Workflow Concepts of the Java CoG Kit

Gregor von Laszewskil**Mike Hategan?
1Argonne National Laboratory, Mathematics and Computer Science Division
Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60440
2University of Chicago, Computation Institute,
Research Institutes Building #402, 5640 S. Ellis Ave., Chicago, IL 60637-1433

Abstract

Many scientific simulations and experiments require the coordination of numerous
tasks posed by interdisciplinary research teams. Grids can provide access to the neces-
sary high-end resources to conduct such tasks. The complex tasks and their interactions
must be supported through convenient tools. To address this issue, we introduce a num-
ber of Grid abstractions that make the development of Grid middleware-independent
tools possible and allow for the integration of a number of commodity tools. Our vi-
sion is implemented through an integrated approach based on a layered architecture
that bridges the gap between Grid middleware and scientific applications. Our ab-
stractions include specialized services, a Grid workflow engine and language, and Grid
faces — graphical abstractions that can be employed in science portals and standalone
applications.

1 Introduction

One of the important issues to address in Grid-based scientific and business computing is
the coordination of tangible tasks through workflows. In recent years we have seen a shift to
services oriented architectures in both disciplines. However, we still recognize the fact that
a higher-level of abstraction is needed in order to hide the complexity of developing service-
oriented middleware. Many application users in business or in the scientific community have
simple needs that require easy abstractions and tools to utilize the complex Grid infrastruc-
ture. One of these needs is to make the use of Grids possible, even for scientists with little
knowledge about Grids, through the availability of sophisticated workflow frameworks that
can provide the necessary abstraction. It is a necessary step towards the vision of enabling
Grid computing so that it is seen as a utility for sophisticated workflow scenarios. We focus

*Corresponding author: gregor@mcs.anl.gov

in this paper on workflow concepts that are important to enable scientific experiments. Un-
der scientific experiments we mean repetitive parameter studies and experiments conducted
on sophisticated instruments such as an advanced photon source or an electron microscope.

The paper is organized as follows. First, we focus on the definition of workflow and iden-
tify some specific issues that are unique to Grid workflows and their workflow management
systems. We present an overview about the workflow activities conducted by the Java CoG
Kit team members. Next we present in more detail our architecture that addresses some
of the workflow management issues, and we provide an implementation that is part of the
Java CoG Kit. The architecture includes an abstraction model, a workflow language based
on XML and GridAnt, and a Grid shell. We then present more details about the status of
our implementation. We conclude our paper by identifying future research tasks.

2 Grid Workflow

Since many definitions of workflow exist in literature, it is important to identify the termi-
nology that we use throughout this paper. Our definition of workflow is based on the one
introduced in [46]:

Workflow is concerned with the automation of procedures where documents, in-
formation or tasks are passed between participants according to a defined set of
rules to achieve, or contribute to, an overall business goal. Whilst workflow may
be manually organized, in practice most workflow is normally organized within
the context of an IT system to provide computerized support for the procedural
automation ...

This definition is later summarized in [46] to the following definition of the term workflow:

The computerized facilitation or automation of a business process, in whole or
part.

A workflow management system (WoMS) executes such workflows according to [46]:

A system that completely defines, manages and executes “workflows” through the
execution whose order of execution is driven by a computer representation of the
workflow logic.

Hence, if we are in the business of doing science or working on the Grid, the same
definitions apply to Grid workflows. We have to ask ourselves, what is different between
business and scientific workflows? If we carefully examine the definitions given in [46], we
discover many commonalities such as the need for a large number of resources in space
and time. The real difference lies in (a) integrating Grid middleware into the workflow
management system, and (b) focusing on the definition of workflow models that target cases

utilizing the Grid infrastructure. We expect that the boundaries between business and
scientific computing will soften even further in the future.

Formally, we define a Grid workflow model as a concept that helps the instantiation of a
workflow model into an existing Grid infrastructure. It is defined as a set of Grid resources
and services, a quality expectation defined by the user(s), and a workflow model acting on
them. More formally,

Wi = (grvgsa Quan)a

where

W; = Workflow instantiation,

G, = Grid resources,

G, = Grid services,

Q, = Quality expectations from the user,
and

W,, = Workflow model.

Others refer to W; also as concrete [20] or executable workflow [16] and to W, as abstract
workflow that is concretized as part of an instantiation.

One of the important issues in advanced Grid workflow is the concept of dynamically
changing workflows and their associated states. We simply denote the change through the
addition of a time stamp as part of our simple formalism and an adaptation function a at
time T. Hence,

Wl = (6,65, QW)
la®
wT+l — (gT—f—l’ GT+l QT+l WT+1)

Naturally, the changes can either apply to the resources, the services, the quality expec-
tations, and the abstract definition of the workflow model, or a combination of them. In
order to specify such a transformation function, a series of previous workflow instantiations
may be considered to determine a future instantiation. Hence,

WiTH - a(WiTjO,...,Wiij),

where m € [0,t], jo, ..., j1 < m,and joN..Nj; =0

It is important to notice that the workflow model presented here is dynamic in nature
in two aspects. First, it provides the ability to react to dynamically changing resources
that may be present at different times during the workflow execution. Second, it provides
the ability to dynamically change the workflow itself as it may be the case that different
workflows may be needed in a future Grid-based calculation. Hence, this model is different
form workflow models that address commonly static workflows and static resource mappings.
The goal of the Java CoG Kit is to include both concepts.

2.1 Management Issues in Grid Workflow

In addition to the dynamic workflow model introduced in the last section, we have to an-
alyze more closely the issues that lead to the practical reuse of such a system within a
Grid environment to build a foundation of requirements to derive a sophisticated workflow
management system. In Figure 1 we have categorized some of the management issues that
need to be addressed and are important for enabling a powerful Grid workflow management
system.

As part of the categorization depicted in Figure 1 we distinguish between the environment
that a Grid workflow managing system targets and the lifecycle of a workflow. Although we
target both business and scientific computing, we mostly focus our attention on managing
scientific workflows. As part of this management issue we need to deal with the project,
process, task, build, discovery, and project management issues that are related to the scien-
tific discovery process. Furthermore, we need to address management issues that are part of
the Grid middleware and address issues such as virtualization, security, resource, data and
information management. Each of these management issues poses further concerns that are
discussed in more detail in [44, 34].

The lifecycle of a Grid workflow deals with defining a workflow model based on a descrip-
tion methodology, such as workflow languages or schemas. Extensive planning leads to a
workflow model while considering services, resources, and quality assessments. To guarantee
long running workflows, checkpointing is a necessity. Monitoring the workflow must deal
with issues such as fast response vs. performance and scalability. User interfaces should
support the convenient display of large workflows typical in scientific communities. Further,
the workflow should adapt to ad hoc changes that occur in the underlying Grid infrastruc-
ture or as part of the experiment process. Next we discuss in more detail how workflows can
support the scientific application management, as well as the integration of Grid application
management issues. In order to not only present a requirement analysis, we include pointers
to subsequent sections and other papers that address them.

2.2 Workflows for Scientific Experiments

The management issues related to scientific experiments are manifold and increase in com-
plexity the more general they are. We depict in Figure 1 a subset of management issues that
need especial attention for scientific experiment management.

Processes and Tasks need to be managed in order to define tangible items to be executed
as part of the complex scientific discovery process. Processes and tasks are the elemen-
tary parts of workflows for experiment management. This is addressed through the
Java CoG Kit abstraction model (Section 4.3) and the language features to formulate
tasks (Section 5.2.4).

Components need to be managed to allow reuse within the community as part of the
complex execution of processes and tasks. This through the Java CoG Kit workflow
repository as discussed in [40].

Project Management
— Buisiness ‘—E

— Process/Task Management
— Component Management
— Build Management

— Science <———— Experiment Management
— Discovery Management

— Environment <
— Knowledge Management

— Security Management
— Resource Management
— Data Management

— Information Management

— Grid
Workflow <— — Deployment Management
— Virtualization Management
— Adaptation Management
Planning Schema
— Modeling 4—[
Defining Language
— Instantiating

API

— Lifecycle «———— Checkpointing <—|: Serialization

— Monitoring

L— Adapting

Figure 1: Workflows for Grids must address management issues posed by scientific and Grid
applications.

