

DOE ENERGY STORAGE SYSTEMS RESEARCH Annual Peer Review, Nov. 19-20, 2002, Washington, DC

Li Ion Battery Energy Storage System (BES)

Saft America Advanced Battery Systems Div. Dr. S. Oweis

salah.oweis@saftamerica.com

And

SatCon Power Systems V. Scaini and Leonard Lansing

Home

DOE ENERGY STORAGE SYSTEMS RESEARCH Annual Peer Review, Nov. 19-20, 2002, Washington, DC "SAFT 100 kW Li-Ion Battery / SatCon PCS" System

Demonstration System

Funded by DoE and administered by Sandia National Labs

- Particular interest in high power Li-lon technology
- Developed : "480V high power Li-Ion battery / 100 kW SatCon PCS System"
- Two (2) Systems to be Delivered:
 - * 1st System: Southern Services Co.
 - * 2nd System: AEP

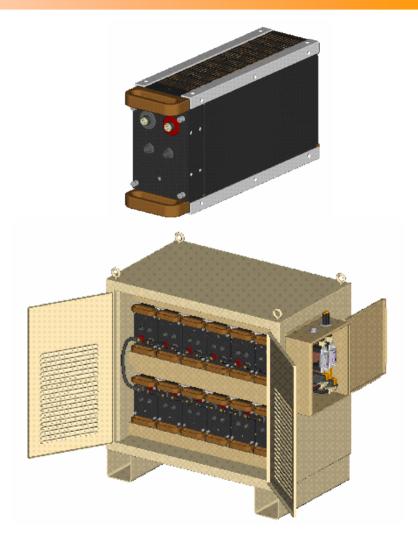
DOE ENERGY STORAGE SYSTEMS RESEARCH Annual Peer Review, Nov. 19-20, 2002, Washington, DC

"SAFT 100 kW Li-Ion Battery / SatCon PCS" System

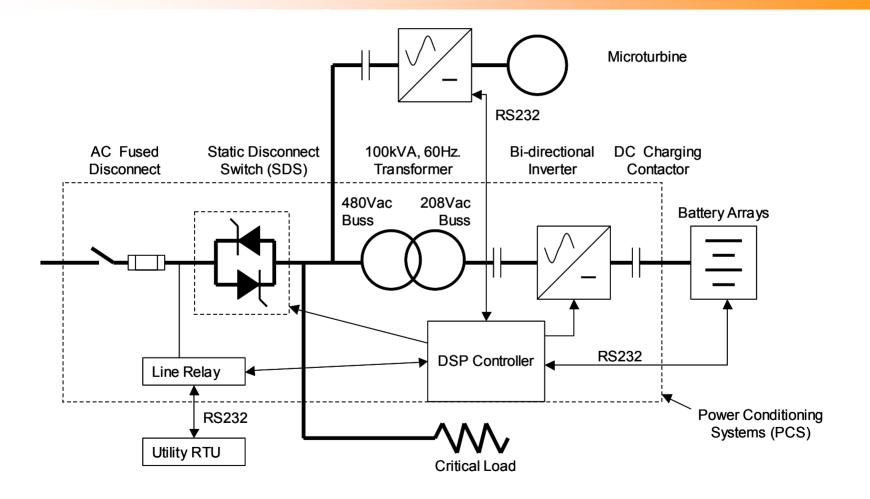
Battery

DOE ENERGY STORAGE SYSTEMS RESEARCH Annual Peer Review, Nov. 19-20, 2002, Washington, DC

"SAFT 100 kW Li-Ion Battery / SatCon PCS" System


System Functionality

- Distributed Generation (DG), e.g. Microturbine, configured for grid-connected operation Normally in standby mode
- PCS senses loss of ac line and provides seamless transition to 'island' operation
- Battery carries critical loads for a period, then microturbine starts up automatically
- Battery also provides or absorbs excess power during load shifts


DOE ENERGY STORAGE SYSTEMS RESEARCH Annual Peer Review, Nov. 19-20, 2002, Washington, DC System Overview

- Nominal 480V high power lithium ion battery
 - 132 cells Saft HP30
 - 11 modules of 12 cells
 - Battery management system
- System capabilities
 - 100 kW / 1 minute
 - 🔸 15 kWh
- Can operate as standalone UPS system
- Also configured to interact with Capstone 60kW microturbine
- 100 kW SatCon PCS

DOE ENERGY STORAGE SYSTEMS RESEARCH Annual Peer Review, Nov. 19-20, 2002, Washington, DC One-Line Diagram

DOE ENERGY STORAGE SYSTEMS RESEARCH Annual Peer Review, Nov. 19-20, 2002, Washington, DC The High Power LiON Battery

Battery Electrical Specifications

- Power:
- Energy:
- Voltage Window:
- Typical Operating Mode:
- Operating Environment:

100 kW/1 minute

15 kWh

515/ 405 VDC no load/full load

Floating with occasional power pulse.

