAT DENSITY  DIFFUSIVITY  COEFFICIENT
(K) (Wem=1.x-1) (ugem) (9+g=l-x-1)  (kg-m-3) (ume-s-1) (uvex-1)
SPEC. 42F, RESISTIVITY = 14.31, DENSITY = 1733

1110. 15.82

1202. 14.91

1333. 13.72

1450. 12.91

1560. 12.26

1669. 11.83

1783. 11.05

1910. 10.65

2045. 10.20

2163. 9.83

2275. 9.59

2315. 9.44

1333. 13.04

SPEC. 112C, RESISTIVITY = 14.88, DENSITY = 1723

1085. 17.08

1148. 16.51

1222. 15.64

1335. 14.59

1490. 13.55

1605. 12.91

1770. 11.89

1915. 11.52

2100. 10.73

2240. 10.08

TABLE 7. THERMOPHYSICAL PROPERTIES FOR AXM-5Q1 GRAPHITE AS REPORTED BY PARTICIPANT 1,
SPEC. 62, ROQM TEMPERATURE ELECTRICAL RESISTIVITY = 12.40 wQ@°m, DENSITY

= 1757 kg*m~.
THERMAL ELECTRICAL SPECIFIC THERMAL SEEBECK
TEMPERATURE CONDUCTIVITY  RESISTIVITY HEAT DENSITY DIFFUSIVITY  COEFFICIENT

(K) (Wem-1-k-1) (u@em) (9-g-1-k-1)  (kgem3) (umé-s-1) (uvek-1)
400.0 , 999.4
500.0 1207.3
600.0 1395.4
700.0 1533.4
800.0 1651.5
900.0 1739.7
1000. 1797.8
1200. 1824.4
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TABLE 8.

(K)

296.0
296.8
296.7
296.9
296.4
296.7
296.3
296.6
296.4
296.2
297.0
296.5

THERMAL
TEMPERATURE CONDUCTIVITY
(Wem-1.x-1)
SPEC. 310-0
.7280E+02
SPEC. 310-1
.7300E+02
SPEC. 310-2
.7370E+02
SPEC. 310-3
«7380E+02
SPEC. 310-4
«7440E+02
SPEC. 520
.1057E+03
SPEC. 400
.1219E+03
SPEC. 410
.1180E+03
SPEC. 102
.1126E+03
SPEC. 401
.1025E+03
SPEC. 100
«9700E+02
SPEC. 311
+9510E+02
SPEC. 312
<9250E+02

296.9

THERMOPHYSICAL PROPERTIES FOR AXM-5Q1 GRAPHITE AS REPORTED BY HUST (7).

ELECTRICAL
RESISTIVITY
(uem)
17.50
17.50
17.50
17.50
17.50
12.90
11.30
11.60
12.60
13.00
14.40
13.90
15.30

SPECIFIC
HEAT
(9-g-1-k-1)
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DENSITY

(kgem3)
1693.
1689.
1690.
1698.
1702.
1731.
1755.
1736.
1755.
1716.
1755.
1722.
1757.

THERMAL
DIFFUSIVITY
(‘umZ. s-l)

SEEBECK
COEFFICIENT
(uvek-1)



TABLE 9. THERMOPHYSICAL PROPERTIES FOR AXM-5Q1 GRAPHITE AS REPORTED BY HUST (7).

TEMPERATURE CONDUCTIVITY  RESISTIVITY
(K) (Wem-1ox-1) (uem)
SPEC. 013, RESISTIVITY = 12.58, DENSITY = 1728
_ 6.000 .6332E-01 26.58
7.000 .9258E-01 26.54
8.000 .1293E+00 26.49
9.000 .1743E+00 26.44
10.00 .2284E+00 26.38
12.00 «3687E+00 26.25
14.00 .5521E+00 26.11
16.00 .7845E+00 25.97
18.00 .1062E+01 25.82
20.00 .1403E+01 25.67
25.00 .2465E+01 25.27
30.00 .3847E+01 24.85
35.00 .5560E+01 24.45
40.00 .7553E+01 24.03
45.00 .9827E+01 23.61
50.00 .1232E+02 23.21
60.00 «1793E4+02 22.42
70.00 .2414E+02 21.68
80.00 «3065E+02 20.97
90.00 .3735E+02 20.30
100.0 <4416E+02 19.67
120.0 .5727E+02 18.55
140.0 .6927E+02 17.54
160.0 +7957E+02 16.65
180.0 .8797E+02 15.86
200.0 . 9456E+02 15.15
220.0 .9955E+02 14,51
240.0 .1030E+03 13.93
260.0 .1050E+03 13.41
280.0 . 1070E+03 12.92
SPEC. 035, RESISTIVITY