Build processes need to be managed to simplify the bootstrapping and generation of soft-
ware for later execution. This is addressed through the integration with other build
tools such as Ant as discussed in Section 5.1.

Experiments need to be managed to deal with individual discoveries conducted during sin-
gle or multiple experiments. Parameter studies as part of the experiment management
are common. This is addressed through the use of a number of features of the workflow
language that we introduce later. Features such as iterators, file staging and remote
execution (as discussed in Sections 5.2.3 and 5.2.4) build the basic enabling support
for this requirement.

Discovery processes need to be managed as part of the evaluation processes of the ex-
periments. It is important to derive a strategy that evaluates the experiments and
encourages the discovery of new results. This is addressed through the ability to inte-
grate custom designed adaptable components as discussed in [40].

Knowledge extracted from the discovery process need to be managed and communicated to
other scientists so the results can be shared. This is addressed through the integration
of workflows and applications into a community solution as part of portals [19] and
collaborative software such as the Access Grid [2].

2.3 Grids for Scientific Experiments

To employ the Grid appropriately as part of a workflow management system, one must
address the following management issues.

Deployment processes need to be managed as we may deal with long-running applications
that should not be affected by a change in the infrastructure during the workflow
lifecycle. This is an open research problem and is in part addressed by the Java
CoG Kit architecture and provider model as discussed in Section 3.3. Other possible
solutions include the Virtualization of the environment [15].

Security processes need to be managed while dealing with all aspects of enabling security,
such as single-sign-on, encryption, and data security. Special roles within a scientific
discovery process may be assigned and the workflow may be assembled and monitored
differently based on policies and privileges. This is addressed by reusing the Java CoG
Kit security libraries that build the basis also for other Grid middleware, such as the
Globus Toolkit.

Resources need to be managed as part of the sophisticated Grid infrastructure that are
reused by workflow instantiations. This is addressed through a simple abstraction of a
broker and scheduler as part of the Java CoG Kit. Users can even design and integrate
their own brokers and schedulers.

Data management will help to move the necessary inputs for the workflow processes to
the appropriate resources. This is addressed through the Java CoG Kit file transfer
abstractions as discussed in Section 5.2.4 and the availability of the Java CoG Kit
GridFTP libraries that are also redistributed with the Globus Toolkit. Other systems
such as Tupelo could be integrated in similar fashion through our abstraction model
[10].

Information that describes the state of the Grid and the workflow needs to be managed
in order to adapt appropriately to the environment conditions. This is addressed
by reusing Grid information services such as MDS [21] and being able to expose its
functionality through our concept of integrating with Java methods.

Virtualization management addresses the concept of virtualization in Grids including man-
agement of members of the virtual organization. This is an open research issue and is
addressed in part for example through efforts on ad hoc Grids [42]

Adaptation management deals with the changing environment as part of the workflow
instantiation. Workflow models may be modified depending on the state of the envi-
ronment in which the workflow is operating. An example is the selection of a particular
workflow dependent on user requirements or changes in the infrastructure. This is an
open resource issue and is in part addressed through the integrated use of workflow
repositories [40] and resource brokers and schedulers while reusing information provided
by Grid information services.

2.4 Lifecycle Management

A workflow management system deals with the lifecycle of the workflow, which includes the
definition through workflow schemas or languages and the planning as part of the modeling
effort. Workflows must be instantiated in order to properly assign and adjust resource
requirements. Checkpointing and monitoring are of special importance to deal with and
display faulty situations. We will touch in Section 5.2 and 5.2.5 some practical solutions to
this issue.

3 Java CoG Kit Concepts

Next we describe the concepts to support workflows in the Java CoG Kit as part of a
sophisticated workflow management system and framework. One of the goals of this system
is to support the experiment management in scientific applications. Hence, the workflow
management system must interface between the scientific experiment, the applications that
are executed as part of the experiment, the collaborations necessary to plan and organize
such experiments, and the experiment infrastructure — which includes that not only the Grid
infrastructure, but also commodity infrastructures and laboratory infrastructures related to

the experiment itself. We have depicted the role of the workflow management system in

Figure 2.

[Experiment Plan]

Workflow
Management
System

[Collaboration] [Application]

Experiment Infrastructure

[Laboratory][Commodities][Grid]

Figure 2: The layered approach of the Java CoG Kit provides mechanisms for incrementally
enhancing workflow management components.

3.1 Historical Perspective

Our view in regard to experiments and workflows has been shaped by our long collaborations
with experimental scientists. Activities that center on the concept of workflow have a long
tradition within the members of the Java CoG Kit team.

Based on these collaborations, accompanied by our Grid experience [33], we have evolved
several concepts as part of the Java CoG Kit [38] that help us in the development of sophis-
ticated workflow systems. These concepts include

e abstractions for queuing systems and workflow graphs with simple dependencies as
found in [31];

event-based notifications and monitoring as found in [31, 37, 36, 43];

elementary fault tolerant features;

e a simple execution pattern [37], now termed cog pattern;

hierarchical graphs [37];

structured control flow with loops and conditions [39];

8

e visual interfaces to augment the workflow execution [31];

e an adaptive workflow framework, as described formally in Section 2; and

e workflow component repositories.

The origin of the adaptive workflow framework is base don the work described in [31],
which defines a dynamically adapting scheduling algorithm that chooses optimized algo-
rithms based on performances measurements to identify a set of resources that fulfill a given
high-level function such as a matrix multiplication. The task of conducting the matrix multi-
plication is specified at the time the workflow is specified. However, its instantiation and the
appropriate selection of which algorithm to chose are conducted during runtime at a later
time. As obvious from Table 1, the current architecture of the Java CoG Kit has evolved over
a long period of time and is strictly driven by user requirements that we included gradually
into our framework over time. Hence we are confident that many of the features that evolved
in our current implementation reflect requirements of many Grid users.

Table 1: Evolution of the Java CoG Kit workflow concepts

Date Refernces Activity and Concepts
1994-1995 [31] Interactive parallel computing environment for metacomputers based on a task
and graph concept
1995-1996 [30, 32] A workflow metacomputing system in Java introducing the concepts of a meta-
computing information service and adaptive workflow and resource mapping
Aug. 1996 Start of the Globus Project
1997 [37] A demonstration at SC’1997 introduces the concepts of a graphical user inter-
face with fault tolerance and interactive debugging of workflows
2000 [37] The term Java CoG Kit is introduced
2001 [6] Adaptation to the new Globus Toolkit, reimplementation selected features of
previous systems. The concept of abstractions was formulated for the first time
2002 [45, 41] Grid Service Flow Language
2002 [12] The jglobus module is distributed with GT3
2003 [35, 3] GridAnt, a workflow system based on Ant introduces XML as workflow lan-
guage
2003 Karajan, a much enhanced version of GridAnt (interfaces with GT2, GT3,
SSH through providers) introduces significant scalability enhancements as well
as workflow language enhancements to include structured control flow, loops,
and exceptions
2004 [6] GridShell, a simple shell for sequential flows (interfaces with GT2, GT3, SSH
through providers) is introduced. Also the development of Grid providers and
the inclusion of GUIs through XML language is performed
2005 [39, 40, 6] Java CoG kit interfaces with GT4, and Condor through providers and a work-

flow repository is prototyped [40]

3.2 Key Concepts

Next, we will introduce several concepts of the Java CoG Kit and explain how they are helpful
for the definition of a sophisticated workflow system that supports experiment management.

