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1 Introduction

Many important DOE applications can be described mathematically as solutions to partial
differential equations exhibiting behavior on multiple length scales. Combustion for energy
and transportation is dominated by the interaction of fluid dynamics and chemistry in lo-
calized flame fronts. Fueling of magnetic fusion devices involves the dispersion of material
from small injected fuel pellets. The successful design of particle accelerators relies critically
on the confinement of the charged beams to a small subset of the total volume.
In this project, we are developing a new class of simulation tools for these and other multi-

scale problems. The algorithmic approach we are taking, discussed in detail in section 3.2
of the original proposal, is based on the use of finite-difference methods on structured grids
combined with block-structured adaptive mesh refinement (AMR) to represent multi-scale
behavior. In this approach, the physical variables are discretized on a spatial grid consisting
of nested rectangles of varying spatial resolution, organized into blocks. This hierarchical
discretization of space can adapt to changes in the solution to maintain a uniform level of
accuracy throughout the simulation. We also can vary the temporal resolution to match the
spatial resolution.
The use of AMR requires the consideration of new mathematical, algorithmic, and soft-

ware issues in order to represent the coupling between different scales. For that reason,
we have taken an end-to-end approach, developing self-contained new simulation capabili-
ties based on AMR. These include AMR fluid simulation codes for turbulent combustion in
laboratory-scale flames and for non-ideal magnetohydrodynamics problems arising in mag-
netic fusion; AMR-PIC codes for computing particle-in-cell space charge effects for beam
dynamics in accelerator design problems; and an AMR embedded boundary code for sim-
ulating gas jets in laser-driven plasma-wakefield accelerators. The progress we have made
in developing these applications is described in section 2 of this document. Although these
applications are quite diverse physically, there is considerable overlap in their mathematical
structure. We have developed a component design for our software based on that common
mathematical structure to maximize reuse across applications, as well as portability across
platforms. We describe the status of the software development effort in section 3 of this
document. In section 4 of this document we describe the status of the advanced algorithm
development efforts. The final section contains a summary of the staffing and budget.

2 Applications Development

2.1 Overview

There are three applications areas for which the APDEC project is developing AMR algo-
rithms and software: combustion, magnetic fusion, and accelerator design. For each of these
areas, there is an obvious need for multiscale simulation capabilities, which is discussed in
detail in section 3.1 of the original proposal. Furthermore, to the extent that all of these
problems can be represented mathematically as solutions to classical partial differential equa-
tions, we expect to be able to develop a common software infrastructure to support all of
them. However, the level of maturity of adaptive methods for these areas varies widely.
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AMR for combustion has been the focus of a sustained research effort on the part of the
investigators for a decade or more. Consequently, the work described here is focused on the
production of new capabilities that lead immediately to new scientific results. At the other
extreme, both projects in accelerator design - AMR-PIC for beam dynamics calculations,
and gas-jet simulations for laser-driven plasma-wakefield accelerators - require capabilities
for which the algorithm development is of much more recent provenance, and whose devel-
opment as software was started at the beginning of the APDEC project. For that reason,
we are just now reaching the point where we have initial implementations of the code ca-
pabilities required to simulate the problems in that area. The third application, magnetic
fusion, is intermediate between the two. While there is little prior art in adaptive methods
for nonideal MHD, the problem is sufficiently similar to the fluids problems for which our
adaptive techniques are quite mature that there was software and algorithmic expertise that
we could leverage.
The differing levels of maturity also have an impact on the relationship between the

software development effort and the application efforts. For magnetic fusion and accelerator
modeling, the application efforts are heavily dependent on the software development effort
efforts described in section 3 of this document. We recognized this from the outset, and the
priorities in the software development process have been focused on producing the required
capabilities in a timely fashion, and on supporting the applications developers. In the com-
bustion application, there is already in place a considerable software infrastructure based on
the BoxLib library, the predecessor to the Chombo library that is the basis of the current
APDEC software development effort. Consequently, there has been no need for the soft-
ware development team to support the combustion effort. We expect that this will change
when the combustion effort requires the embedded boundary capabilities being developed in
Chombo for problems with complex geometries.
Finally, we wish to emphasize that the principal focus of the APDEC project is on appli-

cations. Ultimately, our goal is to provide new simulation capabilities to these communities
that will enable them to investigate scientific problems that were previously not accessible.
This is reflected in the budget for the project: each application area has 1 FTE funded
directly by APDEC for the development of that application. We discuss in further detail
the staffing and budget issues in section 5 of this document.

2.2 Combustion

2.2.1 Goals and Approach

Combustion is one of the cornerstone applications for the APDEC ISIC. Our goal in this ap-
plication to develop and apply new simulations methodologies on high-performance parallel
architecture to understand the interplay between chemistry and fluid dynamics in flames.
The focus of our work is on studies combining detailed chemistry and transport where the
fluid-dynamics is modeled directly without incorporating models for turbulence or turbulence
/ chemistry interaction. Our core methodology uses a low Mach number adaptive projection
formulation that provides a substantial improvement in computational efficiency compared
to standard compressible DNS methods for combustion.
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Figure 1: NO A-X(0,2) excitation LIF images obtained (top) from measurement and (bot-
tom) by synthetically processing the results of the flame simulation, for different NH3 seeding
concentrations. The experimental data and the synthetic LIF intensities are prepared inde-
pendently; the same scale applies to both.

2.2.2 Accomplishments

Our research in combustion thus far has focused on two target investigations: pollutant
production in steady ammonia-seeded methane diffusion flames, and turbulence-chemistry
interactions in wrinkled premixed methane flames.
We are investigating ammonia-seeded diffusion flames in collaboration with researchers

at the University of Heidelberg and the Technical University of Denmark. The goal of this
work is to improve the understanding of NO pollutant formation due to fuel-bound nitrogen
charactersitic of bio-mass fuels. For these problems, data is gathered from the experiment
using laser-induced fluorescence (LIF). In the “two-line” analysis approach for temperature
extraction, two frequencies associated with the NO molecule are excited by the laser over
a two-dimensional sheet through the vertical midplane of the flame, and the resulting LIF
signals are processed using the known temperature-dependence of the bands. The absolute
NO concentration can be inferred from either signal if the temperature and mole fractions
are known for all species that may quench the NO LIF signal. Unfortunately, the NO signal
is strongly quenched by the O2 molecule, so that the two-line approach depends critically on
assumed chemical profiles.
We have developed a new approach that more closely intertwines simulation and exper-

imental data interpretation. Using an two-dimensional axisymmtric model, we computed
steady diffusion flame solutions corresponding to the experimental setup. After validating
the computational results against the temperature profiles inferred from the experiment, we
used the simulation results, combined with quantum-dynamical quenching models to gener-
ate numerical LIF images. Across the range of experimental parameters, these numerical
LIF images showed exceptional agreement with the raw LIF data from the experiment. A
comparison of the experimentally-measure and the synthetic computational LIF is presented
in Figure 1.
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Additionally, using simulated chemical distributions directly in the quench calculations,
we demonstrated very good agreement between the computed and experimentally inferred
NO concentrations [4].
In our second combustion application, we applied the three-dimensional version of our

numerical algorithm technology to understand the detailed response of a lean premixed
methane flame sheet to turbulence in the unburned mixture. These simulations are the
largest of their type ever attempted, and were achievable through our use of locally-adaptive
gridding methods coupled to the low Mach number formulation. The flame chemistry is
modeled with a 19 species, 84 reaction subset of the GRIMech-1.2 methane chemistry mech-
anism. The calculations are carried out over the 8×8×16 mm domain on a hierarchical grid
structure with an effective resolution of 256×256×512 cells. We considered two different
cases corresponding to different levels of turbulent intensity. Flame sheet images from these
simulations are depicted in Figure 2.

(a) (b)

Figure 2: Volume rendered image showing surface of maximum heat release for the weak (a)
and strong (b) turbulence cases.