5.000 .3487E-01 28.77
6.000 .5341E-01 28.74
7.000 .7795E-01 28.69
8.000 .1092E+00 28.64
9.000 .1473E+00 28.59
10.00 «1924E+00 28.53
12.00 .3096E+00 28.41
14.00 .4629E+00 28.28
16.00 .6552E+00 28.13
18.00 .8887E+00 27.99
20.00 .1162E+01 27.83
25.00 .2044E+01 27.44
30.00 .3196E+01 27.04
35.00 .4608E+01 26.64
40.00 .6251E+01 26.23
45.00 .8094E+01 25.84
50.00 .1012E+02 25.45
60.00 .1462E+02 24.68
70.00 .1963E+02 23.95
£0.00 -2494£102 23.26
90.00 .3034E+02 22.60
100.0 .3595E+02 21.97
120.0 - .4686E+02 20.80
140.0 .5686E+02 19.77
160.0 .6546E+02 18.83
180.0 . 7266E+02 18.00
200.0 .7845E+02 - 17.23
220.0 .8304E+02 16.54
240.0 +8643E+02 15.92
260.0 .8902E+02 15.36
280.0 .9051E+02 14.85
300.0 .9080E+02 14.38

THERMAL ELECTRICAL

= 14.46, DENSITY = 1722

SPECIFIC
HEAT

(J.g-l'K-l)
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DENSITY

(kgem-3)

THERMAL
DIFFUSIVITY
(uma. s= 1 )

SEEBECK
COEFFICIENT
{(uvex-1)

-3.294
-3.870
-4.410
-4.932
-5.418
-6.300
-7.092
-7.758
-8.334
~-8.802
-9.594
-9.918
-9.918
-9.684
-9.306
-8.856
-7.812
-6.732
-5.688
-4.716
-3.816
-2.214
-.828
.360
1.386
2.268
3.006
3.600
4.050
4.356

-2.376
-2.952
-3.456
-3.924
-4.356
-4,752
-5.454
-6.084
-6.606
-7.056
-7.434
-8.010
-8.208
-8.136 -
-7.902
-7.560
-7.164
-6.246
-5.392
=%eJIU
-3.456
-2.628
-1.134
.180
1.296
2.304
3.186
3.960
4.590
5.112
5.490
5.742



TABLE 10. THERMOPHYSICAL PROPERTIES FOR AXM-5Q1 GRAPHITE AS REPORTED ‘BY ISAACS (8),
SPEC. 103-2,_ROOM TEMPERATURE ELECTRICAL RESISTIVITY = 15.49 po-m, DENSITY

= 1721 kgem-3.
THERMAL ELECTRICAL SPECIFIC THERMAL SEEBECK
TEMPERATURE CONDUCTIVITY RESISTIVITY HEAT DENSITY DIFFUSIVITY COEFFICIENT

(k) (Wem=1.k-1) (u@em) (9-g=lek-1)  (kgem=3) (umé-s-1) (uVek-1)
82.80 117.
89.96 156.
95.38 147.
111.2 180.
125.5 223.
142.7 265.
160.5 308.
181.9 423.
194.3 459,
215.7 573.
239.0 659.
260.8 760.
279.6 875.
289.4 955.

TABLE 11. THERMOPHYSICAL PROPERTIES FOR AXM-5Q1 GRAPHITE AS REPORTED BY MAGLIC (9),
SPEC. 4, ROOM TEMPERATURE ELECTRICAL RESISTIVITY = 14.59 u@-m, DENSITY

= 1755 kg*m3.
THERMAL  ELECTRICAL  SPECIFIC THERMAL SEEBECK
TEMPERATURE  CONDUCTIVITY ~ RESISTIVITY HEAT DENSITY  DIFFUSIVITY  COEFFICIENT

(K) (Wem=1.k-1) (ug*m) (3-g-1ek-1)  (kg-mr3) (um@-s=1)  (uvek-1)
480.0 41.50
577.0 33.50
677.0 28.50
762.0 25.10
866.0 21.50
996.0 18.90
1112. 16.90
1224. 15.70
1339. 14.60
1458, : 13.60
1558. 12.70
1647. : 12.20
1713. 11.80

TABLE 12, THERMOPHYSICAL PROPERTIES FOR AXM-5Q1 GRAPHITE AS REPORTED BY MIRKOVICH (10),
SPEC. 1128B, %OOM TEMPERATURE ELECTRICAL RESISTIVITY = 15.00 w@<m, DENSITY
= 1724 kg°m~°.

THERMAL ~ ELECTRICAL  SPECIFIC THERMAL SEEBECK
TEMPERATURE  CONDUCTIVITY  RESISTIVITY HEAT DENSITY  DIFFUSIVITY  COEFFICIENT
(K) (Wem=1.k-1) (ueem) (9-g71ek-1)  (kg-m-3) (ume-s=1) (uvek-1)
273.2 72.50
323.2 58.10
373.2 48.70
473.2 37.60
573.2 30.30
673.2 25.70
773.2 22.40
873.2 19.70
973.1 17.60
1073. 16.10
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TABLE 13. THERMOPHYSICAL PROPERTIES FOR AXM-5Q1 GRAPHITE AS REPORTED BY MOORE (11),
SPEC. 102, RQOM TEMPERATURE ELECTRICAL RESISTIVITY = 12.6C ppem, DENSITY

= 1770 kg*m~°,
THERMAL ELECTRICAL SPECIFIC THERMAL SEEBECK
TEMPERATURE CONDUCTIVITY  RESISTIVITY HEAT DENSITY DIFFUSIVITY  COEFFICIENT
(K) (Wem=1ek=1) (ug2em) (9+g~iek1)  (kg-m3) (umé-s-1) (uvek-1)