Based on our interactions with developers and users we have identified that many of them
desire to have an integrated but modular system that allows them (a) to program the Grid
in familiar higher level frameworks that permit rapid prototyping, (b) to have a framework
in which workflows on the Grid can easily expressed, (c) to have a framework that supports
monitoring the state of a workflow through visual components, and (d) to have a system that
is easy to maintain and deploy. As depicted in Figure 3 the Java CoG Kit integrates a variety
of concepts to address the varying functionality and usability aspects of the user communities
touched by a Grid workflow system. Hence, end users will be able to access the workflow
system through standalone applications, a workflow desktop, or portals. Command line tools
allow users to define workflow scripts easily. Workflow programming is achieved through
services, abstractions and APIs. Additionally, we integrate commodity tools, protocols,
approaches, methodologies, while accessing the Grid through commodity technologies and
Grid toolkits. Through this integrated approach the Java CoG Kit provides significant
enhancements to the Globus Toolkit. The Java CoG kit is based on a modular design
allowing easy integration of enhancements developed by the community. Today, the Java
CoG Kit distributed in part with the Globus Toolkit version 3 and version 4. However, many
of the features demonstrated in this paper are only available through the software found on
the Java CoG Kit Web pages [14].

3.3 Architectural Design

In order to support our vision of integration workflows management system and tools to be
part of the Java CoG Kit we use a layered architecture that allows easy separation between
concerns. This architecture allows for the gradual enhancement of workflow capabilities
within our application (see Figure 4). We describe the architecture shortly while proceeding
from the bottom up.

The bottom of the architecture integrates with typical Grid middleware. Above it we
have designed an abstraction layer that focuses on job submission file transfer and authen-
tication. With the help of providers, we enable access to different Grid middleware. More
sophisticated abstractions to enable task and workflow management are part of the next
level. This architecture defines APIs, tools, and services that help in the coordination of
such tasks. Coordination of the tasks is handled either by a workflow engine, a grid shell,
or simply by abstractions that define workflow graphs. Gridfaces build the next higher level
of abstractions. They are visual abstractions shared amongst stand-alone applications or
portals. We show our layered architecture in Figure 4.

Our architecture has the characteristic of supporting multiple Grid middleware. This
has the practical implication that workflows expressed with our model can adapt to (a)
the evolving standards, (b) the evolving Grid middleware, (c¢) and the evolving deployment
of middleware once appropriate providers are available. Hence, it will allow us to enable
switching between different Grid middleware in a running workflow.

10

Standalone
Applications

/ Desktop }

L Web Portals
Java CoG Kit
Command line
A\

tools

Abstractions

Services

Increased exposed Usability

APls

Eﬂ

v

Increased exposed Functionality

Figure 3: The Java CoG Kit integrates several mechanisms that together build a powerful
workflow management system for Grids.

4 Java CoG Kit Workflow Concepts for Programmers

We focus now our attention on a more detailed description of the concepts useful to devel-
opers. In general we provide support for workflows through

e the CoG Kit patterns and abstractions,
e the CoG Kit XML-based workflow engine (Karajan/GridAnt), and
e the CoG Kit Gridshell.

Which of the solutions to chose depends on the user’s requirements; see Table 2.

11

[] Nano Bio-] Disaster B Portals
Workflow materials Informatics Management
Applications
Applications —
prorkflow Workfl Workfl
Design & orkflow orkflow .
Monitoring { Portlet J ‘ VizualizenfEdir.orJ Gridfaces Layer
Workflow ! Data and Task
Frameworks e Management Layer
Workflow Waorkflow Queue/Set . .
Abstractions { ‘ Abstractions Abstractions CoG Kit Abstraction Layer
N | CoG |
CoG Kit providers CoG CoG CoG CoG CoG
CoG CoG CoG

Grid Middleware & GT4
Commodity GT2 SSH GT3.02 GT3.02 GT3.02 WS-RF local WebDAV
Technologies

Figure 4: The layered approach of the Java CoG Kit provides mechanisms for incrementally
enhancing workflow management components.

4.1 Providers

We introduced the concept of Grid providers allows different Grid middleware to be in-
tegrated into the Java CoG Kit. Abstractions (defined in the subsequent sections) allow
the developer to choose at runtime to which Grid middleware services tasks related to job
submission and file transfer are submitted. This capability is enabled through customized
dynamic class loading facilitating late binding against an existing production Grid.

Benefits. The benefits for Grid workflows are that workflow models can be designed that
abstract the Grid infrastructure. The instantiation of all or part of the workflow can be
done at runtime. It will be possible to design a workflow engine as part of the workflow
system that can conduct the tasks associated with late binding including locating optimized
resources and their reservation.

12

Table 2: Current features of the Java CoG Kit solutions.

Abstraction

API Karajan GridAnt GridShell
Java API ° — o
XML ° ° —
If, While, For ° — o
Caching — ° — —
Checkpointing ° ° — o
Logging — o — °
Viewer o) — o
Batch ° — °
Uses Karajan — ° — o
Uses Abstr. API . ° ° °
Service — o — o

e = feature available,

o = feature under development,

— = feature not available.

The CoG Kit is under development, and these features are subject to change.

4.2 Pattern

The CoG submission pattern provides a convenient methodology for developing event-based
Grid workflow tasks in Java. First, one needs to specify a job or task as part of the creation
method. Second, the job or task needs to be submitted. Third, the job or task needs to react
upon status changes. Fourth, we have a simple object class that can be used to instantiate
such an object. In Figure 5 we list a pseudo code for creating such a pattern. Please note that
the semantics of this pattern does not make any assumptions about the sophistication of the
create, submit, or status changed method. Hence, the CoG pattern can be used to integrate
advanced prediction or task-to-resource mapping strategies as part of the implementation.

Benefits. The existence of such a pattern allows the integration of a various similar struc-
tured solutions into a workflow management system. The implementation of such tasks may
differ, but the way we access them is the same. Hence, the software engineering effort to
integrate custom-designed tasks is lowered. However, most developers will want to use our
abstractions and higher-level abstractions.

4.3 Abstractions

We have identified a number of useful basic and advanced abstractions that help in the
development of Grid workflows. These abstractions include job executions, file transfers,
workflow abstractions, and job queues and can be used by higher level abstractions for rapid
prototyping. As the Java CoG Kit is extensible, users can include their own abstractions

13

public class COG implements StatusListener {
public void create() { ... }
public void submit OO { ... }
public void statusChanged (StatusEvent e) { ... }
public static void main (String argl[]){
try {
COG cog = new COG();
cog.create();
cog.submit () ;
catch (Exception e) {
logger.error("Error:", e);

Figure 5: The CoG pattern assists users in developing simple event-based Grid applications.

and enhance the functionality of the Java CoG Kit.

In Figure 6 we show how easy it is to use the abstractions to define a task, the elementary
unit of our workflows. Here our task has an associated executable with options and a standard
output associated with it. To coordinate the execution order tasks, one can use our simple
interface to create dependencies between tasks, as shown in Figure 7. To map the tasks onto
a Grid service, one can use service and security abstractions, as shown in Figure 8. The
service abstractions are used to specify the appropriate service and establish a contact to it,
while the security abstractions are used to authenticate with the service. Status updates can
be programmed through the use of customized handlers, as shown in Figure 9. A handler is
typically used as part of the submit method in the CoG pattern.

Benefit. Our abstractions allow the definition of direct acyclic workflow graphs and pro-
vide a simple, but sophisticated, programming model for defining workflows based on task
dependencies.

4.4 Data structures

Based on the simple graph workflow abstraction, we are developing a number of useful
abstractions around data structures that users may desire. Such data structures include set
of tasks, queues, parameter studies, and hierarchical graphs.

Benefit. The benefit to the workflow developer is the availability of simple solutions that
may address the users’ requirements. In addition, these solutions can be viewed as pattern
for customized solutions.

14

Task taskl = new Task();
JobSpecification spec = new JobSpecificationImpl();
spec.setExecutable("/share/bin/scheduleExperiment") ;
spec.addArguments("-date 30 August 2006

"-owner cn=Gregor von Laszwski");
spec.setStdOutput ("confirmation.txt");
taskl.setSpecification(spec);

Figure 6: Example of using the task abstraction for pseudo code to conduct an experiment
reservation

TaskGraph tg = nhew TaskGraphImpl();

public void create () {

// specify tasks @
/* Add the tasks to the TaskGraph */
tg.add(taskl); @ @
tg.add (task2);
tg.add(task3);
tg.add (task4) ;
task2) ;

tg.addDependency (taskl,
tg.addDependency (taskl, task3);
tg.addDependency (task2, task4);

tg.addDependency (task3, task4);

Figure 7: The CoG pattern assists users in creating dependencies between tasks.