Simulation results confirm that wrinkling due to turbulence is the dominant factor leading
to an increased effective flame propagation speed. Under the turbulence regimes studied thus
far, the increase in speed is predominately attibutable to the increased flame surface area.
This suggests that the time-dependent stretch and flame curvature have little aggregate
effect on the overall flame stucture in the cases investigated. However, when we examine
local details of the flame, we find a different picture. Even for low turbulence levels, the
heat release in the flame correlates strongly with flame curvature. In fact, the strength of
many of the reactions in the system are correlated to flame curvature, an observation which
is likely related to focusing and defocusing preferential hydrogen diffusion effects. We found
that an additional effect of the turbulence was to move apart the regions of production and
destruction for a subset of the chemical species, particularly in regions of negative curvature.
As a result, the residence times, and computed molar concentrations of these species were
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correlated to the curvature as well [6].
We are currently extending that work on turbulent premixed combustion to modeling of

a laboratory-scale premixed turbulent flame. The configuration for the experiment we are
considering consists of a thin rod across the center of a nozzle with a partial obstruction
ten centimeters upstream of the rod to generate turbulence. The presence of the rod cre-
ates a local stagnation in the flow which leads to the formation of a V-flame. Simulations
for this configuration specify flow at the exit of the nozzle using a characterization deter-
mined from the experimental data and use that data as boundary conditions for our low
Mach number combustion algorithm. As in our earlier work on the turbulent flame sheet,
we model the methane chemistry using DRM-19 and we model transport using a mixture
model for differential diffusion. Initial simulations show that we can successfully predict a
stable turbulent V-flame. Furthermore, mean statistical properties of the flame brush match
the experimental data. Comparison of the simulation, presented in Figure 3 with particle-
induced-velocimetry (PIC) data show that our simulations also do a good job of predicting
the basic flame morphology. In these images, the spreading angle of the “V” is determined
by the turbulent enhancement of the flame speed. The agreement between experiment and
computation shows that we are accurately capturing the flame dynamics.

(a) (b)

Figure 3: (a) Computed mole fraction of CH4, (b) Photograph of illuminated particles seeded
in fuel stream

We are continuing our comparison with experimental data to provide a more detailed
comparison with simulation and experiment and to identify the key factors controlling the
turbulent flame speed in this flow regime [7].

2.2.3 Future Plans

Our short term focus in combustion is to complete the analysis of turbulent V-flames. We
are in the process of completing simulations for a variety of inflow turbulence configurations.
In the first stage of the analysis we will focus on validation with the experimental data,
flame morphology and flame dynamics. Subsequent analyses will examine the details of the
turbulence / chemistry interaction.
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The next problem we plan to simulate is a turbulent “low-swirl” premixed flame. In
the low-swirl configuration, air is injected at high speeds tangential to the interior walls of
the nozzle. Above the nozzle exit, the expanding fuel-air mixture create an axial velocity
deficit in the central core capable of stabilizing a premixed flame. Low-swirl nozzles have
considerable practical value because the resulting flame has very low pollutant emissions.
The experimental configuration is similar to that of the V-flame; however the interactions
between the fluid dynamics and the volumetric expansion of the flame are considerably more
delicate and difficult to simulate. Our initial goal for will be to compute a statistically stable
flame and analyze the basic flame dynamics.
Our previous work on modeling laboratory-scale premixed turbulent combustion has been

based on a description of chemical kinetics given by DRM-19 which contains 21 species and
84 reactions. This mechanism provides a good approximation to the basic carbon pathways
in the flame; however, it includes some simplifications for the carbon chemistry and does not
include any of the nitrogen chemistry needed to model pollutant formation. Our longer term
plans are to revisit the two experimental flames we have considered and introduce a more
complete treatment of chemical kinetics, including the nitrogen chemistry needed to model
formation of NO and NO2 in methane flames.
In addition to these computational studies our other long term objective is to incorpo-

rate realistic geometries into our reacting flow simulation methodology. Our goal is to be
able to represent the full geometry of laboratory combustion experiments such as nozzles,
flow obstructions and confining containers. This capability will allow us to perform detailed
simulations of experiments without compromises in fidelity resulting from simplifying as-
sumptions about the flow domain. For this development we will utilize geometric capability
being developed in the center which will have reached a suitable level of maturity to be
incorporated into our reacting flow methodology.

2.3 Magnetic Fusion

2.3.1 Goals and Approach

In this section we describe the development of an adaptive mesh refinement (AMR) MHD
code for fusion applications. The Chombo framework developed at LBNL is used for AMR.
The MHD code solves the equations of hydrodynamics and resistive Maxwell’s equations
written below in conservation form:

∂U

∂t
+

∂Fj(U)

∂xj

=
∂Fv,j(U)

∂xj

,

where the solution vector U ≡ U(x, y, t) is,

U = {ρ, ρui, Bi, e}
T ,

and the flux vectors Fj(U) and Fv,j(U) are given by

Fj(U) =

{

ρuj, ρuiuj + (p+
1

2
BkBk)δij −BiBj, ujBi − uiBj,

(e+ p+
1

2
BkBk)ui −Bi(Bkuk)

}T

,
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and

Fv,j(U) =

{

0, τij, η
∂Bi

∂xj

− η
∂Bj

∂xi

, τijui + κ
∂T

∂xj

+ η(
1

2

∂BkBk

∂xj

−Bi
∂Bj

∂xi

)

}T

.

In the above equations, ρ is the density, ui is the velocity, Bi is the magnetic field, p and T

are the pressure and temperature respectively, and e is the total energy per unit volume of
the plasma. The equations are closed by the following equation of state

ε =
p

γ − 1
+

ρ

2
ukuk +

1

2
BkBk.

The stress tensor is related to the strain as

τij = µ

(

∂ui

∂xj

+
∂uj

∂xi

)

−
2

3
µ
∂uk

∂xk

δij.

The plasma properties are the viscosity µ, the conductivity κ, and the resisitivity η.
The hyperbolic portion of the above equations are solved numerically using a combination

of the 8-wave upwinding method [35] and the unsplit numerical method [10]. The solenoidal
property of the magnetic field is enforced by means of a projection method. A salient
feature of the present method is that the projection of the magnetic field is not done in the
spirit of “divergence-cleaning” but that it is intimately coupled with the construction of the
hyperbolic fluxes. The diffusive (or parabolic) portion of the above equations are solved either
explicitly or implicitly. The implicit implementation results in variable coefficient Helmholtz
equations which are solved using a multi-grid method. By using the appropriate solver
components, we can easily switch between backward Euler, Crank-Nicholson or implicit
Runge-Kutta [37] in the implicit treatment of the parabolic fluxes. We have endeavoured to
be faithful to the strong conservation form in the numerical method. Details concerning the
numerical method will be discussed in an upcoming publication.
The AMR MHD code was applied to the applications discussed below. In both applica-

tions, the AMR computations afforded a resolution which would have been quite computa-
tionally expensive or prohibitive if mesh adaptivity was not used. Speed-up of computations
due to AMR were estimated to range from a factor of 6 to 40.

Figure 4: Time sequence of the y-component of the magnetic field. The black bounding
boxes depict the meshes in the AMR hierarchy.
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Figure 5: Time sequence of the perpendicular current corresponding the previous figure. The
current layer is unstable which causes ejections of high pressure plasma from the reconnection
layer.