80.00 .2960E+02 -5.094
100.0 .4300E+02 -3.564
120.0 .5610E+02 -2.106
140.0 .6800E+02 -.774
160.0 .7840E+02 .414
180.0 .8710E+02 1.458
200.0 -9410E+02 2.340
220.0 .9950E+02 3.078
240.0 -1035E+03 3.762
260.0 .1062E+03 4,122
280.0 .1078E+03 4.446
300.0 .1084E+03 12.51 4.644
320.0 .1083E+03 4.716
340.0 -1082E+03 4.698
360.0 .1075E+03 4.572
380.0 «1065E+03 4.356
400.0 .1053E+03 10.92 4.050
500.0 .9830E+02 10.01 1.782
600.0 .8830E+02 9.36 -1.098
700.0 .8010E+02 8.93 -3.654
800.0 .7460E+02 8.66 -5.724
900.0 .6820E+02 8.52 -6.372
950.0 .6590E+02

TABLE 14. THERMOPHYSICAL PROPERTIES FOR AXM-5Q1 GRAPHITE AS REPORTED BY PARTICIPANT 5.

THERMAL  ELECTRICAL  SPECIFIC THERMAL SEEBECK
TEMPERATURE CONDUCTIVITY  RESISTIVITY HEAT DENSITY  DIFFUSIVITY  COEFFICIENT
(K) (Wem=1.k-1) (u@em) (9-g-1-k-1)  (kgem=3) (umé-s-1) (uvek-1)
SPEC. 006(CRA-1), RESISTIVITY = 14.20, DENSITY = 1696
363.2 .8732E402
372.0 ~8920E+02
538.7 .8070E+02
803.7 .6225E+02
1067. .5029E+02
SPEC. 32C(CRA-2), RESISTIVITY = 13.50, DENSITY = 1708
343.2 .9136E+02
508.7 .8387E+02
807.0 -6614E402
1124. .5058E+02
SPEC. 32C(RIA-2A), RESISTIVITY = 13.91, DENSITY = 1717
1085. .5058E+02
1380. .4222E+02
1020, “3401£402
2606. .2968E+02
SPEC. 006(RIA-1A), RESISTIVITY = 14.40, DENSITY = 1716
1077. .5361E+02
1115. .4799E+02
1366. ~3920E+02
1524. .3876E+02
1877. .3285E+02
2001. . 2853E+02
2613. - 2853E+02
2615. -3041E+02

-57-



TABLE 15. THERMOPHYSICAL PROPERTIES FOR AXM-5Q1 GRAPHITE AS REPORTED BY PARTICIPANT 2,
SPEC. 41B, RQOM TEMPERATURE ELECTRICAL RESISTIVITY = 18.81 un°m, DENSITY

= 1706 kg*m=3,
THERMAL  ELECTRICAL  SPECIFIC THERMAL SEEBECK
TEMPERATURE  CONDUCTIVITY  RESISTIVITY HEAT DENSITY  DIFFUSIVITY  COEFFICIENT
(K) (Wem=1ek-1) (u@°m) (9+g-lek-1)  (kg-m3) (umé-s-1) (uvex-1)
1350. 11.23 1933.
1400. 11.26 1947,
1500. 11.33 1969,
1600. 11.43 1990.
1700. 11.56 2008.
1800. 11.70 2022.
1900. 11.86 2039.
2000. 12.02 2053.
2100. 12.20 2066.
2200. 12.36 2076.
2300. 12.53 2086.
2400. 12.71 2096.
2500. 12.89 2104.
2600. 13.06 2112.
2700. 13.23 2120.
2800. 13.40 2122.
2900. 13.58 2130.

TABLE 16. THERMOPHYSICAL PROPERTIES FOR AXM-5Q1 GRAPHITE AS REPORTED BY PRTICIPANT 3,
SPEC. 52, ROQM TEMPERATURE ELECTRICAL RESISTIVITY = 13.39 u@°m, DENSITY

= 1738 kg*m-3.
: THERMAL  ELECTRICAL  SPECIFIC THERMAL SEEBECK
TEMPERATURE CONDUCTIVITY RESISTIVITY HEAT DENSITY  DIFFUSIVITY  COEFFICIENT
(K) (Wem=1.k-1) (u@em) (9eg=1k-1)  (kg-m-3) (ume-s=1) (uvek-1)
300.0 13.62
400.0 .9240E+02 12.14
500.0 .8770E+02 10.99
600.0 .8150E+02 10.25
700.0 .7580E+02 9.70
800.0 .7110E+02 9.36
900.0 -6690E+02 9.10
1000. .6230E+02 8.90
1100. .5800E+02 8.81
1200. .5390E+02 8.83
1300. .5030E+02 8.97
1400. 9.09
1500. 9.26
1600. 9.42
1700. 9.61
1800. 9.80
1900. 9.98
2000. 10.16
2100. 10.34
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TABLE 17. THERMOPHYSICAL PROPERTIES FOR AXM-5Q1 GRAPHITE AS REPORTED BY TAYLOR (12).

