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North Pole Precipitation July 20-21, 2006

AMSU-derived precipitation over North Pole sea ice (pink) – evolution over 24 hours
NOAA-16 data.  High surface elevation is problematic (dark pink)
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North Pole Precipitation – NOAA-16
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Antarctic Ice, Canadian Snow vs. CloudSat
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Peak radar altitude ≅ 12 km



North Atlantic Precipitation vs. CloudSat
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Peak radar altitude ≅ 12 km



North Pole Precipitation vs. CloudSat
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Peak radar altitude ≅ 12 km



Comparisons with Global Rain Gauges

Annual accumulation (mm): Monthly Climatic Data for the World [NCDC/NESDIS/NOAA]

Annual 
accumulations 

(mm) for 345 cities 
that report all 12 

months.

114 of these (×’s) are 
within 55 km of the 

coast.  AMSU 
averaged ±0.4 degrees 
longitude and latitude 
every pass. Omitted 
were 195 sites with 
elevation changes 

> 500m in ±0.2 degrees, 
and 39 desert sites

< 300 mm/yr. 

2007 NOAA-16
AMSU retrievals (mm/yr)

AMSU bias for 
non-desert, 

non-mountain, 
non-coastal 
sites was ~7 

percent.
With coastal 

sites, ~21 
percent
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RMS Retrieval Errors for |lat| > 45o

via MM5 Simulations, 15-km resolution
MM5 

(mm/h)
Land Sea Warm

Sea
Rain Snow Con-

vective
Strat-
iform

0.25-0.5 0.69 0.45 0.46 0.59 0.46 2.01 0.49
0.5-1 0.88 0.54 0.51 0.70 0.71 2.22 0.61
1-2 1.26 0.70 0.70 0.94 0.92 2.51 0.82
2-4 2.05 1.24 1.20 1.56 1.81 2.86 1.42
4-8 3.44 2.78 2.44 3.00 3.78 3.70 2.87
8-16 6.65 5.85 6.02 6.87 4.92 6.59 5.81
16-32 13.8 14.4 15.0 15.2 10.8 13.8 -
32-64 23.5 31.2 31.2 27.6 21.5 24.8 -

Poor (rms > upper bound U) Usable (rms < U) Good (rms < lower bound)

106 global storms ~1000-km square were simulated with 5-km cells using an
NCEP-initialized cloud-resolving MM5 model, a 2-stream version of TBSCAT, a
laminar atmospheric model, and fluffy spheres with frequency-dependent densities;
these simulations roughly agreed with simultaneous 15-km AMSU observations.
Snow-free and ice-free surfaces were assumed.
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AMSU 2006 Annual Precipitation (mm)

NOAA-16
365 days

Ascending 
Node 
~4PM

30           100        300          1000      3000 mm/yr

90N

60N

30N

0

30S

60S

Staelin and Surussavadee        9



AMSU Annual Precipitation:
Probability and Amount vs. Latitude
NOAA 16

2007
Precipitation
threshold is
0.5 mm/h at

15-km resolution

53.6 GHz > 248K 
implies rain.

Estimated peak 
vertical wind > 

0.45 m/s implies 
convection

13% 2470 mm
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AMSU-Retrieved Vertical Wind (m/s) 
September 25, 2008
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Millimeter-wave Precipitation Physics
AMSU senses 20 frequency bands:

“Windows”: 23.8,  31.4,  50,  89  and  150 GHz
“Opaque”: O2: 52.8-55.6 GHz ⇒ T(h), and H2O:183-GHz ⇒ RH(h)

Precipitation rate is correlated with [vertical wind] times [absolute humidity H]

Scattering differences between 50 and 183 GHz reveal drop size spectrum
Hydrometeor size spectrum reveals vertical wind velocities

TB 183 GHz < TB min (RH = 100) indicates ice content and therefore vertical wind

Surface-blind opaque channels “altitude slice”; cell-top altitude suggests wind

50-GHz spectrum yields surface reflectivity if surface spectral shape is known

Known reflective surfaces (e.g. ocean) permit opacity and RR measurements

Precipitation has several independent mm-wave signatures

12Staelin and Surussavadee        



MIT REMOTE SENSING AND ESTIMATION GROUP
http://rseg.mit.edu 13

ATMS Configuration
23.8 GHz H2O 10 cm
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ATMS Image Sharpening vs. MM5, AMSU
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MM5 
Range 
(mm/h)

AMSU ATMS ATMS with 24-km 
Sharpening

Land Sea All Land Sea All Land Sea All
0.5-1 1.04 1.24 1.15 0.76 0.91 0.85 1.17 1.35 1.27
1-2 1.62 1.45 1.52 1.33 1.26 1.29 1.66 1.40 1.50
2-4 2.24 2.13 2.17 2.22 1.81 1.99 2.74 2.42 2.56
4-8 3.82 4.46 4.18 3.60 3.16 3.36 4.40 4.20 4.29

8-16 6.52 8.01 7.28 6.48 6.52 6.50 6.75 7.67 7.21
16-32 11.6 11.4 11.5 10.8 10.9 10.8 11.3 12.1 11.7
32-64 19.3 22.2 21.1 17.0 19.7 18.6 21.6 22.5 22.1
>64 53.2 42.8 45.0 45.6 36.9 38.7 54.9 42.1 44.9

RMS Precipitation Retrieval Accuracies

Poor (rms > upper bound U)          Usable (rms < U)           Good (rms < lower bound)
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Summary and Conclusions
Physics-based stochastic retrievals offer advantages

- widely applicable, underused

Arctic AMSU precipitation retrievals extend to 1999
- unique climate data resource

AMSU global precipitation coverage is excellent for PMM
- ~twice daily per satellite,15-km resolution, ≤ 4 satellites

ATMS (NPP and NPOESS) will yield better precipitation retrievals

Geostationary microwave precipitation satellites are feasible
- 15-minute repeats could track convective-cell velocities.
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