2.3.2 Accomplishments

Magnetic Reconnection in 2D.
Magnetic reconnection (MR) refers to the breaking and reconnecting of oppositely directed
magnetic field lines in a plasma. In the process, magnetic field energy is converted to plasma
kinetic and thermal energy. MR occurs in many contexts: for example, in the sawtooth-like
oscillations observed in the operation of a tokamak, and in solar coronal events. In general, in
magnetic reconnection, two regions are distinguished: an outer “inviscid” region and an inner
“resistive” region, whose width scales with η

1

2 , where the actual breaking and reconnecting of
the magnetic field lines takes place.We have carried out simulations of magnetic reconnection
in an idealized canonical two dimensional setting. The objective is to solve the full single-
fluid resistive MHD equations and consider both the inner and outer regions. AMR is an
obvious computational methodology to resolve the near-singular current sheets.
We now discuss some recent observations in AMR simulations of reconnection at

Lundquist number S = 104. A time sequence of the y-component of the magnetic field
is shown in Figure 4. As the two flux tubes move in closer we observe an intensification
of the perpendicular current. During reconnection, the current layer becomes unstable and
results in the ejection of high pressure plasma with the ejection direction alternating between
the top and bottom (See Figure 5). The peak reconnection rate during this phenomenon
is larger than the theoretical reconncetion rates. It is still an open question whether such
a mechanism is partially responsible for observed reconnection rates which are faster than
those suggested by the Sweet-Parker scaling.

Magneto-hydrodynamic Richtmyer-Meshkov Instability.
The Richtmyer-Meshkov (RM) instability is the subject of extensive experimental, theoret-
ical and computational research due to its importance in technological applications such as
inertial confinement fusion, as well as astrophysical phenomena such as supernovae collapse.
The RM instability is one of the main inhibiting mechanisms in inertial confinement fu-
sion. We performed several AMR simulations of the Richtmyer-Meshkov instability, both
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Figure 6: Time sequence of the density field in the Richtmyer-Meshkov instability at times
t = 0.385 (a1,a2), t = 1.82 (b1) ,t = 1.86 (b2), t = 3.33 (c1), and t = 3.37 (c2). The images
with nonzero magnetic field (a2, b2, c2) are reflected about the x-axis.
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in the presence and absence of a magnetic field. The mathematical model is that of the
ideal MHD. A time sequence of the density field is shown in Figure 6 for the non-magnetic
RM instability (Figure 6:a1,b1,c1), as well as the evolution in the presence of a magnetic
field (Figure 6:a2,b2,c2). The top two images depict the early refraction process of the in-
cident shock at the contact discontinuity during which the interface is compressed by the
incident shock and baroclinic vorticity generation takes place. The middle two images (Fig-
ure 6:b1,b2) show the development of the instability at a later time t ≈ 1.8. In the absence
of the magnetic field the interface, which is a vortex layer, rolls-up as expected for the usual
Richtmyer-Meshkov instability. In the presence of the magnetic field, the interface remains
smooth and no evidence of roll-up is observed. The bottom two images show that the inter-
face, in the absence of a magnetic field, has grown in extent and shows a considerable amount
of mixing. On the other hand, in the presence of the magnetic field, the average extent of the
interface shows no difference between this time and the earlier one. The physical explanation
of the supression is that in the presence of a magnetic field, the vorticity generated at the
interface is carried away by a pair of slow magnetosonic shocks. Consequently the interface
is devoid of vorticity, and its growth and associated mixing is completely suppressed.

2.3.3 Future Plans

Pellet injection in tokamaks was identified as the most suitable application for the AMRMHD
code. AMR is essential to provide the resolution required to simulate realistic pellet sizes
relative to device dimensions (typical ratios are O(10−3)). Experimentally, it is known that
the density distribution, after the pellet ablates upon encountering the high temperatures in
a tokamak, is not consistent with the distribution inferred from assuming that the ablated
material remains on flux surfaces where ablation occurred. The subsequent redistribution of
mass is due to MHD processes. Our goal is to characterize these processes.
In the longer term, there are a number of other extensions to our current capability that
would be desirable.

• Continue development of the semi-implicit AMR MHD solver to include nonlinear resis-
tivity. Perform magnetic reconnection runs at higher Lundquist numbers.

• Include a model for pellet ablation and perform high resolution pellet injection in Cartesian
geometry as well as with models to mimic toroidal effects.

• Currently the hyperbolic terms in the MHD equations are treated explicitly. We will
investigate a fully implicit formulation or implicit treatment of the fast waves.

• Investigate methods to include the Hall term in the MHD equations.

2.4 Accelerator Modeling

2.4.1 Goals and Approach

As discussed in section 3.1.1 of the original proposal, the goal in this project is to develop two
different simulation capabilities related to accelerator design. For Vlasov-Poisson equations
for beam dynamics, the goal is to develop a version of the particle-in-cell method in which
the Poisson equation for the electrostatic field is solved on an AMR grid. The potential
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speedup of such a code is substantial. The grid resolution is determined by the requirement
the number of particles per grid point is bounded from above (around 10), while the size
of the domain is determined by other factors, e.g. boundary conditions. In practice, only a
small fraction of the field domain contains particles, and the remainder could be adequately
resolved with far fewer grid points without any loss of accuracy in the particle trajectories.
The second goal is to develop a simulation capability for transient gas jet problems

arising in the simulation of laser-driven plasma-wakefield accelerators. This problem is a
fluid dynamics problem, requiring a solution to the unsteady compressible flow equations in
complex geometries. These simulations will use the embedded boundary software described
in section 3.3 of this document.

2.4.2 Accomplishments

We have developed a prototype implementation of an AMR-PIC method (ChomboPIC)
(figure 7). There are several components to this method. One is the node-centered AMR
elliptic solver described in section 3.2 of this document. A second is a generalization of
algorithms for depositing charge on the mesh and of interpolating electric field ot the particles
on a uniform grid to the case of an AMR grid. The third is the use of the Chombo Layer 1 data
structures for distributed bin-sorted particles on AMR grids. We have coupled this prototype
to the MaryLie / IMPACT beam dynamics code developed by Ryne and others as part of
the SciDAC Accelerator Modeling project. Other initial target applications of ChomboPIC
are the WARP and MAD9 beam codes. We have begun to compare in detail the results
obtained from the orginal MLI/PIC code to those obtained by replacing the uniform grid
Poisson PIC solver with ChomboPIC. The principal difference between the two codes is the
Poisson solver: ChomboPIC uses a finite-difference algorithm versus the spectrally accurate
FFT convolution algorithm used by MLI. We are now in the process of performing a careful
and systematic comparison between the two codes, to obtain quantitative estimates of the
impact of the change in discretizations on the overall accuracy of the method in real beam
dynamics problems.
In the area of gas-jet simulations for plasma-wakefield accelerators, the embedded bound-

ary codes are just reaching a point where we will be able to begin simulations of these prob-
lems, and compare them to experiments. We have been working with Eric Esarey to evaluate
our grid generation tools. In figure 8, we show the results of taking a geometry specification
for a nozzle geometry, and applying the surface generation and Cart3D grid generation tools.

2.4.3 Future Plans

In the area of beam dynamics, future efforts will focus on two areas. The first will be to
investigate the effect on the long-time particle trajectories of the differences in the electric
field computed by the different methods. To do this, we will implement a fast version of
James’ algorithm for computing infinite domain boundary conditions [23] that we will use
for both codes. This will, in addition, speed up the MLI uniform grid Poisson solver by a
factor of 5 or more. At that point we should have sufficient information to know under what
circumstances AMR-PIC algorithms will be worthwhile substitutes for FFT-based ones.
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Figure 7: AMR-PIC calculation. The electrostatic potential induced by the particles is
displayed on the slicing planes.

Over the next year, we expect to be able to provide a complete suite of simulation capa-
bilities for the gas-jet problem for plasma-wakefield accelerators in 3D and 2D axisymmetric
geometries, with both inviscid and viscous capabilities.