Humidity: non-condensing. Temperature Range: (Estimated between -30°C and 50°C)

DOE ENERGY STORAGE SYSTEMS RESEARCH Annual Peer Review, Nov. 19-20, 2002, Washington, DC

The High Power LiON Battery

Battery Physical Specifications

Overall Battery Dimensions:

Width:	50.38 in (1280mm)
Height:	45.00 in (1143mm)
Depth:	28.50 in (724mm)
Total Weight (including modules):	1100 lbs (500kg)
Battery Modules:	11 each (series connected)
BMS Modules:	1 each
High Voltage Junction Box:	1 each
Forced Air Cooling:	1600 CFM (Filtered)

Front doors and high voltage box door are moisture sealed

DOE ENERGY STORAGE SYSTEMS RESEARCH Annual Peer Review, Nov. 19-20, 2002, Washington, DC The Look of The High Power LiON Battery

Battery with modules

Battery cabinet with high

All Power and communication connections are front mounted for easy service.

DOE ENERGY STORAGE SYSTEMS RESEARCH Annual Peer Review, Nov. 19-20, 2002, Washington, DC Battery Management System (BMS)

LiON High Voltage Battery Protection & Control Requirements:

- OVERCHARGE PROTECTION
- OVERDISCHARGE PROTECTION (OPTIONAL)
- OVERTEMPERATURE PROTECTION
- OVERCURRENT PROTECTION
- **GROUND FAULT DETECTION**
- INTERNAL BATTERY FAULT DETECTION
- WATCHDOG TIMER LOSS OF COMMUNICATION WITH VEHICLE CAUSES DROPOUT OF CONTACTORS BY BMS
- SAFETY INTERLOCK TO CAUSE DROPOUT OF CONTACTORS IN THE CASE OF ABUSE CONDITIONS CONTROLLED BY I-BMS
- CELL BALANCING

ELECTRONIC SYSTEM CONFIGURATION

- The Basic Structure of the Saft Electronic System:
 - High speed, distributed, cell level protection & balancing processing
 - Synchronous voltage data gathering telemetry
 - 3 Safety Interlocks as needed (Discharge, Charge, & Redundant Overcharge)
 - Optical isolation connection to I-BMS with inherent in-line safety
 - Inter-Module & Intra-Module Balancing under I-BMS computer direction
- Internal BMS Components:

BMS Circuit Board 110VAC to DC Power Supply 110VAC Fan relay CanPro Power Relay

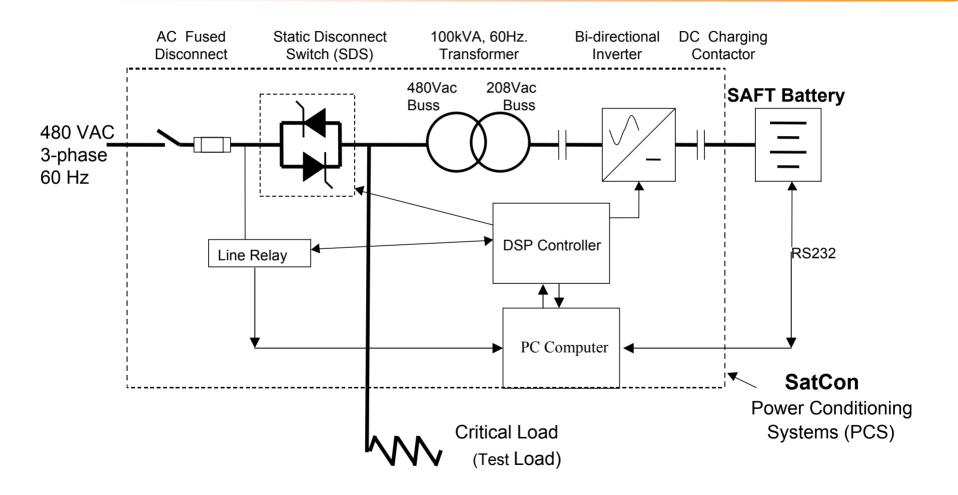
DOE ENERGY STORAGE SYSTEMS RESEARCH Annual Peer Review, Nov. 19-20, 2002, Washington, DC Battery Module