Service service = new ServicelImpl(Service.JOB_SUBMISSION);
service.setProvider (¢ ‘GT3_2_1"’);

// Set Security Context - e.g. certificates and such
SecurityContext securityContext

= CoreFactory.newSecurityContext (¢ ‘GT3_2_1’");
securityContext.setCredentials(null);
service.setSecurityContext(securityContext);

// Set Contact - e.g. where to go to
ServiceContact serviceContact =
new ServiceContactImpl(
http://hot.mcs.anl.gov:8080/ogsa/services/base/gram/,
MasterForkManagedJobFactoryService") ;
service.setServiceContact (serviceContact) ;

taskl.setService(Service.JOB_SUBMISSION_SERVICE, service);

Figure 8: The CoG pattern assists users in mapping tasks onto a Grid service.

15

public void submit() {
TaskGraphHandler handler = new TaskGraphHandlerImpl();

try {
handler.submit (tg) ;

} catch (Exception e) {
logger.error(‘ ‘Some Error occured’’, e);
System.exit (1) ;

}

Figure 9: The CoG pattern assists users in obtaining status updates in categorized handlers.

4.5 Gridfaces

An additional abstraction we have introduced into the Java CoG Kit is the concept of
Gridfaces. Gridfaces are abstractions for visual components that have similar functionality
defined through a uniform programming interface but that may be rendered in different
visualization engines. We can define Gridfaces to browse a remote Grid directory for a
stand-alone application or a Grid portal. The abstraction for such a browser contains three
areas: the location of the file, a directory tree, and the status of accessing the remote
location. Defining Gridfaces allows the application developer or portal developer to simplify
the long term development of reusable graphical components, while relying on the common
model-view-controller pattern to separate the model functionality from the view and the
controls. Hence, adaptations to other visual frameworks become easier while reusing logic
that is unrelated to the visual framework. Special Gridfaces for the display of graphs and
their monitoring need to be developed.

Benefits. Providing similar-looking visual components for a variety of use cases, including
portals and stand-alone applications, makes it possible to address the workflow user commu-
nity requirements. While portals provide advantages in deployment and ease of use through
a familiar paradigm for the novice, stand-alone applications with more sophisticated inter-
faces, including easy integration of the users’ desktop machine capabilities, will fulfill the
expert users’ requirements. The deployment support that is provided by the latter strategy
can be augmented through Java Webstart to conduct updates on the fly.

5 Java CoG Kit Workflow Concepts for Component
Developers

So far we have targeted the programmer who builds Java-based solutions for experiment
management. Next, we focus on developers who can specify workflows as part of a simple
XML workflow language interpreted by a workflow engine that is part of our workflow man-
agement system. The workflow engine interfaces capabilities provided by the different layers
within our architecture. Hence, it hides much of the internal designs of the Java CoG Kit

16

workflow solutions by projecting to the component developer an integrated set of tools that
can be accessed through convenient specification (see Figure 10). Additionally, program-
mers can integrate the capabilities of the workflow engine into their frameworks through
abstractions and APIs.

~ ~N — e .
Tools Specification Programming
4 N\
: Simple Workflow Workflow
Editor Language | Abstractions
- J
>
. Workflow
Monitor {Workflow XMLJ APIS
- <
Workflow
Debugger Services
A J \
' N\ V-
Command line Workflow
tools Translators Portlets
o L o
Instantiation and Execution
o
Workflow J
L Engine
p
Grid J
-

Figure 10: Components of the Java CoG Kit workflow management system.

5.1 GridAnt

Gridand was conceived by the author in 2002 as a convenient and quick way to provide a
workflow system and engine for Grid computing based on an XML language. At that time,
the development of systems of BPELAWS was still in its infancy. As Ant is used by millions
of users a day and provided the de-facto standard for coordinating build processes in Java
it was convenient to integrate extensions to Ant that call the Java CoG Kit. The system
was specified in [35], and a small subset of the features was implemented [3]. During the

17

implementation phase it quickly became obvious that although GridAnt fulfilled its promises,
it did have limitations based on the scalability of Ant. Although we still provide the Grid Ant
elements as part of the Java CoG Kit, we have replaced the engine as described in the next
section.

Benefit. GridAnt is a reliable tool that can be easily extended through accessing the Java
CoG Kit task abstractions. It is best suited for small workflows. Conditions and iterations
are more difficult to design.

5.2 Karajan

Today’s Java CoG Kit workflow engine is an evolution of GridAnt. It is called Karajan, after
a name of a conductor of the Berlin Symphony to reflect the act of coordination in its name.

In our workflow engine, we added support for flow control constructs such as conditions
and loops. We also have reimplemented features that traditional Ant provides, such as se-
quential and parallel blocks. Figure 11 depicts a number of the workflow patterns supported
within the Java CoG Kit workflow engine. Specialized Grid-enabled tasks for job submis-
sion file transfer and authentication are available that can be augmented with appropriate
providers.

Next, we highlight a subset of examples that illustrate some of the capabilities of Krajans
workflow engine and its specification language.

5.2.1 Modularization

To build components for our workflow system, we are using concepts of projects, elements,
and include files as is used in Ant.

Projects. The concept of named projects allows us to refer to different workflow projects
by name.

<project name="experiment"> ... </project>

Elements. The concept of elements is one of the most important features of our workflow
language as it allows the definition of new elements into the language. Elements have a name
and a number of parameters. Once defined, the element can be reused under its name in the
program code. Assume we define the following element.

<element name="printExperimentFiles"
arguments="input, output">

<echo message="Input = {input}"/>
<echo message="Output = {input}"/>
</element>

Once we have defined a new element, we can invoke it in the following way:.

<printExperimentFiles input="input.dat" output="output.dat">

18

ii) iv)

B C var

O | >

Figure 11: Selected workflow patterns that are supported by the Java CoG Kit: (i) sequence,
(ii) parallelism, (iii) fork, (iv) variables, (v) for loop, (vi) choice, (viii) operators

Descriptions and Annotations. With the description concept, we can use an annotation
and description to provide information about the use of an element. The description should
include a detailed textual explanation of what this element is for. In experiments, the
annotation can be used in visualization tools and may include a label for the element to be
displayed by such tools. Annotations and descriptions can be changed during the course of
a workflow instantiation.

<element name="element" annotation="label"
description="Demonstrating annotations"/>

Namespaces. Through the concept of namespaces we can define elements that are aug-
mented automatically with a prefix. This enables multiple workflow developers to develop
components in parallel while using predefined namespaces. It also allows one to conveniently

19

File “iew Help

3 L
2.

| START

2 4 =
&
(Y Py
P
& »3 & A

END

Figure 12: The Java CoG Kit is planned to handle hierarchical graphs.

rename a number of elements in a file in order to avoid name clashes. Assume we define the
following namespace

<namespace prefix="gregor"> ... </namespace>

Then, each element that is defined in the block is preceded by the prefix “gregor:”.

Include. The include concept allows us to structure element definitions and other Java
CoG Kit workflow scripts in separate files and directories in order to organize them appro-
priately. The concept is similar to the include pragma in the C programming language.
Hence, files can be included in a workflow as follows:

<include name="experiment.xml">

20

£ Java CoG Kit - Karajan Des| -10] x|
File Wiew Help
[" &Y start| @ stop
> START —
[g 3
@ & @}A
[:I —
END _
q] I | D] |
¥ B nodes, 7 edges

Figure 13: Parallel and sequential constructs simplify the definition of graphs.