3 Software Development

3.1 Overview

One of the principal characteristics of the algorithms being developed here is that they are
difficult to implement: they are more complicated than traditional finite difference methods,
and the data structures involved are not easily represented in the traditional procedural
programming environments used in scientific computing. To manage this algorithmic com-
plexity, we use a collection of libraries written in a mixture of Fortran and C++ [16] that
implements a domain-specific set of abstractions [22] for the combination of algorithms de-
scribed above. In this approach, the high-level data abstractions are implemented in C++,
while the bulk of the floating point work is performed on rectangular arrays by Fortran
routines.
The starting point for the software development part of APDEC is the Chombo software

library, developed by the Applied Numerical Algorithms Group at LBNL as part of the
Berkeley Lab AMR release. This library is a refactored version of the BoxLib family of
libraries, developed by the Center for Computational Sciences and Engineering at LBNL.
Chombo has been specifically designed to make it easier to extend AMR to support embedded
boundaries and particle methods, as well as adding new capabilities and new implementations
of AMR algorithms on rectangular domains.
We would like to comment on the management of the software development process. By
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Figure 8: Embedded boundary grid generation for gas jet nozzle. The left image shows the
surface triangulation obtained from RAP, and the right image the cut-cell generation from
Cart3D.

commercial software engineering standards, the software development effort described here
is at most of medium size: a few hundred thousand lines of code, and with fewer than ten
developers. However, by scientific computing standards, this is a project of extraordinary
complexity. High performance (both serial and parallel) is difficult to obtain. The algorithm
space is complex, and has a high degree of uncertainty. We are combining these components
in new ways for these applications. In addition, some of the components such as the embed-
ded boundary solvers are themselves new. In this environment, we have found it necessary
to impose a more disciplined software development process than has been customary in the
scientific computing community. Our current practice conforms to that discussed in section
6.1 of the original proposal. In addition, we have maintained a practice of writing design
documents for algorithms and APIs for major components prior to beginning implementa-
tion, and to keeping those documents updated. These documents are a critical component
of our software engineering process, providing the mechanism by which the developers com-
municate with one another. They are referred to throughout the present document, and are
accessible at the project web site.

3.2 AMR Software for rectangular-grid computations

3.2.1 Goals and Approach

The goal of this part of the project is to develop a software framework for block-structured
adaptive mesh refinement algorithms for partial differential equations in rectangular domains.
Our approach to the design of the Chombo library is that of a layered architecture, which

is described in section 3.3 of the original proposal. However, there are specific design features
that have proved particularly useful in the development of the framework that we would like
to point out here. We shall give only a brief overview; a more detailed discussion can be
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found in the Chombo design document [11].

Classes to represent indexing constructs.
Much of the programming complexity of representing irregular stencil operations arising in
AMR can be expressed as iterations over irregular sets of indices that can be computed
using set calculus on Z

D, where D is the spatial dimension. Chombo provides a set calculus
for rectangular index sets (Box class) and irregular index sets (IntVectSet class). These
provide a programming notation that is close to the mathematics with which one describes
the algorithms.

SPMD parallelism with a decentralized representation of communication.
Multidimensional arrays in Chombo consist of a Box describing the rectangular index set
in space, plus a contiguous block of data to store the array values. That pattern is re-
peated in the description of data defined on a union of rectangles distributed over proces-
sors. The distribution of rectangles onto processors is contained in objects in the BoxLayout,
DisjointBoxLayout classes, while the data objects (BoxLayoutData, LevelData classes) are
defined as a collection of multidimensional arrays distributed over processors as specified by
the BoxLayout. The only distributed communications operations are ones that copy on in-
tersection from a LevelData to a BoxLayoutData. Otherwise, access is restricted to the
data on ones own processor, and is managed through iterators. Rather than having a global
repository of which distributed objects have isomorphic processor distributions, this infor-
mation is inferred at runtime: data objects can be accessed with the same iterator if the
BoxLayouts are the same, or if they are both derived from a common layout by transforma-
tions such as coarsening and refinement. Such a decentralized representation of distributed
data make for a flexible and familiar programming idiom. One can create temporaries and
maintain disciplined scoping rules in much the same way one would in a serial program, and
still obtain reasonable performance.

Library support for coupling between refinement levels.
Some of the most complicated code in AMR is that which manages the coupling between
levels in a grid hierarchy, such as averaging and interpolating between levels of refinement,
or interpolating boundary conditions at boundaries between different levels of refinement.
This is because such operations combine irregular computation and parallel communication.
Fortunately, such operations are reuseable across applications.For example, the algorithms
and data structures used to maintain conservation at interfaces between refinement levels is
the same, whether the problem is hyperbolic or elliptic. For that reason, we have separated
out such operations as a distinct layer (Layer 2) in the Chombo design.

Templated data containers and interface classes as mechanisms for code reuse.
We make extensive use of C++ templates in order to obtain code reuse. For example,
LevelData<T> is templated over the class that is the analogue of a multidimensional array.
The class T must provide only a small number of member functions that form the interface to
MPI used in LevelData. This allows us to reuse the code that manages distributed data over
abroad range of data types, e.g., regular arrays with various centerings, embedded boundary
data, or binsorted particles. Similarly, we use interface classes, a standard abstraction in
object-oriented design, to obtain reuse of complicated control structures. A good example
of this is the AMR / AMRLevel pair of classes that manage the Berger-Oliger timestepping
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algorithm for AMR with refinement in time. The AMR class implements the timestepping
algorithm, calling member functions of a vector of pointers (one for each level of refinement)
to AMRLevel objects. In that way, any class that implements the AMRLevel interface, such
as advancing the solution in time, tagging cells for refinement, can then use Berger-Oliger
timestepping. This pair of classes is used extensively in the Berkeley Lab AMR codes, in
applications ranging from incompressible flow and low Mach number combustion to shock
waves in solids.

One of the important consequences of using the Chombo framework for implementing
AMR applications is that codes tend to be “born parallel”. The LevelData class for repre-
senting data on a union of rectangles imposes a disciplined access to off-processor memory,
and the Layer 2 infrastructure hides the parallel communication for interlevel operations. If
an application conforms to these APIs, little additional work is required to make it into a
correct parallel program.

3.2.2 Accomplishments

Over the last 18 months, the focus has been on three specific aspects of AMR software
development. The first has been to provide the components required to implement the
AMR MHD and AMR-PIC methods in support of our stakeholders in magnetic fusion and
accelerator modeling, including hyperbolic and elliptic solvers, support for particles, and
various tools required to support such calculations, e.g. visualization tools. The second
has been to address some of the major interoperability issues of making the software that
we have developed more widely accessible and of coupling the tools being developed in the
other SciDAC ISICs and elsewhere to our framework. The third has been to design of the
rectangular domain AMR tools in a way so as to maximize their reuse in the embedded
boundary geometry versions of the algorithms discussed below, and more generally to use
the design process for the rectangular domain tools to resolve some of the design issues for
the complex geometry case.

Solver packages.
We developed a variety of iterative solvers in Chombo for cell-centered AMR discretizations
of elliptic and parabolic PDE. These included solvers for variable coefficient elliptic equations,
as well as a tensor solver for implicit discretization of viscous terms in compressible flows.
We also implemented several implicit Runge-Kutta time discretization packages for parabolic
equations on unions of rectangles, including backward Euler, Crank-Nicolson, and the second-
order accurate L0-stable method of Twizell, Gumel, and Arigu [37].
We developed a general package for the unsplit higher-order Godunov methods for hy-

perbolic conservation laws described in [10, 36]. These methods have a number of properties
that make them attractive for the applications described here, such as low phase error for
accurate treatment of time-dependent wave propagation, robust treatment of shocks and
underresolved gradients, and a straightforward construction of stable coarse-fine boundary
conditions for AMR. In addition, these methods have straightforward extensions to semi-
implicit treatment of diffusive terms [5, 27]. The package developed here [15] requires the
user to provide a small amount of problem-dependent code (characteristic analysis package
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and Riemann solver). The rest of the discretization is independent of the application, and
hence handled by the package. This package as well as the elliptic and parabolic packages
described above, are being used in MHD applications described in the applications section
of this document. We also used the design of this package as a starting point for the design
of the corresponding package for the embedded boundary case.
For particle-in-cell methods, nodal point centering is natural, and the customary usage:

the bins into which the particles are sorted are cell-centered, and the charges and fields on
the grid are computed at the nodes adjacent to the bins. For that reason, we implemented
an AMR multigrid package for solving Poisson’s equation with nodal-point centering [26].
Capabilities include combinations of Dirichlet and periodic boundary conditions in the vari-
ous coordinate directions, and a treatment of embedded irregular Dirichlet boundaries based
on a Shortley-Weller treatment of the irregular boundary conditions (figure 9). This is the
principal solver component for the AMR-PIC package for Vlasov-Poisson for accelerator
modeling.