- Ruggedized Construction
- 12 high power HP30 cells (series connected).
- DC power terminals and communication terminals front mounted for easy serviceability.
- CANProbe circuitry monitors cell voltages and module temperature.
- Battery module weight: 45.5 lbs
- **Dimensions:**
- W: 5.75in , H: 10.00in , Depth: 19.56in

"SAFT 100 kW Li-Ion Battery / SatCon PCS " System

PCS AC Parameters – Grid Connected / Stand Alone:

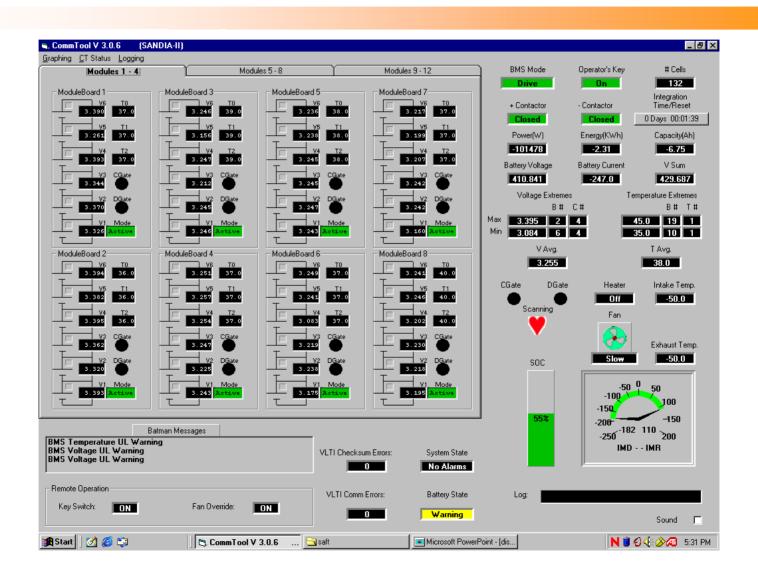
Rated Output Power	:100kW/100kVA 110% overload
Frequency, Rated	: 60 Hz
Rated AC output voltage	: 480 V AC
Operational range of line linkage voltage	: Rated voltage+10%/- 12%
Operational range of line linkage frequency	: Rated frequency ±1%
Efficiency of power conversion	:>95%Without Transformer :>93% With Transformer
Power factor	:0.8 lead to 0.8 lag Programmed ramp
Power Real and Reactive Accuracy	: ± 1%