Repository. Key to the shared workflow management system is a convenient service to
store, retrieve, and modify workflow components defined by the community. At present,
we are defining a simple extensible framework to design, build, and deploy such a workflow
repository service. A repository is intended to be used in ad hoc Grids or in community
Grids. More information about our current repository design can be found in [40]. The
information included in the repository is formulated as XML metadata that can be searched
conveniently.

5.2.2 Variables and Operators
The concepts of variables and operators are used to store states as part of dynamically

executing workflows.

Variables. Our concept of variables is untyped, similar to that of python. Its values are
interpreted in the context of other workflow expressions.

<set name="index" value="0"/>

This variable can be referenced in the workflow as “{index}”.

21

Lists, Ranges, and Maps. We have also introduced additional concepts that are well-
known data structures and make the programming of advanced workflows easier. These
concepts include lists, ranges, and maps (or hash tables). Such data structures are important
to easily formulate parameter studies and other repetitive tasks as part of the experiment
management. For more information on these data structures, see [14].

<set name="range">
<range from="1" to="10"/>
</set>

Operators. We have defined a number of standard operators that allow the integration
within conditional statements. Our operators include mathematical and Boolean operators
such as sum, product, equal, and not. An example of how a simple math operator can be
used is given below. It calculates the sum of 1, 2, and 3.

<math:sum>
<argument value="1"/>
<argument value="2"/>
<argument value="3"/>
</math:sum>

5.2.3 Workflow Structural Elements

Since we have to adapt to various conditions within the experiment workflow, it is necessary
to define a conditional statement and loops. Hence, our workflow engine supports not only
hierarchical graphs but also conditions, choices, loops, and even recursion.

Condition. Our workflow language contains an if construct. The syntax is defined by an
if tag immediately followed by a Boolean expression that determines the condition. The
statements to be executed are enclosed in then or else tags.

<if>...
<then> ... </then>
<elsif> ...
<then> ... </then>
</elsif>
<else> ... </else>
</if>

Choice. The concept of a choice will execute child elements in succession until one com-
pletes without error. A choice has transactional behavior and buffers its return values to
allow us to more easily parallelize a choice, as demonstrated in a forthcoming section. In our
example we simply print two messages; however, since the statements in the first sequential
block do not return an error, the second block will not be executed.

<choice>
<sequential>

22

<print> Starting Experiment A </print>
<generateError message="Error"/>
</sequential>
<sequential>
<print>Starting Experiment B</print>
</sequential>
</choice>

Loops. The definition of loops is straightforward and may include ranges and conditions.

<for name="i" in="{range}">
</for>
5.2.4 Parallelism

Our workflow language contains multiple constructs to define parallelism. The simplest
concept is taken from Ant to express sequential and parallel blocks of workflow statements.
In a sequential block, all elements are executed in sequential order while in a parallel block
the statements are supposed to be executed in parallel.

<sequential> ... </sequential>
<parallel> ... </parallel>

Scope Variables are scoped based on their position within sequential and parallel blocks.
This concept is especially useful if workflows are enhanced through the include statement
in various blocks. It keeps the code short and avoids side effects. The following example
demonstrates that the value of the variable is dependent on its scope.

<set name="a" value="Start"/>
<parallel>
<sequential>
<set name="a" value="Experiment A"/>
<echo>a is {a}</echo> <! prints Experiment A —-->
</sequential>
<sequential>
<set name="a" value="Experiment B"/>
<echo>a is {a}</echo> <! prints Experiment B —-—>
</sequential>
</parallel>
<echo>a is {a}</echo> <!prints Start -->

Parallel Loops. Many experiments, parameter studies occur that do not introduce side
effects. Therefore, it is important to support parallel loops. A loop can be augmented with a
mode that describes the way the statements in the loop are executed. If it is set to parallel,
it executes the statements in parallel.!

LAt present we have not implemented the mode but instead we use the element tag parallelFor.

23

<for mode="parallel" name="i" in="{range}">
. execute a parameter study ...
</for>

Parallel Choice. We have also designed the feature of a parallel choice that is specified
through the mode argument.? The parallel choice can be important when the execution of its
individual element blocks will take a long time to finish. Starting the executions in parallel
and taking the one that finishes first can increase the performance in exchange for possibly
unused cycles. The following code will start the first and the second block in parallel. It will
return this output generated by the second block and print “Second” as its execution time
is shorter.

<choice mode="parallel">
<sequential>
<wait delay="100"/>
<print>Experiment A</print>
</sequential>
<sequential>
<wait delay="50"/>
<print>Experiment B</print>
</sequential>
</parallelChoice>

Grid Tasks. Naturally, a Grid workflow system must access Grid functionality. To support
this capability, we have developed a number of elementary Grid tasks such as execution and
file transfer. The functionality is provided already by our Grid abstractions, and the workflow
system uses the abstractions to access the Grid internally. This also allows us to support
different providers as long as they have been implemented and a provider is available.

We distinguish the tasks grid:execute, which executes a program on local or remote grid
resources; grid:transfer, which transfers files between resources; and grid:authentication,
which authenticates to the Grid.

It is possible to define a provider that determines the protocol and mechanism used to
execute the appropriate Grid task. The elegance of our concept is that the developers do not
have to deal with the internal workings of the Grid services. Developers need to know only
which version of grid middleware they run on their Grids. The rest is provided by the Java
CoG Kit. This approach significantly simplifies the use of Grids as we not only abstract above
the Grid middleware but also enhance it by providing a sophisticated workflow framework.
Furthermore it would be simple to integrate metaschedulers into the framework to provide
even more simplifications for the users and hide events the bookkeeping associated with a
particular Grid middleware provider.

The following example illustrates the simplicity of our concept. The example authen-
ticates to a Grid, copies a program in source form to a remote machine, and compiles the
program on the remote machine.

2 At present we have not implemented the mode but instead we use the element tag parallelChoice.

24

<project name="RemoteCompilation">
<include file="cogkit.xml"/>
<task:authenticate provider="GSI"/>
<set name="host"
value="hot.mcs.anl.gov"/>
<set name="path"
value="/usr/local/j2sdkl.4.2_05"/>
<task:transfer desthost="{host}"
provider="gridftp"
srcfile="experiment. java" />
<task:Execute host="{host}" provider="gt2"
executable="{path}/bin/javac"
arguments="experiemnt. java"/>
</project>

5.2.5 Error Handling

The concept of error handling allows us to integrate strategies for errors and exceptions into
the workflow. Through the definition of an onFError element, we include the ability to catch
errors and react to them. A match argument specifies a regular expression that, when true,
triggers the execution of a block enclosed in the onError element. Our example shows how
to start a graphical user interface for entering the credentials in case they have expired or
cannot be found.

<onError match="(._Expired credentials detected._) |
(._Proxy file._not found._)">
<echo>Invalid credentials detected.</echo>
<executedava

mainClass="org.globus.cog.karajan.
util.ProxyInitWrapper"/>
<echo>Restarting failed element</echo>
<executeElement element="{element}"/>
</onError>

Checkpointing. The concept of checkpointing enables us to store intermediate states of
the workflow executions in order to roll back to it in case a problem occurs later in the
workflow execution. Additionally, breakpoints can be set to provide debugging support for
interactive running workflows.

5.2.6 Forms

As we work often with the input of interactive data, our workflow system enables the concept
to define forms as part of workflow tasks. We have defined a simple form language that allows
us to define graphical user interfaces. Figure 14 shows an example that is created with the
following code segment.

<set name="formData"
annotation="Reservation form for an experiment at ANL">

25

i Experiment Reservation ;IE'E'

Experiment Name:

Experiment Supervisor:

Date:

-Type
) EM-Microscope

) Photon Source

Ok

Figure 14: Example for a form created on the fly with the workflow form specification
elements.