Figure 9: Nodal-point solution of Poisson’s equation with Shortley-Weller treatment of ge-
ometry. The conducting surfaces of a high-current ion-beam accelerator are colored with the
electric field strength.

Infrastructure Support
There were a number of Layer 1, Layer 2, and Utility Layer capabilities that we developed,
primarily in response to the needs of various applications or of other software infrastructure
developers. We developed Layer 1 tools for particles, including distributed arrays of binsorted
particles defined on unions of rectangles, as well as HDF5 I/O for particles. We also extended
the Chombo framework to support periodic boundary conditions in one or more directions.
We did this by incorporating the notion of periodicity into our fundamental definitions
of index spaces. Once that was done, it was straightforward to extend the the Chombo
infrastructure, up through solvers and complete applications, to support periodic boundary
conditions.
We have developed an extensive suite of visualization tools specifically designed for dis-

playing block-structured data, called ChomboVis, primarily under funding from NASA.
However, there are a number of capabilities that were developed specifically in response

17



to the needs of APDEC. These include particle visualization, and the ability to invoke the
visualization tool dynamically from the debugger.

Interoperability Issues
We developed Chombo API’s for the PERC ISIC’s PAPI tools for accessing hardware per-
formance counters, and of a version of the Chombo solvers for elliptic PDE on a single level
of refinement for that uses the hypre package from the TOPS ISIC as its the core itera-
tive solver. We have also incorporated the University of Washington CLAWPACK package
for hyperbolic conservation laws into the Chombo AMR infrastructure. CLAWPACK is a
highly successful package in the hyperbolic PDE community, with an accessible API for such
problems. This will facilitate comparison of the different solvers, and will also aid the user
community by making a wider set of tools available. Researchers who are already using
CLAWPACK should be able to easily switch to Chombo to take advantage of features that
CLAWPACK lacks, such as parallel processing of adaptive grids and the adaptive elliptic
and parabolic solvers available in Chombo.
We have been working with the larger block-structured AMR community to develop

tools that would allow us to more easily use software packages developed using different
frameworks. In April, 2002, representatives from a number of the large AMR development
groups met under the auspices of the CCA Forum. The outcome of that meeting was a
proposed data alias based on opaque handles that allows one to pass pointers to AMR data
in a framework-neutral fashion. We have since implemented that data alias, and have used it
to wrap the Chombo interface to HDF5 I/O. The latter was at the request of several groups
who want to use the ChomboVis visualization tools.

3.2.3 Future Plans

Design and Performance Review
Our first priority after the present review will be to undertake a complete design and per-
formance review of the Chombo framework for rectangular domain problems, using the
experience of our applications developers as a driver. There are a number of soft spots that
we can already see. In the performance area, we expect to undertake a reimplementation of
some of the Layer 2 software for serial optimization of irregular codimension-one stencil op-
erations, and to develop a variety of AMR grid-generation tools to optimize load balancing.
We also need to revisit the design of the unsplit hyperbolic package to allow it to accomodate
more easily the coupling of elliptic and hyperbolic steps, as arises, for example, in the MHD
algorithm. We expect to collaborate with investigators in the PERC ISIC in carrying out
this work.

Interoperability Tools
We will begin a collaboration with the CCTTSS ISIC to wrap the AMR elliptic solvers
as CCA components. We will continue our efforts to couple Chombo to CLAWPACK,
extending the interface to support non-conservative quasilinear hyperbolic equations and
the algorithms for mapped grids currently under development. We will work with the hypre
team under TOPS to extend the hypre semistructured API to support multigrid solvers on
AMR hierarchies, and to improve the performance of the hypre structured solvers on unions
of rectangles typical of those arising in AMR applications.

18



Solvers.
We will begin development of elliptic and parabolic AMR solvers for problems involving co-
efficient anisotropies aligned with the coordinate directions. Such problems arise in magnetic
fusion, in which diffusive transport enhanced in the direction of the magnetic field, which
is approximately aligned with the toroidal direction. Other applications include accelerator
modeling, due to the anisotropy of the beam, and geophysical fluid dynamics, where the
coefficent anisotropies arise from the large aspect ratio between the horizontal and vertical
scales.
We will begin development of parallel AMR software for constant-coefficient elliptic equa-

tions, based on the method of local corrections approach described in [3]. In this approach,
one uses potential theory to construct a domain decomposition method that requires only
one iteration between the local solves and the global coarse solve. This is comparison to the
more traditional iterative approaches which require many iterations between the local and
global solutions. We expect this to be an essential component to scaling up the AMR-PIC
codes.

3.3 Cartesian Grid Embedded Boundary Methods and Software

for PDEs in Irregular Geometries

3.3.1 Goals and Approach

The goal of this part of the project is to extend the framework described above to the case
of embedded boundary methods for problems with irregular geometries. The underlying
algorithmic approach is described briefly in section 3.2.2 of the original proposal.
One approach to extending the framework described above to the case of embedded

boundaries would be to store all solution data in rectangular arrays using the framework
described above, under the assumption that there is only one control volume per rectangular
grid cell. There are two difficulties with such an approach. The most serious one is that
it unacceptably restricts the geometries that can be represented. Thin bodies - ones whose
width is less than the mesh spacing - can divide a grid cell into two control volumes, as can a
boundary with a sharp corner. Furthermore, even if one is willing to accept the restriction on
the geometry to eliminate those cases at the finest grid level, they typically reappear as one
coarsens the mesh (as is done for both AMR and multigrid). In addition, it is often necessary
to define variables on sparse subsets of the domain, e.g. the irregular control volumes only,
leading to substantial memory overheads.
For this reason, we have taken an alternative approach that accomodates at the outset

the possibility of multiple control volumes per rectangular grid cell [14, 13]. It is based on
a set of abstractions for Cartesian grid embedded boundary methods that generalizes the
mathematical structure of rectangular grid calculations implicit in the design of Chombo.
On ordinary rectangular grids, the fundamental object used to define both variables and
operations are multiple copies of Z

D, related to one another in a nested hierarchy by coars-
ening and refinement by some fixed factor (in our case, that factor is 2). All of the rest of
the machinery of Chombo is derived from the fundamental properties of this index space
hierarchy: set calculus, arrays defined over rectangular subsets, BoxLayout, LevelData, etc.
For the case of embedded boundaries, we replace the hierarchy of copies of ZD by a hierarchy
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of graphs in which the nodes of the graph are the control volumes, and the arcs of the graph
are the faces connecting control volumes in adjacent cells. In addition, the graph has a map-
ping into Z

D that defines which rectangular grid cells and faces contain the corresponding
control volumes and faces of the graph. This mapping allows us to define subsets of the
graph corresponding to both rectangles and arbitrary irregular subsets of Z

D. From there,
we define rectangular arrays as maps from the appropriate subset of the nodes or faces of
to some value space; we also provide arrays defined over arbitrary subsets of Z

D. These
arrays are indexed by node or face index objects that generalize the tuples of integers used
to index ordinary arrays. Such arrays also conform to the requirements of the template type
in Leveldata<T>, so that we can define distributed data objects over unions of rectangles.
This design is sufficiently general to represent multiple control volumes per cell, while still

providing an expressive notation for indexing into such structures. The graph representation
also simplifies grid generation to some extent. The topological and geometric information
required to compute various discretized operators is generated at the finest level, where the
geometry is most completely resolved on the grid, from a CAD description of the surface or
from a local functional description. At coarser levels, this information is generated by query-
ing the graph representation at the next finer level, without having to access the original
geometric description of the surface. The array types are implemented as ordinary rectan-
gular arrays that are accessible to the user, augmented by a sparse irregular data structure
containining the values for cells with multiple control volumes. This enables one to call
Fortran routines on rectangular grids to obtain high-performance calculations for operations
on regular cells, with the sparse irregular calculations implemented in C++. Finally, the dis-
tributed version of data on unions of rectangles is obtained with the minimal effort required
to implement the API’s required by LevelData.