THERMAL ELECTRICAL SPECIFIC . THERMAL SEEBECK
TEMPERATURE CONDUCTIVITY. RESISTIVITY HEAT DENSITY DIFFUSIVITY  COEFFICIENT
(K) (Wem=1.k-1) (uo-m) (9-g-1ek1)  (kg-m3) (umé-s-1) (uvek-1)
SPEC. 3A-1, RESISTIVITY = 13.80, DENSITY = 1744
400.0 .9720E+02 12.13 © 957, 1737. 58.50
500.0 .8920E+02 11.06 1168. 1734. 44.00
600.0 .8280E+02 10.36 1382. 1713. 34.60
700.0 .7730E+02 9.88 1520. 1727. 29.40
800.0 .7250E+02 9.50 1636. 1722. 25.70
900.0 .6730E+02 9.34 1726. 1718. 22.70
1000. .6280E+02 9.30 1797. 1714. 20.40
1100. .5860E+02 9.31 1859. 1709. 18.30
1200. .5470E+02 9.39 1905. 1705. 16.80
1300. .5120E+02 9.48 1942. 1700. 15.50
1400. .4820E+02 9.64 1975. 1696. 14.40
1500. «4560E+02 92.80 2002. 1692. 13.50
1600. .4360E+02 9.96 2028. 1687. 12.70
1700. .4210E+02 10.15 ~ 2050. 1682. 12.20
1800. .4080E+02 10.35 2070. 1677. 11.80
1900. .3980E+02- 10.57 2087. 1673. 11.40
2000. .3880E+02 10.81 2100. 1668. 11.10
2100. .3800E+02 11.04 2111. 1663. 10.80
2200. .3740E+02 11.27 2127. 1658. 10.60
2300. .3700E+02 11.46 2140. 1653. 10.50
2400. +3650E+02 11.68 2155. 1647. 10.30
SPEC. 3A-2, RESISTIVITY = 13.00, DENSITY = 1789
400.0 .1022E+03 11.28 i ) 1781. 60.00
500.0 .9530E+02 10.24 1777. 45.90
600.0 .8870E+02 9.54 1774. 36.20
700.0 .8230E+02 9.06 : 1770. 30.60
800.0 .7680E+02 8.76 1766. 26.60
900.0 .7170E+02 8.59 1761. 23.60
1000. .6680E+02 8.54 1757. 21.20
1100. .6250E+02 8.52 1752. ' 19.20
1200. . .5890E+02 8.57 1748. 17.70
1300. .5530E+02 8.67 1743. 16.30
1400. .5210E+02 8.78 : 1739. 15.20
1500. .4930E+02 8.94 . 1734. 14.20
1600. .4710E+02 9.10 1729. 13.40
1700. .4530E+02 9.26 1725. 12.80
1800. .4360E+02 9.45 1720. 12.20
1900. .4230E+02 9.65 1715. 11.80
2000. .4140E+02 9.85 1710. 11.50
2100. .4060E+02 10.06 1705. 11.30
2200. .4000E+02 10.29 1699. 11.10
2300. . 3940E+02 10.53 1694, 10.90
2400. .3900E+02 0.77 1689. .10.70
SPEC. 001, RESISTIVITY = 14.40, DENSITY = 1698
300.0 .1005E+03 14.30 702. 1698. 84.30
400.0 .9350E+02 12.59 1695. 57.60
500.0 .8650E+02 11.48 1691. 43.70
600.0 .8040E+02 10.75 1688. 34.50
700.0 .7470E+02 10.31 1684. 29.20
800.0 .6980E+02 9.96 1680. 25.40
900.0 .6470E+02 9.76 1676. 22.40
1000. .6040E+02 9.70 1672. 20.10
1100. .5600E+02 9.71 1668. 18.10
1200. .5220E+02 9.87 1664. 16.50
1300. .4860E+02 10.13 1660. 15.10
1400. .4570E+02 10.34 1655. 14.00
1500. .4330E+02 10.55 1650. 13.10
1600. .4110E+02 10.76 1646. 12.30
1700. .3960E+02 10.98 ) 1641. 11.80
1800. .3820E+02 11.20 1636. 11.30
1900. .3700E+02 11.41 1631. 10.90
2000. .3610E+02 11.65 1626. 10.60
2100. .3540E+02 11.85 1621. 10.30
2200. .3480E+02 12.10 1616. 10.10
2300. .3430E+02 12.44 1611. 9.90
2400. «3400E+02 12.64 1606. 9.80
2500. +3350E+02 12.83 2168. 1601. 9.70
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TABLE 18. THERMOPHYSICAL PROPERTIES FOR AXM-5Q1 GRAPHITE AS REPORTED BY TAYLOR (13).

THERMAL ELECTRICAL SPECIFIC THERMAL SEEBECK
TEMPERATURE CONDUCTIVITY  RESISTIVITY HEAT DENSITY DIFFUSIVITY  COEFFICIENT
(K) (Wem1eg-1) - (uaem) (deg=lek-1)  (kg-m3) (ume-s-1) (wvek-1y
SPEC. 102, RESISTIVITY = 13.12, DENSITY = 1751

530.0 .8350E+02 37.40

615.0 .7720E+02 31.30

733.0 .7130E+02 25.90

863.0 «6620E+02 22.30

989.0 .6100E+02 19.50
1113. .5740E+02 17.90
1315. .5130E+02 15.40
1423. .A860E+02 14.40
1575. .4490E+02 13.20
1717. .4320E+02 12.50
1890. .3840E+02 11.10
1982. -3900E+02 11.20
2155. .3760E+02 10.70
2318. +3450E+02 9.82
2410. .3470E+02 9.87
2503. +3100E+02 8.80
2615. .3290E+02 9.35
2705. .2920£+02 8.30
2810. .2920E+02 8.31
2933. .3040E+02 8.62