<form:form title="Experiment Reservation"
id="form"
waitOn="IDOk">
<form:vbox>
<form:vbox>
<form:hbox>
<form:label text="Experiment Name: "/>
<form:textField id="IDexpname" columns="20"/>
</form:hbox>
<form:hbox>
<form:label text="Experiment Supervisor: "/>
<form:textField id="IDexpsupevisor" columns="20"/>
</form:hbox>
<form:hbox>
<form:label text="Date: "/>
<form:textField id="IDexpdate" columns="20"/>
</form:hbox>
<form:radioBox caption="Type" id="IDSex">
<form:radioButton caption="EM-Microscope"
id="IDmicroscope"/>
<form:radioButton caption="Photon Source"
id="IDxray"/>
</form:radioBox>

26

</form:vbox>
<form:button id="IDOk" caption="Ok"/>
</form:vbox>
</form:form>
</set>

5.2.7 Java and Python Language Support

Since many experiments may require considerable customization, we have introduced into
the workflow system several concepts of integrating with native applications. The easiest one
is projected through the task:execute element. However, to extend our workflow language,
we also have the ability to call Java methods directly. We show how easy it is to extend our
language by adding a method that returns the current time in milliseconds by calling the
appropriate system method in Java. First, we define an element called currentTime.
<include file="java.xml"/>
<element name="currentTime">
<java:invokeMethod method="currentTimeMillis"

classname="java.lang.System"

static="true"/>
</element>

To demonstrate how to call it, we call it to set the value of a variable so we can access it
at a later time.
<set name="time">

<currentTime/>
</set>

In addition to being able to execute arbitrary Java programs in a block of statements, we
are able to call Java methods within the workflow through the executeJava Element. The
example given starts up a graphical user interface for creating a Grid proxy.
<executeJava

mainClass="org.globus.cog.karajan.
util.ProxyInitWrapper"/>

In principle, we can also integrate arbitrary Java code blocks with a java tag. However,
we have not distributed this feature with our current version.
<java>
System.out.println("Hello World");
</java>

5.2.8 Performance Augmentations

As many experiments need to measure the time when certain actions have been conducted,
we have included a simple timer. This also allows us to conduct elementary performance
experiments and collect time information as part of parameter studies and the mapping of
tasks to remote resources. Such data can be included in customized metaschedulers. To
allow more than one timer, we have defined named timers that can be used as follows.

27

<timer name="timerl"> ... </timer>

we can time a block and with

{timerl}

We can refer to its value as it is exposed as a variable to the workflow.

To simplify the execution of real-time tasks, which are important as part of experiment
workflows, we intend to provide an extension to our tasks with an absolute time stamp.
<task:realtime name="experiment" date=5:20:12pm 06/01/2005>

</task:realtime>

Element Result Caching. As some experiments may be rather costly and complicated
to execute, we have included the concept of result caching into our framework. It allows
us to reuse elements without executing them once they have already been evaluated. This
feature can be switched on; by default it is disabled.

5.2.9 Syntax Translators

We have designed our workflow language around the concepts of XML so it is possible to
verify the inputs easily and to allow others to develop source-to-source code compilers or
translators that provide a more convenient form of specifying Grid workflows. To prove
this point, we have developed a simplistic language that can be translated into our XML
specification and can be directly executed by our workflow engine. In our simplistic language,
we simply replace the beginning and end tags with operators that use beginning and closing
braces op(...) instead of < op > ... < Jop >. It is feasible that other source-to-source
translators could be developed, thus enabling other frameworks to make use of our workflow
engine.

6 Related Research

Much related research in the area of workflow and Grid workflow exists; see for example [4]
127, 24] [23] [18, 16] [9, 8, 20] [28] [7, 26] [29] [5] [25] [17] [13]. In [47] an attempt is made
to provide a taxonomy for Grid workflow systems and compares and classifies a number of
them.

Our approach is not a duplication of other approaches but provides through our long
involvement in the field an integrated approach while providing a workflow language, a work-
flow engine, and a simple graphical visualization of workflow executions while focusing on
the integration of Grids through Grid abstractions and patterns. It also provides simple but
useful tools to manipulate and manage workflows. In contrast to Petri-Net based approaches
[29] it provides two more familiar programming models based on programming structures
and direct acyclic graphs. Hence, in contrast to Condor [7, 26] a DAG-based approach, it
provides also the ability to use conditions, loops and exceptions as part of the workflow lan-
guage. The familiarity of such concepts to the sophisticated scientific users comes in handy

28

as they are able to formulate parameter studies as familiarized by the Nimrod system [1].
While one of the main focus of Triana [27, 24], Kepler [18, 16], and UNICORE [28] is to
provide a sophisticated graphical user interface, our focus has so far been on an elementary
GUTI functionality that allows to visualize large execution graphs as frequently found in so-
phisticated scientific workflows. Through practical experience with our workflows, we found
it so far easier to formulate them through our powerful workflow language constructs and
perform post mortem visualization than build our workflows in a graphical editor. As the
design of the Java CoG Kit workflow framework is explicitly allowing the inclusion of user
defined components it is also easy to extend it not only on the component level, but also by
ingesting custom designed brokers and schedulers. While our focus is on the development of
convenient abstractions definitions for Java, other efforts such as [22, 11] and [| focus more
on the C/C++. However, we have to stress that our workflow abstraction is chosen to be on
such a high level that the components to be written can internally reuse any programming
language or framework, as long as the interface is exposed through our workflow language
through an element invocation. Furthermore, The lessons learned from projects such as GAT
and the Java CoG Kit are influencing the current direction of activities in the Global Grid
Forum as is apparent through the SAGA research group. Through this group lessons learned
by the community in designing a convenient Grid API abstraction is the goal of the research

group.

7 Conclusion

This paper provides a detailed overview about the Java CoG Kit workflow system that is
useful for scientific experiments. The value of the Java CoG Kit workflow solution lies in
its simplicity and its ability to be integrated in a solution that can expose workflow to a
variety of users. We are prototyping a system that provides an API based on abstractions
and the integration of services. Command line interfaces, Web portals, and a Grid desktop
that expose the workflow functionality in a convenient user interface are also under devel-
opment. Based on our experience with the Java CoG Kit, we concluded that we needed
to enhance our efforts in developing an easy interface to the Grid that includes the ability
to utilize workflows. In contrast to some other efforts, our workflow system is open source
and extensible. It allows the integration of commodity tools and frameworks through our
language bindings. We have care to project a future-oriented architecture that allows the
gradual enhancement while addressing explicit problems with today’s and tomorrow’s Grid
middleware. Examples of such issues are presented in the paper and include the change of the
deployed Grid middleware and versions as part of a workflow instantiation of long-running
workflows. Our abstractions have proven effective in changes against protocols and APIs of
well-known Grid middleware. Other features that we support are the dynamic adaptation
of workflows at runtime which is based on our module concept. Our integrated approach
includes not only the availability of a sophisticated language but also the development of
more sophisticated tools that make the manipulation and handling of the workflows easier.
Our future goal is to develop additional tools that can be exposed either as stand-alone

29

applications or as part of a portal through portlets developed together with the Open Grid
Computing Environments project [19].

Availability

The Java CoG Kit can be downloaded from http://www.cogkit.org.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational Science
Division subprogram of the Office of Advanced Scientific Computing Research, Office of
Science, U.S. Department of Energy, under Contract W-31-109-Eng-38. DARPA, DOE, and
NSF support Globus Project research and development. The Java CoG Kit is supported by
DOE, NSF NMI, NSF DDDAS. We like to acknowledge Kaizar Amin for his role in the
design of the Java CoG Kit abstractions, and Jarek Gawor for his role in the design and
implementation of much of the jglobus library.

References

[1] David Abramson. Nimrod Home Page, March 2002. Available from: http://www.csse.monash.edu.
au/~davida/nimrod.html/.

[2] The Access Grid. Web Page. Available from: http://www-fp.mcs.anl.gov/fl/accessgrid/.

[3] Kaizar Amin, Mihael Hategan, Gregor von Laszewski, Nestor J. Zaluzec, Shawn Hampton, and Al Rossi.
GridAnt: A Client-Controllable Grid Workflow System. In 87th Hawai’i International Conference on
System Science, Island of Hawaii, Big Island, 5-8 January 2004. Available from: http://www.mcs.anl.
gov/~gregor/papers/vonLaszewski--gridant-hics.pdf.

