AMSU observations of Arctic precipitation and global sets of rain gauges: Implications for ATMS and NPP

David H. Staelin and Chinnawat Surussavadee

Presented at the AIRS Atmospheric Sounding Science Team Meeting

> Greenbelt, Maryland October 16, 2008

OUTLINE

Physics-based stochastic retrievals -- a new approach

- Observational results and validation: Arctic and global
- Predicted advantages of ATMS and NPP
- Summary and Conclusions

North Pole Precipitation July 20-21, 2006

North Pole Precipitation – NOAA-16

Early season rain and snow (visibility begins ~May 20)

> First of two-day sequence illustrating rapid evolution of storm systems

day of

Late

season

snow

ends

Antarctic Ice, Canadian Snow vs. CloudSat

North Atlantic Precipitation vs. CloudSat

North Pole Precipitation vs. CloudSat

Comparisons with Global Rain Gauges

Annual accumulation (mm): Monthly Climatic Data for the World [NCDC/NESDIS/NOAA]

RMS Retrieval Errors for |lat| > 45° via MM5 Simulations, 15-km resolution

MM5	Land	Sea	Warm	Rain	Snow	Con-	Strat-
(mm/h)			Sea			vective	iform
0.25-0.5	0.69	0.45	0.46	0.59	0.46	2.01	0.49
0.5-1	0.88	0.54	0.51	0.70	0.71	2.22	0.61
1-2	1.26	0.70	0.70	0.94	0.92	2.51	0.82
2-4	2.05	1.24	1.20	1.56	1.81	2.86	1.42
4-8	3.44	2.78	2.44	3.00	3.78	3.70	2.87
8-16	6.65	5.85	6.02	6.87	4.92	6.59	5.81
16-32	13.8	14.4	15.0	15.2	10.8	13.8	-
32-64	23.5	31.2	31.2	27.6	21.5	24.8	_

Poor (rms > upper bound U) Usable (rms < U) Good (rms < lower bound)

106 global storms ~1000-km square were simulated with 5-km cells using an NCEP-initialized cloud-resolving MM5 model, a 2-stream version of TBSCAT, a laminar atmospheric model, and fluffy spheres with frequency-dependent densities; these simulations roughly agreed with simultaneous 15-km AMSU observations. Snow-free and ice-free surfaces were assumed.

AMSU 2006 Annual Precipitation (mm)

AMSU Annual Precipitation: Probability and Amount vs. Latitude

NOAA 16 2007 Precipitation threshold is 0.5 mm/h at 15-km resolution

53.6 GHz > 248K implies rain.

Estimated peak vertical wind > 0.45 m/s implies convection

AMSU-Retrieved Vertical Wind (m/s) September 25, 2008

Millimeter-wave Precipitation Physics

- AMSU senses 20 frequency bands: "Windows": 23.8, 31.4, 50, 89 and 150 GHz "Opaque": O₂: 52.8-55.6 GHz \Rightarrow T(h), and H₂O:183-GHz \Rightarrow RH(h)
- Precipitation rate is correlated with [vertical wind] times [absolute humidity H]
- Scattering differences between 50 and 183 GHz reveal drop size spectrum Hydrometeor size spectrum reveals vertical wind velocities
- T_{B 183 GHz} < T_{B min (RH = 100)} indicates ice content and therefore vertical wind
- Surface-blind opaque channels "altitude slice"; cell-top altitude suggests wind
 - **50-GHz spectrum yields surface reflectivity** if surface spectral shape is known
 - Known reflective surfaces (e.g. ocean) permit opacity and RR measurements

Precipitation has several independent mm-wave signatures

ATMS Configuration

REMOTE SENSING AND ESTIMATION GROUP http://rseg.mit.edu

13

ATMS Image Sharpening vs. MM5, AMSU

MM5 "Truth"