. SPEC. 401, RESISTIVITY = 15.29, DENSITY = 1707

481.0 .8380E+02 41.30

596.0 .8090E+02 33.50
1220. .5430E+02 16.50
1392. .4900E+02 14.70
1504. .4610E+02 13.60
1615. -4400£+02 12.80
1788. -4230E+02 12.20
1839. .3850E+02 11.10
1992. .4140E+02 11.90
2094. «3900E+02 11.10
2186. .3720E+02 10.60

2247. .3740E+02 10.70

TABLE 19. THERMOPHYSICAL PROPERTIES FOR AXM-5Q1 GRAPHITE AS REPORTED BY PARTICIPANT 4,
SPEC. 111-END 1, ROOM TEMPERATURE ELECTRICAL RESISTIVITY = 15.00 uQ°m, DENSITY

= 1666 kg m~°.
THERMAL ELECTRICAL SPECIFIC THERMAL SEEBECK
TEMPERATURE CONDUCTIVITY  RESISTIVITY HEAT DENSITY DIFFUSIVITY  COEFFICIENT
(X) (Wem=1.x-1) (uem) (9.g=1k-1)  (kgem=3) (umees=1) (uvek-1)
553.2 29.60
732.2 22.60
868.2 20.30
1049. 16.70
1225. 14.50
1421. 12.80
1598. 12.09
1824. 10.60
2020. ) 10.90
2220. 8.90
2460. 8.10
593.2 27.10
268.2 19.20
1005. 17.30
1188. 15.70
1343. 13.60
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specimens at 296 K.
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Figure 34. Thermal conductivity data from Hust (7) on seven AXM-5Q1 graphite
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temperature range as was the case at room temperature in Phase II. Numerous
equations were tried to represent the general temperature dependence of these
thermal conductivity data. Because of the relatively large differences between
data sets, especially at high temperatures, an equation with a large number of
coefficients was undesirable. The base equation finally selected to represent

the general behavior of these data is

G 6y 5

This equation was modified in two ways to obtain the best representation of the
data. First, the equation was modified according to the correlation between L
and p described in Phase II which is equivalent to the multiplier M. Second,
it was modified by a multiplier function, My to remove most of the remaining
oscillatory systematic deviations. The final répresentation of the thermal
conductivity data is
A= MM (5.1.2)
where '
M = (-18.51 + 0.01908 d ) x 10-6/p, (5.1.3)
My = 1 + 0.0012 2n(T/5.4) &n(T/15) an(T/58) 2n(T/180) &n(T/1000) 2£n(T/1700)
(5.1.4)
T = temperature in K, A is in Wem=1lek, dy s room temperature density in
Kg/m3 and p, is electrical resistivity in Q-m, and the parameters are
Gy = 0.000537 Gp = 2.589 Gz = 0.000202 Gq = 1.678 Gg = 2.02
Figures 38 through 41 show the deviations of the observed thermal conduc-
tivity data from eq.b(5.1.2). For convenience of comparison, Figures 42-44 con-
tain all of the data on each plot. Figure 42 is a composite of Figures 38-41.

Figure 43 shows the deviations of all the data from eq. (5.1.2) with M; =1
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Figure 36. Thermal conductivity data for seven AXM-5Q1 graphite specimens from

the following participants at temperatures froT 5 to 2600 K:

O = HUST(7) ¢ = PARTICIPANT 5
A= MOORE(11) + = PARTICIPANT 5
0= PARTICIPANT S X = PARTICIPANT 3

V = PARTICIPANT 5
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Figure 37. Thermal conductivity data for four AXM-5Q1 graphite specimens from

the following participants at temperatures from 300 to 2600 K:

O = TAYLOR(12)
A= TRYLOR(12)
O = TAYLOR(12)
V = TAYLOR(13)
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Figure 39. Thermal conductivity deviations for seven AXM-5Q1 graphite specimens

as reported by Hust (7) from eq. (5.1.2), six at 296 K and one at
temperatures from 6 to 300 K.
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Thermal conductivity deviations for seven AXM-5Q1 graphite specimens
as reported by the following participants from eq. (5.1.2) at
temperatures from 5 to 2600 K:

O = HUST(7) <O = PARTICIPANT S
A= MOORE(11) + = PARTICIPANT 5
0= PARTICIPANT S X = PARTICIPANT 3

V - PARTICIPANT S
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Figure 41. Thermal conductivity deviations for four AXM-5Q1 graphite specimens
as reported by the following participants from eq. (5.1.2) at
temperatures from 300 to 2600 K:

O~ TAYLOR(12)
A= TAYLOR(12)
O~ TAYLOR(12)
Vv - TAYLOR(13}

-69-~



30

20
)
T

%3 10
"
[em]