3.3.2 Accomplishments and Status

Over the first 18 months of this project, the effort in this area has been divided between
extending the low-level layers of the EBChombo infrastructure, developing grid generation
tools, and producing initial implementations the embedded boundary versions of the core
AMR algorithms for hyperbolic and elliptic PDE.
EBChombo Infrastructure.
We designed and implemented the Layer 1 and Layer 2 infrastructure for the embedded
boundaries, following the approach described above. For Layer 1, this included classes for
managing the graph representation of the embedded boundary index space; cell-centered
and face-centered array types defined over both rectangles and irregular sets of indices; and
distributed-memory aggregates of such arrays, using the LevelData API. The Layer 2 infras-
tructure includes classes for managing interlevel operations analogous to those in Chombo,
such as averaging and interpolation between levels, and the various coarse-fine boundary
condition operators required to implement multilevel elliptic and hyperbolic operators. In
addition, we implemented other operators specific to embedded boundary applications, such
as multilevel redistribution operators for maintaining stability and conservation between
levels in hyperbolic problems.
Embedded boundary solvers.
In the hyperbolic case, we developed a extension of the second-order Godunov method for
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Figure 10: Shock-reflection problem computed using the EBAMR Godunov code. The
oblique reflecting surface is represented using the embedded boundary method on a rect-
angular grid. Left: full density field, with grid outlines superimposed. Right: close-up of
double-Mach region.

discretizing hyperbolic conservation laws to the case of embedded boundaries that is formally
consistent, i.e. for smooth solutions, the truncation error vanishes with the mesh spacing
as the mesh spacing approaches zero at the embedded boundary [12]. When combined with
a second-order accurate method in the interior, we obtain a method that has a second-
order accurate solution error in L1. The method is also robust in the presence of strong
discontinuities. We have also developed an adaptive mesh refinement version of this method,
using the Layer 1 and Layer 2 tools described above (figure 10). We are currently developing
3D and 2D axisymmetric versions of this algorithm as design tools for laser-driven plasma-
wakefield accelerators.
In the case of elliptic equations, we developed an extension of the discretization in [24] to

three dimensions based on the use of bilinear interpolation to obtain second-order accurate
fluxes at the centroids of faces. We have implemented and tested this algorithm for the case
of a single level grid, and have found that it is stable and leads to a second-order accurate
solution error (figure 11). We are in the process of extending this algorithm to the adaptive
case. As part of the work on the adaptive version, we are refactoring the design of the
overall Chombo AMR multigrid solver framework, to make iterative solver control structures
reuseable across the type of the data being solved for. This will, in particular, allow us to use
the same implementation for both rectangular domain and embedded boundary problems.
Grid Generation.
We began development of an integrated capability to produce embedded boundary (EB)

mesh geometry from general geometric descriptions. The previously available technology
required the user to provide a description of the geometry in terms of a water-tight surface
triangulation for all embedded objects. Using technology derived from the Rapsodi project
at LLNL, we enhanced this capability so that EB mesh geometry can also be constructed
from CAD IGES files, or by using an interactive tool for constructing geometries from simple
shapes. Using Rapsodi’s geometry representation also opens up the opportunity for generat-
ing higher-order EB surface information, and for dynamic generation of EB geometry during
an AMR-based calculation.
The Cart3D package from NASA-Ames [2] is used to construct embedded boundary ge-
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grid ‖ε‖
∞

p∞ ‖ε‖2 p2 ‖ε‖1 p1

163 4.80× 10−4 — 5.17× 10−5 — 1.83× 10−5 —
323 1.06× 10−4 2.17 1.25× 10−5 2.05 4.41× 10−6 2.05
643 2.43× 10−5 2.13 3.07× 10−6 2.02 1.09× 10−6 2.02

Figure 11: Solution of Poission’s equation in a sphere using embedded boundary methods.
The solution error on the surface of the sphere is shown in the left image, and the solution
error in slices through the sphere in the right image. The table contains convergence data
in L1, L2, and max norms.

ometry information from water-tight surface triangulations. The RAP software from the
Rapsodi project [33] was modified so that surface triangulations appropriate for input into
Cart3D are constructed. Following the initial implementation, a new more robust topology
algorithm was implemented for building water-tight surface triangulations. RAP allows the
user to interactively process CAD IGES files to remove errors and de-feature the geometry in
preparation for simulation and analysis. [34] This now includes a capability to automatically
identify and repair common geometry defects. Algorithms were developed and implemented
to automatically treat singular surface patches in IGES geometry representations, further
increasing the robustness of the software. RAP also provides tools for interactively con-
structing simple geometries, avoiding the use of complete CAD packages for cases where
that level of sophistication is not needed.
At the initiation of this project, RAP was built upon the Overture Framework, a large

software framework that supports the development of PDE solvers based on the method of
overset grids, and similar largely-structured meshing approaches. In order to provide a more
compact implementation for the APDEC project, the geometry functionality in the Overture
Framework was decoupled into a smaller library, now called Rapsodi. The new version of
RAP, including all of the features mentioned above, was released publicly on the Web as
part of Overture v. 19.

3.3.3 Future Plans

Embedded Boundary Solvers and Software.
We will complete the development of the EB AMR elliptic solvers. We will combine them
with the hyperbolic solvers to produce a compressible Navier-Stokes solver for the gas-jet
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application, and begin validation of the code in collaboration with the scientists working in
that area. At that point, we will have been through one development cycle of the embedded
boundary method, and it will be appropriate to undertake a design and performance review
similar to that planned for the rectangular domain case. We expect similar issues to arise
here, such as improving the serial performance of sparse irregular calculations, and developing
new load-balancing techniques to accomodate the more irregular loads introduced by the
calculations at the embedded boundary.
There are a number of direction in which we will need to extend the embedded boundary

approach, in order to meet the needs of our applications stakeholders. We will generalize
the capabilities in the embedded boundary grid methods, to include the anisotropic grids
and general orthogonal coordinate systems. Both capabilities are needed to apply embedded
boundary methods to tokomak and stellarator geometries, and a 2D cylindrical coordinate
capability would be a useful tool for the gas jet problem. To support combustion, we will
augment our solvers to accomodate the complicated interactions of hyperbolic transport and
elliptic constraints that arise in low-Mach number models. We will begin to generalize the
EB AMR infrastructure to support volume-of-fluid representations of free boundaries, i.e.,
ones for which PDEs are being solved on both sides of an irregular surface. Such methods
would be useful for computing thin tracked flames, and for representing the boundary of the
gas jet propagating into a vacuum.