[4] Tony Andrews, Francisco Curbera, Yaron Gol Hitesh Dholakia, Johannes Klein, Frank Leymann, Kevin
Liu, Dieter Roller, Doug Smith, Satish Thatte (Editor), Ivana Trickovic, and Sanjiva Weerawarana.
Business Process Execution Language for Web Services. [BPEL4AWS.], May 2003. Available from:
http://xml.coverpages.org/BPELv11-May052003Final.pdf.

[5] H. P. Bivens. Grid WorkFlow: Grid Computing Environments Working Group Document. http:
//www.gridforum.org, 2001.

[6] The Java CoG Kit Source Code. CVS Repository. Available from: cvs.cogkit.org.

[7] DAGMan (Directed Acyclic Graph Manager). Web Page. Available from: http://www.cs.wisc.edu/
condor/dagman/.

[8] Ewa Deelman, James Blythe, Yolanda Gil, and Carl Kesselman. Pegasus: Planning for Execution in
Grids, 2002. Available from: http://www.isi.edu/~deelman/Pegasus/pegasus20overview.pdf.

[9] Ewa Deelman, James Blythe, Yolanda Gil, and Carl Kesselman. Grid Resource Management, chapter
Workflow Management in GriPhyN. Kluwer, 2003. Available from: http://www.isi.edu/~deelman/
Pegasus/grm_chapter.pdf.

[10] Joe Futrelle. Tupelo: Semantic content repository. Web Page, 2005. Available from: http://dlt.
ncsa.uiuc.edu/wiki/index.php/Main_Page.

30

http://www.csse.monash.edu.au/~davida/nimrod.html/
http://www.csse.monash.edu.au/~davida/nimrod.html/
http://www-fp.mcs.anl.gov/fl/accessgrid/
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--gridant-hics.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--gridant-hics.pdf
http://xml.coverpages.org/BPELv11-May052003Final.pdf
http://www.gridforum.org
http://www.gridforum.org
cvs.cogkit.org
http://www.cs.wisc.edu/condor/dagman/
http://www.cs.wisc.edu/condor/dagman/
http://www.isi.edu/~deelman/Pegasus/pegasus%20overview.pdf
http://www.isi.edu/~deelman/Pegasus/grm_chapter.pdf
http://www.isi.edu/~deelman/Pegasus/grm_chapter.pdf
http://dlt.ncsa.uiuc.edu/wiki/index.php/Main_Page
http://dlt.ncsa.uiuc.edu/wiki/index.php/Main_Page

[11]
[12]
[13]

[18]

[30]

Grid application toolkit. Web Page. Available from: http://www.gridlab.org/WorkPackages/wp-1/.
The Globus Alliance. Web Page. Available from: http://www.globus.org.

Andreas Hoheisel and Uwe Der. An XML-Based Framework for Loosely Coupled Applications on Grid
Environments. In ICCS 2008, volume 2657 of LNCS, pages 245-254. Springer, 2003. Available from:
http://www.andreas-hoheisel.de/docs/Hoheisel _and Der_2003_ICCS.pdf.

Java Commodity Grid (CoG) Kit. Web Page. Available from: http://www.cogkit.org.

K. Keahey, I. Foster, T. Freeman, X. Zhang, and D. Galron. Virtual workspaces in the grid. In Europar
2005, Lisbon, Portugal, September 2005. Available from: http://workspace.globus.org/papers/
VWCluster_TR_ANL_MCS-P1246-0405.pdf.

Kepler. Web Page. Available from: http://kepler.ecoinformatics.org/.

B. Kiepuszewskil, A.H.M. ter Hofstedel, and W.M.P. van der Aalst. Fundamentals of Control Flow
in Workflows. Technical report, Centre for Information Technology Innovation, Queensland University
of Technology, November 2003. Available from: http://tmitwww.tm.tue.nl/research/patterns/
download/qut_expr_rep.pdf.

B. Ludaescher, A. Gupta, and M. E. Martone. Bioinformatics: Managing Scientific Data,
chapter A Model-Based Mediator System for Scientific Data Management. Morgan Kaufmann,
2003. Available from: http://citeseer.nj.nec.com/cache/papers/cs/27492/http:zSzzSzwww.
sdsc.eduzSz~guptazSzpublicationszSzmbm-chapter-rev.pdf/a-model-based-mediator.pdf.

Open Grid Computing Environments. Web Page. Available from: http://www.ogce.org.
Pegasus. Web Page. Available from: http://pegasus.isi.edu/.

Jennifer M. Schopf, Mike D’Arcy, Neill Miller, Laura Pearlman, Ian Foster, and Carl Kesselman. Moni-
toring and discovery in a web services framework: Functionality and performance of the globus toolkit’s
mds4. Preprint ANL/MCS-P1248-0405, Argonne National Laboratory, Argonne, IL, 2005. Available
from: http://www-unix.mcs.anl.gov/~schopf/Pubs/mds-sc05.pdf.

E. Seidel, G. Allen, A. Merzky, and J. Nabrzyski. Gridlab: A grid application toolkit and testbed.
Future Generation Computer Systems, 18:1143-1153, 2002.

The Taverna Project. Web Page, December 2003. Available from: http://taverna.sourceforge.net.

Tan Taylor, Shalil Majithia, Matthew Shields, and Ian Wang. Triana workflow specification. Technical
report, GridLab.

Teuta. Web Page. Available from: http://dps.uibk.ac.at/projects/prophet/node4.html.

Douglas Thain, Todd Tannenbaum, and Miron Linvy. Grid Computing: Making the Global Infrastruc-
ture a Reality, chapter Condor and the Grid, pages 299-336. Number ISBN:0-470-85319-0. John Wiley,
2003.

Triana Workflow. Web Page. Available from: http://www.triana.co.uk.
Unicore. Web Page. Available from: http://www.unicore.de/.

W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. Paper, Department of
Mathematics and Computing Science, Eindhoven University of Technology, NL-5600 MB, Eindhoven,
The Netherlands, 1998. Available from: http://is.tm.tue.nl/staff/wvdaalst/publications/p53.
pdf.

Gregor von Laszewski. A Parallel Data Assimilation System and Its Implications on a Metacomputing
Environment. PhD thesis, Syracuse University, December 1996.

31

http://www.gridlab.org/WorkPackages/wp-1/
http://www.globus.org
http://www.andreas-hoheisel.de/docs/Hoheisel_and_Der_2003_ICCS.pdf
http://www.cogkit.org
http://workspace.globus.org/papers/VWCluster_TR_ANL_MCS-P1246-0405.pdf
http://workspace.globus.org/papers/VWCluster_TR_ANL_MCS-P1246-0405.pdf
http://kepler.ecoinformatics.org/
http://tmitwww.tm.tue.nl/research/patterns/download/qut_expr_rep.pdf
http://tmitwww.tm.tue.nl/research/patterns/download/qut_expr_rep.pdf
http://citeseer.nj.nec.com/cache/papers/cs/27492/http:zSzzSzwww.sdsc.eduzSz~guptazSzpublicationszSzmbm-chapter-rev.pdf/a-model-based-mediator.pdf
http://citeseer.nj.nec.com/cache/papers/cs/27492/http:zSzzSzwww.sdsc.eduzSz~guptazSzpublicationszSzmbm-chapter-rev.pdf/a-model-based-mediator.pdf
http://www.ogce.org
http://pegasus.isi.edu/
http://www-unix.mcs.anl.gov/~schopf/Pubs/mds-sc05.pdf
http://taverna.sourceforge.net
http://dps.uibk.ac.at/projects/prophet/node4.html
http://www.triana.co.uk
http://www.unicore.de/
http://is.tm.tue.nl/staff/wvdaalst/publications/p53.pdf
http://is.tm.tue.nl/staff/wvdaalst/publications/p53.pdf

[31]

[33]

[34]

[35]

[36]

[37]

[40]

[41]

[42]

Gregor von Laszewski. An Interactive Parallel Programming Environment Applied in Atmospheric
Science. In G.-R. Hoffman and N. Kreitz, editors, Making Its Mark, Proceedings of the 6th Workshop
on the Use of Parallel Processors in Meteorology, pages 311-325, Reading, UK, 2-6 December 1996.
European Centre for Medium Weather Forecast, World Scientific. Available from: http://www.mcs.
anl.gov/~gregor/papers/vonLaszewski--ecwmf-interactive.pdf.

