11th Premixed Turbulent Flame Workshop, Montreal, August 9-10, 2008

LES and laser diagnostics of a low swirl methane/air flame

K. Nogenmyr, P. Petersson,X. S. Bai, M. Linne, M. AldenLund University, Sweden

C. Fureby FOI – Swedish defense research agency

> Sponsored by Swedish Centre for Combustion Science and Technologies (CeCOST)

Swedish CeCOST Modeling Project

Lund University, Chalmers University of Technology, FOI

- Industry motivation low NOx Gasturbine combustion
 Lean premixed flames, thin reaction zone regime
- Develop and validate models for turbulent premixed flames in the thin reaction zone regime
- Develop validation data base for turbulent premixed flames in the thin reaction zone regime using laser diagnostic methods
- Improve the understanding of flame/flow interaction in turbulent premixed flames

Low swirl burner

- R.K. Cheng et al. (1995)
- Low NOx, low noise, low PVC ...
- A burner chosen for validation of simulation models
- Lund, Darmstadt

. . .

Snap-shot of seeding particles showing the flame front

Re: 20000 Ka: 0.13 – 18 u': 0.5 – 2 m/s U: 2 – 10 m/s Coflow: 0.3 m/s

Co-flow of air

Well mixed methane/air ϕ =0.62 White zone likely correlated to fuel

Lift-off x/D=0.65

Co-flow of a

Summary of investigations

Laser diagnostics

- 3-component PIV at the plane 1 mm above the burner
- 2-component PIV
- Simultaneous OH PLIF and PIV
- Filter Rayleigh scattering for 2D temperature field
- Simultaneous PLIF of OH and acetone (fuel tracer)
- Statistical fields: velocity, temperature, fuel, OH
- Model development and validation
 - Flamelet type models: two-scalar flamelet model (mixture fraction and level-set G-function)
 - Thickened flame model based on reduced chemistry

Simultaneous PIV / PLIF

Simultaneous OH/acetone PLIF

• Acetone as a fuel tracer

- fuel leaks due to stratification
- fuel consumption zone and OH formation zone do not overlap
 - flamelet combustion?

Simultaneous PIV, OH/acetone PLIF

Flame front tracker and level-set approach

Flame front tracker and level-set approach

Simulation of the flame holes using level-set approach

Snap shot of flame surface colored by mixture fraction. Flame front is highly affected by turbulence.

Combustion model:

Mixture fraction T.E.
Fuel T.E.
Flame front by Level-set G
OH radical T.E.

•Inner layer chemistry by flame-let library approach extended to stratified mixtures.

Stratification effects – flame quenchingFuel and OH-PLIFLES Temperature

Published data source

- Nogenmyr et al, Proc Combust Inst 31 (2007) 1647-1675
- Petersson et al, Applied Physics 46 (2007) 3928-3936
- Nogenmyr et al., Combustion and Flame (2008) in press
- Web site for the data under construction

Mean flame position ('lift-off height') and mechanism of flame stabilization

Flame stabilization

Time evolution of the temperature and velocity field

Simultaneous PIV/OH PLIF 1.6 ms frame rate

Time separation 1.6ms

Time evolution of the temperature and velocity field

The flame is stabilized by large vortices formed in the shear layer in the burner.

Traditional RANS models fail to capture such a mechanism, due to the strong dependence on the large scale structures.

Flame stabilization

- It appears that the flame is not stabilized by the low speed central core zone, but rather it is the high speed shear-layer where large scale vortex shedding structures hold the flame
- LES seems predicted the large scale vortex shedding and thus the flame fronts
- Can RANS type model do the work
- Can we use the experimental data to determine the turbulent speed (controversy starts here ...)

Mean flame position (RANS mean planar flame model)

Damköhler, Peters, Gulder, Bradley ...

Mean flame position

propagation model failed

Is it due to error in the turbulent mean flame speed modeling?

- How to define a turbulent flame speed?

$$-S_{\rm T} = S_{\rm L} + au', a=3-7$$

Is the RANS mean flame approach not appropriate? $_{x/D}$

Summary

- A low swirl flame database developed
 - A challenging and interesting case
 - Inflow rather complex to accurately characterize
- Model development and validation
 - Flamelet model accounting for local extinction
 - Compared also with thickened flame model
- Flame stabilization
 - Original speculation of low speed zone stabilization may not be true
 - Shear-layer large-scale vortex shedding may be responsible for the flame stabilization