Grid generation.
The current grid generation process involves a number of steps using a number of different
codes. First the geometry is read from a CAD IGES file or created internally in the program
RAP. That program makes sure the surface description represents a water tight model and
generates a triangulation on the surface. This triangulation needs to be sufficiently fine
to accurately resolve all details in the model, but the level of refinement also needs to be
in parity with the resulting Cartesian grid, to avoid degraded accuracy in refined regions.
Since the Cartesian grid is adaptively refined depending on the evolution of the solution, it
is sometimes hard to predict how fine it needs to be and where the grid needs to be fine.
The next step in the grid generation process is to validate the triangulation to make sure
it represents a consistent water-tight surface without any self-intersecting triangles. The
validated triangulation is an essential part of the input to the code Cubes (from the Cart3D
package) which constructs an adaptively refined embedded boundary grid for a given grid
size. This code saves it’s result in a file that is read by a preprocessor , which sets up the
internal data structure used for the solver.
In the next 18 months, we envision a more seamless grid generation process, where

the solver communicates directly with the grid generator through an API. After an initial
(interactive) validation of the surface description, RAP would save the surfaces together with
topological connectivity information in a data base. The embedded boundary grid would
then be constructed through calls to the API. To ensure accurate intersection computations
as well as fast responses, we plan to use an adaptively refined triangulation to represent
the surface. In this way, it will be possible to gradually increase the resolution of the
surface triangulation as the embedded boundary grid is refined. To enable this approach,
it will be necessary to develop a new embedded boundary grid generator, replacing Cubes.
The new grid generator will be tightly coupled to the geometry representation in RAP,
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allowing the surface triangulation to be adaptively refined where needed. However, the
surface triangulation would only be used internally in the grid generator, and it will no
longer be necessary to explicitly save a triangulation, validate it, run Cubes, and finally
convert the output from Cubes to the internal data structure used by the solver. Instead
the solver will be able to directly query the grid generator through the API. Implementing
the new grid generator will be non-trivial, but we anticipate that the resulting software will
be worth the effort.

4 Advanced Algorithm Development

4.1 Advanced Methods for Complex Geometries

4.1.1 Goals and Approach

In this part of the project, we are attempting to anticipate the development of more sophisti-
cated approaches for solving PDEs in complex geometry by combining embedded boundary
approaches for geometry representation with overset meshes and multi-element meshes with
large regions of structure. To this end, we are performing research in improved algorithms
and software for grid generation, and in discretization methods that take advantage of these
new mesh types.

4.1.2 Accomplishments

Representing Surface Geometry.
We developed algorithms to enhance the interactivity and automation of the embedded
boundary and overset grid generation process for geometries defined by CAD descriptions
[32, 20, 21]. In particular, we focused on the development of tools for the interactive genera-
tion of single component meshes from CAD data. In the overset grid and multi-element grid
generation process, a set of these single component meshes is combined to produce a mesh
that represents the entire geometry. CAD descriptions in terms of IGES file formats repre-
sent a complex surface as a set of 3D curvilinear patches each of which has a mathematical
representation as a trimmed NURBS (non-uniform rational B-spline). A typical geome-
try can include large regions of smooth surfaces, sharp corners, and intricate details. The
representation can therefore easily have hundreds or thousands of trimmed NURBS. When
generating an overset grid, one would like to construct as few surface grids as possible while
faithfully representing the intricate details of the geometry. Thus, tools for automatically
dealing with the trimmed NURBS representation are essential for optimal user interactivity
and efficiency.
To address this need, we implemented tools for interactively inspecting the mesh topology

and verifying boundary conditions on a constructed mesh. We also implemented a capability
for automatically generating the background Cartesian meshes that are used to fill volumes
away from boundary surfaces. Tools for interactively specifying starting curves for the hyper-
bolic (marching) mesh generator, including the ability to easily specify a curve that crosses
multiple patches in a CAD description, were implemented [19]. Features that help build
higher-quality meshes, including ability to fit gridlines to a specified curve, and the ability

24



to march around sharp corners in the geometry were implemented. An interactive capa-
bility for clustering grid lines for local refinement was implemented, replacing parametric
(non-GUI) approach in earlier versions of the software. An enhanced ability to automati-
cally smooth surface grids and relax grid surfaces in regions of rapid geometry variation was
implemented based on the solution of elliptic equations on 3D surfaces.

Mapped Grids in 3D.
The goal of this work is the development of high-resolution finite volume methods on a
general logically rectangular hexahedral mesh. This work was motivated in part by the
desire of SciDAC users to use nonrectangular grids, in particular for fusion simulations in
toroidal geometry.
There are two basic philosophies behind solving PDEs on a general mesh. In the first

case, one can rely on the existence of an analytic mapping function which takes a uniform
Cartesian mesh and maps it to a quadrilateral (in 2d) or hexahedral (in 3d) mesh and use this
analytic function to transform the desired PDE. A second approach is to solve the original
PDE, but modify the underlying finite difference/finite volume discretization of the PDE to
accurately approximate derivatives in physical space on the non-uniform mapped grid.
We have chosen to go with the second approach. This approach is appealing because

in the context of the wave propagation algorithm, one can easily rotate Cartesian data to
align it with edges or faces of the mapped grid cells, solve Riemann problems in this rotated
framework, and transform the data back. In our implementation of the above idea we made
the assumption that, for example in 2d, the edges of each mapped cell are straight. In 3d, we
assume that the faces of each cell form ruled surfaces. All terms relevant to our discretization
of the PDE can be obtained by knowing only the location in physical space of the four (or
eight) corners of the mesh cells of the mapped grid.
The geometric quantities that one needs include area (or volume) of the mapped cell,

and length (or area) of each edge or face of the mapped cell. In 2d, it is straightforward
to compute these quantities for a general quadrilateral cell with straight sides. In 3d it is
less obvious how to approximate these quantities. In our approach, we approximate the
faces of each cell using a trilinear map, defined from the eight vertices of the mesh cell. We
then compute an orthogonal set of vectors, one normal and two tangent, to each face. We
compute this basis at the center (in the uniform Cartesian coordinates) of each face. The
volume of the hexahedral mesh is computed using an exact formula, and the surface areas
of each face are approximated using a formula that is exact for planar faces.
We are now starting to test the 3d curvilinear code on standard Euler test cases. At this

point, our tests have consisted mainly of comparing one dimensional problems in 3d to a 1d
reference solution, and the results are quite promising.
To extend this to AMR, we need to address the question of how accurate is our trilinear

approximation to mesh cells when used in an AMR setting? By approximating curved cell
edges with straight edges or non-planar faces by ruled-surfaces, we have no guarantee that a
refined patch has the same area or volume as its underlying coarse patch. One consequence
of this, in our implementation, is that interpolation between coarse and fine meshes is not
formally first order accurate. Although the results of AMR computations look quite good,
we plan to investigate this issue more carefully.
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Accurate discretization methods for embedded boundaries.
The focus of our work is the development of accurate numerical methods for Cartesian
embedded boundary meshes. Several methods have been introduced over the last few years,
in a variety of settings, for example for elliptic PDE [24], and steady state inviscid flow [1].
There are also some approaches for time dependent inviscid flow, using flux redistribution for
stability [9], or using implicit methods [31]. However, in the explicit case these last methods
do not retain second order accuracy simultaneously with maintaining stability for a CFL
condition based on the spacing of the regular grid, away from the embedded geometry. In
general, the question of accuracy on non-smooth meshes is not that well understood.
We completely analyzed a one-dimensional model problem on an irregular grid, devel-

oped a method that was second order on this grid, and proved its stability using the GKS
theory. Stability is based on a cancellation property of the fluxes updating the small cell with
volume << h (the 1-d volume). We also developed limiters for the approach, and showed
examples with the Euler equations. The paper “H-box methods for the Approximation of
Hyperbolic Conservation Laws on Irregular Grids” (Berger, Helzel, and Leveque) will appear
in SINUM.
The two dimensional case is much more delicate. To maintain the cancellation property

for stability, we use a rotated scheme at the embedded boundary. We first developed a second
order rotated scheme on Cartesian grids for use at all cells. This scheme is an interesting
generalization of an optimal scheme by Roe and Sidilkover. When applied at the boundary,
the rotation angle is chosen to be normal to the embedded boundary in each cell. Again,
limiters were developed. The figure below shows a computation of a ramp reflection using
this new method. A manuscript is almost finished.
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In the next year we intend to finish examining the two dimensional case, and if sufficient
progress is made, extend it to three dimensions. The rotated scheme is expensive, entailing
two Riemann problems per flux (in both the normal and tangential directions). We have
ideas for maintaining stability using an operator split approach, which would reduce the
work. Other plans are to investigate the time dependent case where the geometry is moving
as well, and to examine the problems with limiters (both in this new scheme are more
generally).
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4.2 Higher-Order Methods