O 0
>
Ll

B2 0
—
O
o

-20

-30

LA D I B B | M T L AL o LA L EE! ! 1

+.
o N IO BPUN TSN BN BN B A | A [ETS BT SN IV B B B | L L
4 10 20 40 100 200 400 1000 2000

TEMPERATURE K

Figure 42. Thermal conductivity deviations of all AXM-5Q1 graphite data from

eq. (5.1.2). Composite of Figures 38-41.
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Figure 43. Thermal conductivity deviations of all AXM-5Q1 graphite data from

eq. (5.1.2) with M = 1.
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Figure 44. Thermal conductivity deviations of all AXM-501 graphite data from

eq. (5.1.2) with My = 1,
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(i.e., no corrections for room temperature differences in density and electrical
resistivity). Figure 44 shows the deviations of all data from eq. (5.1.2) with
My, = 1 (i.e., no corrections for the residual oscillations). It is clear from
these plots that the corrections for the room temperature chara;teristic differ-
ences are essential. However, relatively large scatter still exists at the
higher temperatures. This scatter between data sets may be caused by a) experi-
mental error and b) if the L vs d correlation found at room tempefature is also a
function of temperature. The data of Hust (7) on two specimens measured from 5
to 300 K suggests that the correlation is quite good to the Towest temperature
measured. The data of Taylor (12) on three specimens, and the data of partici-
pant 5 on four specimens suggest that the correlation is not as good at higher
temperatures.
Based on this research, it is concluded that this graphite can be a useful
thermal conductivity standard with the fo]]owing'limitations:
a) Only those rods should be selected that show the smallest elec-
trical resistivity vs position dependence.
b) The actual specimen used shou]d_be characterized for room tempera-
ture electrical resistivity and density values.
c) Specimens with room temperature electrical resistivities outside
the range 13.0 to 15.0 ue'm and densities outside the range 1.70
to 1.75 g/cm3 should be excluded.
d) The uncertainty of eq. (5.1.2) at high temperatures is as high as
10%. |
Table 20 contains recommended values of A for temperatures from 5 to 2600 K
as given by eq. (5.1.2) with py = 14.5 u@.p and do = 1.73 g/cm3, It is

noted that the correction for py and d, is zero at that point, i.e., M = 1.
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Table 20. Thermophysical properties of AXM-5Q1 graphite as calculated from the
equations indicated in this report, for room temperature electrical
resistivity = 14.5 uq*m and density = 1730 kg/m3.

THERMAL ELECTRICAL SPECIFIC THERMAL THERMAL
TEMPERATURE CONDUCTIVITY  RESISTIVITY HEAT DIFFUSIVITY  EXPANSION
(X) (Wem-1.k-1) (uarm)  (J-kg=l-k-1)  (um?-s-1) (%)
5 .0354 28.78 - .198
6 .0537 28.73 - .197
7 .0783 28.67 - .196
8 .1099 28.62 - 196
9 .1494 28.55 - .195
10 .1971 28.48 - .194
15 .573 28.11 - .191
20 1.201 27.71 - .188
25 2.095 27.28 - .184
30 3.255 26.85 - .181
35 4.675 26.43 - «178
40 6.33 26.00 - .174
45 8.23 25.59 - 171
50 10.32 25.19 - .168
55 12.59 24.79 - .164
60 15.03 24.41 - .161
65 17.59 24.04 - .158
70 20.25 23.68 - .154
75 23.00 23.33 - .151
80 25.81 22.98 - .148
85 28.65 22.65 - .144
S0 31.51 22.33 - .141
95 34.37 22.02 - .137
100 37.21 21.72 - .134
120 48.16 20.60 ~ .120
140 §7.9 19.60 - .107
160 66.4 18.71 - .093
180 73.3 17.92 - .079
200 78.9 17.20 - .065
220 83.2 16.55 - .051
240 86.4 15.97 - .037
260 88.8 15.44 - .023
280 90.4 14.96 - .009
300 91.3 14.52 .005
400 90.2 12.83 995 52.52 .078
500 84.6 11.74 1208 40.67 .152
600 78.0 11.03 1381 32.90 .228
700 71.7 10.58 1518 27.54 .306
800 65.9 10.30 1629 23.67 . 386
900 60.9 10.15 1718 20.78 .468
1000 56.5 10.10 1790 18.55 .551
1100 52.7 10.12 1849 16.80 .636
1200 49.48 10.19 1898 15.39 .723
1300 46.68 10.29 1939 14.26 .811
1400 44.28 10.43 1973 13.32 .901
1500 42.22 10.58 2002 12.56 .993
1600 . 40.46 10.76 2027 11.92 1.08
1700 38.95 10.94 2048 11.39 1.18
1800 37.67 11.14 2066 10.95 1.27
1900 36.58 11.34 2082 10.58 1.37
2000 35.66 11.55 1096 10.28 1.47
2100 34.829 11.7% 2108 10.03 1.57
2200 34.25 11.96 2118 9.82 1.67
2300 33.72 12.17 2128 9.66 1.78
2400 33.29 12.38 2136 9.53 1.88
2500 32.96 12.59 2143 9.43 1.99
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The uncertainty of the A values in Table 20 is estimated to be +2% at tempera-
tures below 300 K. At higher temperatures, the uncertainty increases to +10% at
2600 K.
5.2 Electrical Resistivity