Output current harmonics Grid Connected :THD \leq 5%, Each \leq 3%

PCS

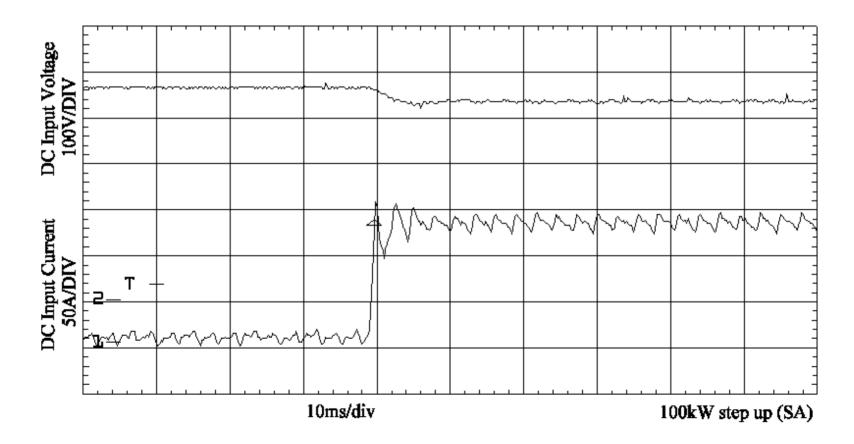
PCS Efficiency Measurements

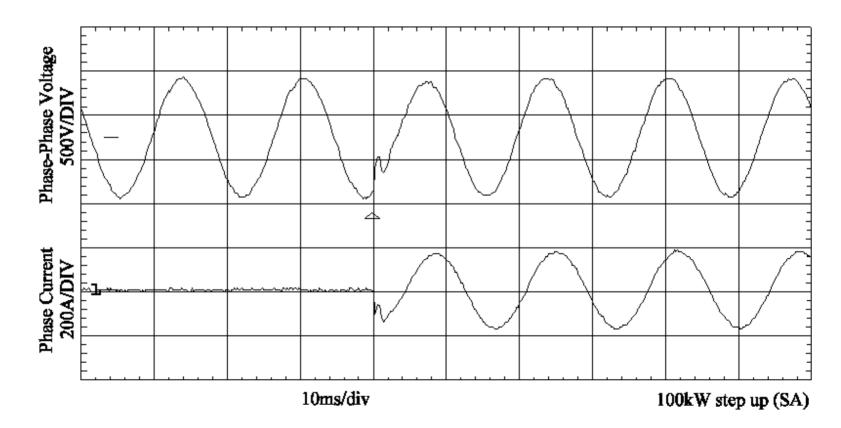
Bat DC Voltage	Bat DC Current			Efficiency
441V	118.9A	Pdc = 52.4 kW	Pac = 49.07 kW	= 93.6 %
Bat DC Voltage	Bat DC Current			Efficiency
432V	249.0A	Pdc = 107.5kW	Pac = 100.5 kW	= 93.5 %
Bat DC Voltage	Bat DC Current			Efficiency
442V	121.0A	Pdc = 53.5 kW	Pac = 50.0 kW	= 93.4 %
Bat DC Voltage	Bat DC Current			Efficiency
436V	246.4A	Pdc = 107.5 kW	Pac = 100.0 kW	= 93.0 %
	441V Bat DC Voltage 432V Bat DC Voltage 442V Bat DC Voltage	441V118.9ABat DC Voltage 432VBat DC Current 249.0ABat DC Voltage 442VBat DC Current 121.0ABat DC VoltageBat DC Current 121.0A	441V $118.9A$ $Pdc = 52.4 kW$ Bat DC Voltage $432V$ Bat DC Current $249.0A$ $Pdc = 107.5 kW$ Bat DC Voltage $442V$ Bat DC Current $121.0A$ $Pdc = 53.5 kW$ Bat DC VoltageBat DC Current	441V $118.9A$ $Pdc = 52.4 kW$ $Pac = 49.07 kW$ Bat DC Voltage $432V$ Bat DC Current $249.0A$ $Pdc = 107.5 kW$ $Pac = 100.5 kW$ Bat DC Voltage $442V$ Bat DC Current $121.0A$ $Pdc = 53.5 kW$ $Pac = 50.0 kW$ Bat DC VoltageBat DC Current $121.0A$ $Pdc = 53.5 kW$ $Pac = 50.0 kW$



Battery discharge characteristics at different power levels

Saft Battery Dis	scharge Test (Oct. 4	, 2002)						
Status before d	ischarge: SOC=64%	6, Cell Vmax=3.9V,	Cell Vmin=3.6V					
Status after discharge are the followings								
Load (kW)	Output Current (A)	Battery Current (A)	Discharge time (min)	Cell Vmax (V)	Cell Vmin (V)	SOC (%)	Vsum (V)	Stopped by Warning
10	13	25	26min 37sec	3.6	3.2	29	464	Low SOC
25	31	56	11min 30sec	3.5	3	29	453	Low SOC
50	62	115	5min 38sec	3.5	2.9	31	440	Low Cell Vmin
75	93	180	3min 28sec	3.4	2.7	42	432	Low Cell Vmin
100	124	247	1min 39sec	3.4	3	55	429	Over Temp


Battery display status at end of 100 kW discharge



DC voltage and current waveform in 100 kW AC step load In stand alone mode

AC phase voltage and current waveform in 100 kW AC step load In stand alone mode

Line Harmonics measurements

	Input Power	Input Power	Frequency	Voltage	Voltage	line Current	Current
	KW	KVA	Hz	VI-n	THD	Amps	THD
Stand Alone mode	101.9	101.9	60	278.4	1.10%	122	1.10%
Stand Alone Mode	52	52.12	60	276.9	1.10%	62.1	2.10%
Line Link Mode	80	100	60	276.9	0.70%	122	1.10%

1st 100 kW Li-Ion Battery/PCS System

- System Integration tests are complete at SatCon.
- System is ready to ship to Southern Services Co. after demonstration on Nov. 26, 2002.

2nd 100 kW Li-Ion Battery/PCS System

	2 nd 100 kW P C S	2 nd 100 kW Battery
Finishing Assembly	Nov. 18, 2002	Jan. 03.2003
Factory Acceptance Test	Dec. 02,2002	Jan. 10, 2003
Battery Integration Test (using the 1 st battery)	Dec. 12, 2002	N/A
Ready for Shipping to AEP	Dec. 16, 2002	Jan. 13, 2003

Storage for supporting Distributed Generation (DG) expected to be mainly high power devices

Lithium ion expected to be a major contender in this area

Dr. Imre Gyuk of the U.S Department of Energy

John Boyes and Nancy Clark of SNL

↑Тор

Agenda