ATMS 28-km sharpening

ATMS 24-km sharpening

ATMS no sharpening

AMSU sharpening impossible

> 555-km images

RMS Precipitation Retrieval Accuracies

MM5 Range (mm/h)	AMSU			ATMS			ATMS with 24-km Sharpening		
	Land	Sea	All	Land	Sea	All	Land	Sea	All
0.5-1	1.04	1.24	1.15	0.76	0.91	0.85	1.17	1.35	1.27
1-2	1.62	1.45	1.52	1.33	1.26	1.29	1.66	1.40	1.50
2-4	2.24	2.13	2.17	2.22	1.81	1.99	2.74	2.42	2.56
4-8	3.82	4.46	4.18	3.60	3.16	3.36	4.40	4.20	4.29
8-16	6.52	8.01	7.28	6.48	6.52	6.50	6.75	7.67	7.21
16-32	11.6	11.4	11.5	10.8	10.9	10.8	11.3	12.1	11.7
32-64	19.3	22.2	21.1	17.0	19.7	18.6	21.6	22.5	22.1
>64	53.2	42.8	45.0	45.6	36.9	38.7	54.9	42.1	44.9

Poor (rms > upper bound U)

Usable (rms < U)

Good (rms < lower bound)

Summary and Conclusions

Physics-based stochastic retrievals offer advantages - widely applicable, underused

- Arctic AMSU precipitation retrievals extend to 1999
 unique climate data resource
- AMSU global precipitation coverage is excellent for PMM
 ~twice daily per satellite,15-km resolution, ≤ 4 satellites
- ATMS (NPP and NPOESS) will yield better precipitation retrievals
- Geostationary microwave precipitation satellites are feasible
 - 15-minute repeats could track convective-cell velocities.

References

- 1. C. Surussavadee and D. H. Staelin, "Comparison of AMSU millimeter-wave satellite observations, MM5/TBSCAT predicted radiances, and electromagnetic models for hydrometeors," *IEEE Trans. Geosci. Remote Sens.*, vol. 44, no. 10, pp. 2667–2678, Oct. 2006.
- 2. C. Surussavadee and D. H. Staelin, "Millimeter-wave precipitation retrievals and observed-versus-simulated radiance distributions: Sensitivity to assumptions," *J. Atmos. Sci.*, vol. 64, no. 11, pp. 3808-3826, Nov. 2007.
- 3. D. H. Staelin and C. Surussavadee, "Precipitation retrieval accuracies for geo-microwave sounders," *IEEE Trans. Geosci. Remote Sens.*, vol. 45, no. 10, pp. 3150-3159, Oct. 2007.
- 4. C. Surussavadee, and D. H. Staelin, "Global millimeter-wave precipitation retrievals trained with a cloud-resolving numerical weather prediction model, Part I: retrieval design," *IEEE Trans. Geosci. Remote Sens.*, vol. 46, no. 1, pp. 99-108, Jan. 2008.
- 5. C. Surussavadee, and D. H. Staelin, "Global millimeter-wave precipitation retrievals trained with a cloud-resolving numerical weather prediction model, Part II: performance evaluation," *IEEE Trans. Geosci. Remote Sens.*, vol. 46, no. 1, pp. 109-118, Jan. 2008.
- 6. C. Surussavadee, and D. H. Staelin, "Satellite Retrievals of Arctic and Equatorial Rain and Snowfall Rates using Millimeter Wavelengths," *IGARSS 2008*, and *IEEE Trans. Geosci. Remote Sens.*, in review.
- 7. C. Surussavadee, and D. H. Staelin, "NPOESS precipitation retrievals using the ATMS passive microwave spectrometer," *IGARSS 2008* and *IEEE Trans. Geosci. Remote Sens.*, in review.
- 8. C. Cho and D. H. Staelin, "Cloud clearing of Atmospheric Infrared Sounder hyperspectral infrared radiances using stochastic methods", J. Geophys. Res., 111, doi:10.1029/2005JD006013 (2006).