Gregor von Laszewski. A Loosely Coupled Metacomputer: Cooperating Job Submissions Across Mul-
tiple Supercomputing Sites. Concurrency, Ezperience, and Practice, 11(5):933-948, December 1999.
The initial version of this paper was available in 1996. Available from: http://www.mcs.anl.gov/
~gregor/papers/vonLaszewski--CooperatingJobs.pdf.

Gregor von Laszewski. The Grid-Idea and Its Evolution. Information Technology., accepted for
publication. Argonne National Laboratory, Argonne, IL 60439, U.S.A. Available from: http:
//www.mcs.anl.gov/~gregor/papers/vonLaszewski-grid-idea.pdf.

Gregor von Laszewski and Kaizar Amin. Grid Middleware, chapter Middleware for Commnica-
tions, pages 109-130. Wiley, 2004. Available from: http://www.mcs.anl.gov/~gregor/papers/
vonLaszewski--grid-middleware.pdf.

Gregor von Laszewski, Kaizar Amin, Shawn Hampton, and Sandeep Nijsure. GridAnt — White Paper.
Technical report, Argonne National Laboratory, 31 July 2002. Available from: http://www.mcs.anl.
gov/~gregor/papers/vonLaszewski-gridant.pdf.

Gregor von Laszewski, Steve Fitzgerald, Ian Foster, Carl Kesselman, Warren Smith, and Steve Tuecke. A
Directory Service for Configuring High-Performance Distributed Computations. In Proceedings of the 6th
IEEFE Symposium on High-Performance Distributed Computing, pages 365-375, Portland, OR, 5-8 Au-
gust 1997. Available from: http://www.mcs.anl.gov/~gregor/papers/fitzgerald--hpdc97-mds.
pdf.

Gregor von Laszewski, Ian Foster, Jarek Gawor, Warren Smith, and Steve Tuecke. CoG Kits: A Bridge
between Commodity Distributed Computing and High-Performance Grids. In ACM Java Grande 2000
Conference, pages 97-106, San Francisco, CA, 3-5 June 2000. Available from: http://www.mcs.anl.
gov/~gregor/papers/vonLaszewski--cog-final.pdf.

Gregor von Laszewski, Jarek Gawor, Sriram Krishnan, and Keith Jackson. Grid Computing: Making the
Global Infrastructure a Reality, chapter Commodity Grid Kits - Middleware for Building Grid Comput-
ing Environments, pages 639-656. Communications Networking and Distributed Systems. Wiley, 2003.
Available from: http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--grid2002book.pdf.

Gregor von Laszewski and Mike Hategan. Grid Workflow - An Integrated Approach. In
Technical Report., Argonne National Laboratory, Argonne National Laboratory, 9700 S. Cass
Ave., Argonne, IL 60440, 2005. Available from: http://www.mcs.anl.gov/~gregor/papers/
vonLaszewski-workflow-draft.pdf.

Gregor von Laszewski and Deepti Kodeboyina. A Repository Service for Grid Workflow Components.
In International Conference on Autonomic and Autonomous Systems International Conference on Net-
working and Services. IEEE, 23-28 October 2005. Available from: http://www.mcs.anl.gov/~gregor/
papers/vonLaszewski-workflow-repository.pdf.

Gregor von Laszewski, Branko Ruscic, Kaizar Amin, Patrick Wagstrom, Sriram Krishnan, and Sandeep
Nijsure. A Framework for Building Scientific Knowledge Grids Applied to Thermochemical Tables.
The International Journal of High Performance Computing Applications, 17(4):431-447, Winter 2003.
Available from: http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--knowledge-grid.pdf.

Gregor von Laszewski and Mikhail Sosonkin. A Grid Certificate Authority for Community and Ad-
hoc Grids. In 7th International Workshop on Java for Parallel and Distributed Computing, pub-
lished in the Proceedings of the 19th International Parallel and Distributed Processing Symposium,

32

http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--ecwmf-interactive.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--ecwmf-interactive.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--CooperatingJobs.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--CooperatingJobs.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-grid-idea.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-grid-idea.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--grid-middleware.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--grid-middleware.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-gridant.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-gridant.pdf
http://www.mcs.anl.gov/~gregor/papers/fitzgerald--hpdc97-mds.pdf
http://www.mcs.anl.gov/~gregor/papers/fitzgerald--hpdc97-mds.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--cog-final.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--cog-final.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--grid2002book.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-workflow-draft.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-workflow-draft.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-workflow-repository.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-workflow-repository.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--knowledge-grid.pdf

[43]

[44]

[45]

Denver, CO, 4-8 April 2005. IEEE. Available from: http://www.mcs.anl.gov/~gregor/papers/
vonLaszewski-ca-workshop.pdf.

Gregor von Laszewski, Mei-Hui Su, Joseph A. Insley, Ian Foster, John Bresnahan, Carl Kesselman,
Marcus Thiebaux, Mark L. Rivers, Steve Wang, Brian Tieman, and Tan McNulty. Real-Time Analysis,
Visualization, and Steering of Microtomography Experiments at Photon Sources. In Ninth SIAM Con-
ference on Parallel Processing for Scientific Computing, San Antonio, TX, 22-24 March 1999. Available
from: http://www.mcs.anl.gov/~gregor/papers/vonlaszewski--siamCmt99.pdf.

Gregor von Laszewski and Patrick Wagstrom. Tools and Environments for Parallel and Distributed
Computing, chapter Gestalt of the Grid, pages 149-187. Parallel and Distributed Computing. Wiley,
2004. Available from: http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--gestalt.pdf.

Patrick Wagstrom, Sriram Krishnan, and Gregor von Laszewski. GSFL: A Workflow Framework for
Grid Services. In SC’2002, Baltimore, MD, 11-16 November 2002. (Poster). Available from: http:
//www.mcs.anl.gov/~gregor/papers/gsfl-paper.pdf.

The Workflow Reference Model. The Workflow Management Coalition, January 1995. Available from:
http://wuw.wfmc.org/standards/docs/tc003v11.pdf.

Jia Yu and Rajkumar Buyya. A taxonomy of scientific workflow systems for grid computing. ACM Spe-
cial Interest Group On Management of Data (SIGMOD), 2005. Available from: http://www.sigmod.
org/sigmod/record/issues/0509/p44-special-sw-section-7.pdf.

33

http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-ca-workshop.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-ca-workshop.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--siamCmt99.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--gestalt.pdf
http://www.mcs.anl.gov/~gregor/papers/gsfl-paper.pdf
http://www.mcs.anl.gov/~gregor/papers/gsfl-paper.pdf
http://www.wfmc.org/standards/docs/tc003v11.pdf
http://www.sigmod.org/sigmod/record/issues/0509/p44-special-sw-section-7.pdf
http://www.sigmod.org/sigmod/record/issues/0509/p44-special-sw-section-7.pdf

	Introduction
	Grid Workflow
	Management Issues in Grid Workflow
	Workflows for Scientific Experiments
	Grids for Scientific Experiments
	Lifecycle Management

	Java CoG Kit Concepts
	Historical Perspective
	Key Concepts
	Architectural Design

	Java CoG Kit Workflow Concepts for Programmers
	Providers
	Pattern
	Abstractions
	Data structures
	Gridfaces

	Java CoG Kit Workflow Concepts for Component Developers
	GridAnt
	Karajan
	Modularization
	Variables and Operators
	Workflow Structural Elements
	Parallelism
	Error Handling
	Forms
	Java and Python Language Support
	Performance Augmentations
	Syntax Translators

	Related Research
	Conclusion