Figures 45 through 47 show the electrical resistivity data from Tables 6
through 19. Based upon the abnormal behavior of the electrical resistivity data
from Table 15, i.e., the results reported by participant 2, (see Figure 47) this
data set was excluded from the following comparisons. It is noted that this
specimen had an abnormally high room temperature electrical resistivity and is
the basis for the previous restrict1on on the range of valid thermal conduc-
tivities. Again, an equation with relatively few coefficients was desired to
represent the general temperature behavior of the data. The equation selected
is

o = Gy-GoExp(-(2n(T/G3)/Gy)?) (5.2.1)

This equation was modified to account for the room temperature differences, and

the resulting final equations is
o = G1-GpExp(-(&n(T/63)/64)2) + po-14.5 (5.2.2)

where p = electrical resistivity in uQ-m, at temperature, T, in K and p,

= the room temperature resistivity of the specimen in p@°m. The least squares

[rp]

values of the coefficient

n

= 28.9. G

are las
are i Lo F,

2 -2, &3
Although some systematic differences are apparent in the following deviation
plots, no further modification seemed justified because of the larger scatter

between data sets.
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Figure 46. Electrical resistivity data from Hust (7) on seven AXM-5Q1 graphite
specimens, six at 296 K and one specimen from 6 to 300 K.
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Figure 47. Electrical resistivity data for seven AXM-5Q1 graphite specimens from

the following participants from 5 to 2900 K:

O = HUST(7)

A= MOORE(11)

O~ PARTICIPANT 2
V - PARTICIPANT 3
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Figures 48 through 50 show the deviations of the experimental data from
eq. (5.2.2). For convenience of comparison, these data are all shown on a single
graph in Figure 51. Figure 52 shows the deviations of the data from eq. (5.2.1)
which is uncorrected for room temperature differences. It is clear that most of
the differences at high and low temperatures are accounted for simply by the room
temperature differences.

A comment about the data of participant 2 (the data set excluded earlier) is
in order. It appears that for an unknown reason the value of p, is incorrect
for this specimen. The actual specimen used was in the form of a thin hollow
cylinder. The rod from which it was machined was measured at NBS and by the
participant. These py values agreed to within 2%. The participant also
measured the p, of the hollow cylinder and obtained a value only slightly
higher. However, the deviations of the data from participant 2 from eq. (5.2.2)
are near -30% at all temperatures. This difference can be nearly eliminated if a
value of 15.2 ueem is used for po instead of 18.81 u@-m. Using a va1ué of
15.2 u@°m yields deviations of 1.5% at 1350 K, and -4.0% at 2900 K, varying
smoothly and nearly linearly at temperatures between these extremes.

Based on this research, it is concluded that this graphite can be a useful
electrical resistivity standard with the same limitations given in the previous
section.

Table 20 contains recommended values of electrical resistivity for tempera-
tures from 5 to 2500 K as given by eq. (5.2.2) with py = 14.5 u@*m.

5.3 Specific Heat
Figure 53 shows the specific heat data from Tables 6 through 19.
The high temperature data of participants 1 and 2 and Taylor (12) are in

reasonable agreement. However, the low temperature data of Isaacs is not only
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Figure 48. Electrical resistivity deviations for seven AXM-5Q1 graphite
specimens as reported by Hust (7) from eq. (5.2.2) at 296 K.

-80-




4 LML v L A L] M LA A RN M 1

PCT. DEV.(0BS.-CALC.)

XX Xx
><><><><><><">< Xxxxxwoosg
_2._ -
-4 g, p g N { T BT R A B B A N [T N T N A " |-
4 10 20 40 100 200 400 1000 2000

TEMPERATURE,K

“v,ure 49. Electrical resistivity deviations for seven AXM-5Q1 graphite speci-
mens as reported by Hust (7) from eq. (5.2.2), six at 296 K and one
at temperatures from 6 to 300 K.
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Figure 50. FElectrical resistivity deviations for six AXM-5Q1 graphite specimens
as reported by the following participants from eq. (5.2.2) at tem-
peratures from 5 to 2500 K.

O = HUST(7) Vv - TAYLOR(12)
A= MOORE(11) ¢ = TAYLOR(12)
O = PARTICIPANT 3 + = TAYLOR(12)
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Figure 52. Electrical resistivity deviations of all AXM-5Q1 graphite data from
eq. (5.2.2) without the correction for room temperature differences.
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Figure 53. Specific heat data for four AXM-5Q1 graphite specimens from the
following participants at temperatures from 8C to 2900 K:

O = PARTICIPANT 1
A = ISAACS(8)

O = PARTICIPANT 2
V= TRYLOR(12)
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abnormal for expected specific heat behavior, but also clearly discordant with
the other three data sets. With this in mind and the recognition that the lowest
temperatufe vaiues may be in error, Isaacs data were giveﬁ a Tow weight in fitt-
ing an equation to the entire data base. The equation selected for this purpose
is

C= (Glr'GZ + 6,147t

3T ) (5.3.1)

where C is in Jekg-l:k=1, T is in K and the parameters obtained are

6 =11.07 Gy = 1.644 Gy = 0.0003688 G = 0.02191

The deviations of the data from eq. (5.3.1) are shown in Figure 54.