4.2.1 Goal and Approach

The goal of this work is the formulation, construction, and evaluation of higher-order spatial
and temporal methods in computational fluid dynamics. The work is algorithmic in nature
focusing on general issues of accuracy and efficiency in a wide class of problems governed by
partial differential equations. Nevertheless the work is motivated by the applications of the
APDEC proposal, specifically combustion research, and we have actively collaborated with
application scientists.
Of particular interest to our effort is the open issue of how best to construct numerical

methods for problems with multiple spatial and temporal scales. Much of the APDEC
effort concerns the development of the numerical infrastructure necessary to apply advanced
techniques in spatially adaptive numerical meshes to the application areas with multiple
spatial scales. As this capability matures, it is natural to address issues of temporal accuracy
as well.

4.2.2 Accomplishments

The bulk of the research effort thus far has been the development of new temporal in-
tegration techniques for advection-diffusion-reaction (ADR) systems. We have developed
multi-implicit spectral deferred correction methods (MISDC) [8] for ADR systems. These
methods allow the decoupling of the solution processes associated with the implicit treatment
of diffusion and reaction terms, hence are similar to operator splitting methods. In addition,
MISDC methods allow different time steps to be used with different processes. However,
unlike operator splitting methods, MISDC methods are easily extended to higher-order ac-
curacy.
In more recent work, a robust treatment of advective terms in conservation form, similar

in style to the piecewise parabolic methods, has been incorporated into the MISDC method
and applied to the reacting compressible Euler equations [25]. The resulting methods are up
to fourth-order accurate in time and space in smooth regions of the flow, and robustly and
accurately represent shocks.
In other work, Minion has constructed fourth-order adaptive methods for the 2-D Boussi-

nesq equations which use deferred corrections and fast multipole accelerated solvers devel-
oped by Greengard, Huang, and Ethridge to invert the elliptic equations associated with
diffusion and incompressibility [29, 28]. These methods combine higher-order, semi-implicit
temporal integration based on semi-implicit spectral deferred corrections [30], with higher-
order spatial methods based on the new versions of the fast multipole method with diagonal
translation operators [18, 17]. In addition, most of the derivative approximations in the fluid
solver are also computing using analytical formulas rather than finite differences, and hence
are capable of extremely accurate solutions.

4.2.3 Future Plans

The plan for the next year is to move toward applying the new techniques which we have
developed for fluid systems with multiple time-scales to real-world problems. Despite the
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promise shown by the various spectral deferred correction algoritms, the work to date has
been mostly algorithmic, and much needs to be done to impact the applications community.
The multi-implicit SDC methods have thus far only been applied to the reacting com-

pressible Euler equations of gas dynamics in a one-dimensional setting. In order to apply the
methodology to engineering applications, several issues must be considered. The extension
of the methods to three dimensional problems is for the most part straight-forward; how-
ever, the treatment of non-trivial physical domains, time-dependent boundary conditions,
and moving grids is more challenging. Accurate treatment of nontrivial boundary conditions
is a difficult problem in most of the application areas of the APDEC project, and we hope
to utilize the work already done by other APDEC investigators.
The second area of concentration in the coming year will be the development of higher-

order temporal integration algorithms for the equations of low-Mach number reacting flow.
These are the equations of interest in the applications pursued by Bell and Day. Unlike the
reacting Euler equations which admit a straighforward operator split form, the low-Mach
number asymptotic expansions used to model reacting flow contain elliptic constraints which
couple all terms in the equations. In the higher-order projection methods for incompressible
flow developed by Minion [29, 28] a non-standard auxilliary variable formulation is employed
in order to achieve higher-order temporal accuracy in both the velocity and the pressure,
but no similar extensions has been made in the low-Mach number setting.

5 Budget and Staffing

The current (FY 2003) budget for the APDEC project is $2.7 M, with an additional $80
K being provided by the SciDAC SAPP program. Of this, $500K ($100K each) goes to
the five University PI’s, with the remainder going to the three DOE laboratory participants
(LBNL, LLNL, PPPL). We give a detailed breakdown of activities by site, and the names
of all professional staff working on the project. Within the laboratory sites, we also give the
division of the funding between applications, software, and algorithm development.

• LBNL : $1.55 M = 6.76 FTE. Of this, 1 FTE goes to the Center for Computational
Sciences and Engineering to fund the combustion application effort (John Bell, Marc Day).
The remaining 5.75 FTE goes to the Applied Numerical Algorithms group. 1 FTE (David
Serafini) is dedicated full-time to the accelerator modeling application, and 4.66 FTE are
working on software development effort (Daniel Graves, Terry Ligocki, Peter McCorquodale,
Brian van Straalen full-time, plus 1/3 FTE each of Ted Sternberg and Noel Keen). Phillip
Colella, as lead PI, is funded at .1 FTE.

• LLNL: $510K = 2 FTE. Of this, one FTE is dedicated to the development of embed-
ded boundary grid generation tools, and one FTE to advanced gridding and discretization
methods. Staff: Anders Petersson, William Henshaw, and Kyle Chand.

• PPPL: $140K + $80K SAPP funding = 1 FTE. This funds Ravi Samtaney to work on
the magnetic fusion application.

• New York Univ.: $100K. Prof. Berger and a postdoctoral researcher (Christiane Helzel
during 2002; currently Lilia Krivodonova) work on embedded boundary grid generation issues
and uniformly second-order accurate embedded boundary discretization methods.
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• Univ. of Washington: $100K. Prof. Leveque and a postdoctoral researcher (Donna Cal-
houn) work on high-resolution upwind methods on mapped AMR meshes in 3D, uniformly
second-order accurate embedded boundary discretization methods, and interoperability be-
tween CLAWPACK and Chombo.

• Univ. of North Carolina: $100K. Prof. Minion and a postdoctoral researcher (Anita
Layton) work on higher-order spatial and temporal methods for fluid dynamics.

• Univ. of California, Davis: $100K. Prof. Puckett and his students work on volume-of-
fluid discretizations for fixed and free boundary problems.

• Univ. of Wisconsin: $100K. Prof. Rutland and his students work on numerical methods
for modeling sprays on AMR meshes.

In addition to the personnel funded directly by the project, we also have the following
collaborators from the SciDAC applications projects and other ISICs.

• Steven Jardin, PPPL, and co-PI for the SciDAC CEMM project. Jardin has been working
with APDEC on the development of AMR for MHD. evaluate results.

• Robert Ryne, LBNL, and co-PI of the SciDAC 21st Century Accelerator Science and
Techology project. Ryne is one the developers of the IMPACT and MLI beam dynamics
codes, and has been working with us on the coupling of AMR-PIC to these beam dynamics
codes.

• Eric Esarey, LBNL. Esarey is a participant in the SciDAC 21st Century Accelerator Science
and Techology project working in the area of plasma-wakefield accelerators. He has been
working with us to develop the geometry tools required for the gas jet simulation.

• Jaideep Ray, SNL-CA. Ray is a participant in the SciDAC Computational Facility for
Reacting Flow Science, and in the CCTTSS ISIC. He has been working with us on inter-
operability issues, including the AMR data alias and its application to the HDF5 interface,
and is planning to collaborate on the development of the Chombo AMR elliptic solvers as
CCA components.

• Robert Falgout, LLNL. Falgout is a participant in the TOPS ISIC, and has been working
with us on the coupling of hypre to Chombo.
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