Because of the limited specific heat data and the discordance between data
sets, recommended values are not given at this time. Research on specific heat
of graphite is continuing. Table 20 lists values of specific heat as calculated
from eq. (5.3.1)

5.4 Thermal Diffusivity

Figures 55 and 56 show the thermal diffusivity data from Tables 6 through

19. Equation (5.4.1), the definition of diffusivity, was selected to represent

the temperature dependence of these data.
D = A/Cd (5.4.1)
where A is given by eq. (5.2,1), C is given by eq. (5.3.1) and d = dy/(1 + aL/L)3.
Figures 57 and 58 show the deviation of the experimental data from

eq. (5.4.1). Figures 59 and 60 show the deviations without the corrections for

room temperature differences.
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Figure 54. Specific heat deviations for four AXM-5Q1 graphite specimens as
reported by the following paticipants from eq. (5.3.1) at
temperatures from 80 to 2900 K:

O = PARTICIPANT 1
A - ISAARCS(8)

- O= PARTICIPANT 2
V= TAYLOR(12)
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Figure 55. Thermal diffusivity data for seven AXM-5Q1 graphite specimens from
: the following participants from 280 to 2600 K:

. O= BRANDT(6) <© = TRYLOR(12)
A - BRANDT (6) + = TAYLOR(12)
D= MABLIC(9) X = TAYLOR(12)

V = MIRKOVICH(10)
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Figure 56. Thermal diffusivity data for four AXM-5Q1 graphite specimens from the

following participants from 480 to 2900 K:

O~ TAYLOR(13)
A - TRYLOR(13)
O~ PARTICIPANT 4
V = PARTICIPANT 4
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Figure 57. Thermal diffusivity deviations for seven AXM-5Q1 graphite specimens
as reported by the following participants from eq. (5.4.1) at
temperatures from 280 to 2600 K:

O - BRANDT (6) © = TAYLOR(12)
A = BRANDT(6) + = TAYLOR(12}
0= MAGLIC(9) X = TAYLOR(12)

V = MIRKOVICH(10)
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Figure 58. Thermal diffusivity deviations for four AXM-5Q1 graphite specimens as
from the following participants from eq. (5.4.1) at temperatures from
480 to 2900 K:

O~ TRYLOR(13)
A= TRYLOR(13)
O~ PARTICIPANT 4
v - PARTICIPANT 4
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Figure 59. Thermal diffusivity deviations for seven AXM-501 graphite specimens
as from the following participants from eq. (5.4.1) (without
corrections for room temperature differences) at temperatures from

280 to 2600 K:

O = BRANDT(6) ¢ = TAYLOR(12)
A = BRANDT(6) + = TRYLOR(12)
O- MAGLIC(S) X = TAYLOR(12)

V = MIRKOVICH(10)
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Figure 60. Thermal diffusivity deviations for four AXM-501 graphite specimens as

from the following participants from eq. (5.4.1) (without corrections
for room temperature differences) at temperatures from 480 to
2900 K:

O= TRYLOR(13)
A= TAYLOR(13)
O=- PARTICIPANT 4
V = PARTICIPANT 4
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These deviation plots indicate, first, that an independent equation for dif-
fusivity is not necessary at this time and, second, that the deviations between
the participants are about that expected from previously reported experimental
uncertainties of such measurements. In addition, the difference in the spread of
data is not reduced appreciably through the application of the room temperature
correlation. The reason for this is not clear but the following should be noted:
a) thermal diffusivity data from other studies are typically spread by about +10%
and b) thermal diffusivity specimens are frequently very small, making accurate
electrical resistivity characterization difficult. The latter point should not
contribute significantly however, because the bulk specimens were characterized
and highly localized inhomogeneities should not be this large. It is concluded
therefore that most of this spread is caused by experimental variability. The
excellent agreement of eq. (5.4.1) with the mean of all the data is very encour-
aging.

A recommendation for use of this graphite as a thermal diffusivity standard
will be given further consideration. Table 20 lists values of thermal diffu-
sivity as calculated from eq. (5.4.1) with pg = 14.5 u@*m and d, = 1730 Kg/m3
from 400 to 2500 K.

5.5 Thermal Expansion

No thermal expansion data per se were reported in this study. However, the

density data reported by Taylor (12) were actually obtained from thermal expan-

sion measurements. These data were analyzed by comparing them to
d = dy/(1 + aL/L)3 (5.5.1)
where Al/L values were computed from the equation

AL/L = -0.201 + 6.595 x 10~4T + 9.593 x 10-812 .3.427 x 10~1273  (5.5.2)
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Eq. (5.5.2) was obtained from Touloukian, et al. (14). The density deviations
obtained are illustrated in Figure 61. It is noted that excellent agreement is
obtained. The fact that the deviations for each sbecimen are nearly parallel to
the zero line indicate that the thermal expansion data of Taylor (12) are in good
agreement with eq. (5.5.2). Values of thermal expansion as calculated from
eq. (5.5.2) are listed in Table 20.
5.6 Seebeck Coefficient

Figure 62 shows the Seebeck coefficient data from Tables 6 through 19. No
representation of these data was undertaken. Until an interest is expressed in
this property as an SRM, no further work is planned.
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Figure 61. Density deviations for t
Taylor (12) from eq. (5.

hree AXM-5Q1 specimens as reported by
5.1) for temperatures from 300 to 2500 K.
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Figure 62. Seebeck coefficient data for three AXM-5C1 graphite specimens. Two
data sets from Hust (7) at temperatures from 5 tou 300 K and one set
om Moore (11) at temperatures from 80 to 800 K.
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