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CLASS ICAL EIGHTH- AND LOWER-ORDER

RUNGE-KUTTA-NYSTRiJM FORMULAS W ITH STEPS IZE CONTROL

FOR SPECIAL SECOND-ORDER DIFFERENTIAL EQUATIONS

INTRODUCTION

I,

,

,

In earlier reports [ 1], [ 2], [ 3] the author derived and listed Runge-Kutta

formulas with stepsize control for first-order differential equations.

Although second-order differential equations can be converted to first-

order differential equations by introducing the first derivatives as new

variables, this amounts to an increased computational effort, since we

then have to deal with twice as many differential equations as in the origi-

nal second-order problem. Therefore, the direct Runge-Kutta integration

of second-order differential equations without conversion to first-order

equations might be preferable. Direct Runge-Kutta formulas for second-
order differential equations were first published by E. J. NYSTROM [ 4].

We therefore refer in this report to such direct Runge-Kutta formulas for

second-order differential equations as Runge-Kutta-NystrSm (RKN)

formulas.

In this report we restrict ourselves to a special class of second-order

(vector) differential equations,

(1)f(t,x) ,

which do not contain the first derivative _ on the right-hand side. Such

special second-order differential equations are frequently encountered in

mechanics and physics.

The derivation of the equations of condition for the Runge-Kutta-NystrSm

coefficients is much simpler and easier for the special equations (1) than

for the general equations which would also contain the first derivatives

on the right-hand side.

Similar to the Runge-Kutta formulas of our earlier reports [ 1 ], [ 2], [ 3],

the Runge-Kutta-Nystrgm formulas of this report include an automatic

stepsize control based on a complete coverage of the leading term of the

local truncation error in x. This coverage is achieved by one additional

evaluation of the differential equations. Each of our Runge-Kutta-NystrSm

folnnulas represents in fact a pair of integration formulas for x which differ



from one another by the one additional evaluation of the differential equa-

tions. The orders of these two formulas differ by I. Therefore, the

difference of the formulas represents an approximation for the leading

term of the truncation error in x for the lower-order formula. By

requiring that this difference remain between preset limits, an auto-

matic stepsize control for the lower-order formula can be established.

SECTION I. EIGHTH-ORDER FORMULA RKN 8(9)

For the sake of brevity in the derivation of the formulas, let us consider

in the following a system of two second-order differential equations:

= f (t,x,y)

= g(t,x,y)

(2)

Our results, however, will hold, in a quite obvious way, for a system of

any number of second-order differential equations. We introduce

f0 -- f(t0, x0, Y0)

f,c = f(

K-1

t°+ c_Kh' x° +Xo&Kh + h 2 _ ' fA• _KX '
A=O

K-I%, 1h+h 2•
LJ Y .g.

Yo +_rOa_, X--O _^ ^]

(_ := 1,2, . , 11)

(3)

and corresponding expressions for the second equation (2).

For any g the sum of the coefficients TK x

lated to c_ by:
K

(X = 0, 1.... , K- i) is re-

K- 1

E 1 if2
"YgA = 2 g

X=O
(4)

as can easily be seen by a Taylor expansion of the x- or y- argument of

f in (3).
K



For an eighth-order Runge-Kutta-NystrSm formula with stepsize con-

trol we then require
10

x=xo+_oh+h 2 _ c f + O(h 9)
ff g

K=O

11

_}=x 0+ _0 h+ h2 _ _ f + 0(h I°)
g g

g=0

l0
V d f + O(h 9)x=x°+h" _ t_

s_=O

(5)

with

A

C ----C
K g

A

Clo = 0

A

ell = ClO

for g= 0, 1, 2 ..... 9

(6)

and corresponding formulas for the solution of the second differential

equation (2). In (3) and (5) the quantities to , x 0, Y0, i¢0, Y0 are the

initial values for the integration step under consideration, while h

stands for the integration stepsize.

As in our earlier report [2], we require that the last evaluation of the

differential equation can be taken over as first evaluation for the next

step, thereby reducing the number of evaluations per step by one. By

this requirement, the coefficients YllX and all are determined:

_110 = e0, _/111 = cl, _/112 = c2 .... , _1110 = el0, °_11 = 1 . (7)

Our problem then consists in finding the Runge-Kutta-Nystrb'm coef-

ficients _ , _/KX cK, d so that the right-hand sides of (5) are reallyK ' g

eighth- or ninth- order approximations of x or _}. By expanding in Taylor

series the solution of (2) as well as the right-hand sides of (5) and



equating the corresponding terms in both series, equations of condition

for these coefficients can be obtained.

We first expand the solution x, y of (2)

(l,)
10 x 0

h p
X = X 0 + }_ i,.T

P=I

(p)
10 y_

Y = Y0 + V hP
-J p!

v=l

in a (truncated) Taylor series:

(s)

using equations (2) and their derivatives for the computation of the total

(u) (p)
derivatives x 0 , Y0 in (8).

For the computation of the derivatives of (2) we introduce the differential

operator:

0 _--- (9)

Obviously, the following rules hold for this operator:

D ((p + _b) = D((P) 4 D(_)

D (co. _) = _0D(¢,) 4 _D((P)

D[Dn(_o)] _- Dn+l(_o) _ nED n-

L l(g)x) f 4- Dn-l(_y) g]

(10)

The operators D2(_p) , etc. , are defined as symbolic powers of D:

-k+ q) -_r) 2 +2 "k+ 2(Pty" )D2(¢P) q)t _ _°x y = q)tt _°tx

etc.
+ _0xx. k 2+ 2¢xy- _ + <0 • _r2,YY

Observing the above rules, the total derivatives of x are obtainable

from (2). The resulting lengthy expressions for these derivatives are

somewhat shortened by the introduction of the following abbreviations:



{¢(fx) _/'(f)} = ¢(fx) _/:(f) + ¢(fy) ${g) (11)

<_(fxx ) _bl(f) _2(f)> = ,p(fxx) _l(f) _2(f)+ (p(fxy)[_bl(f) ¢2(g)ti12))
+ _l(g) _b2(f)] + _(fyy) _'l(g) _(g)

Extending (11) to the case that _L(f) is a product of two operators,

¢(f) = {¢_(fx ) _2(f)}, we define,

{_ (fx) {_bl(f x) _b2(f))) = 69 (fx) [_bl(f x) _/'2(f) + _bl(fy) _,(g) ]

+ ¢(fy) [_t_l(gx) _2(f) +_1(gy) _2(g)]

and similarly for the case that ¢(f) in (11) is a product of more than two

operators.

In an obvious way, (12) can also be extended to the case of third- and

higher-order partial derivatives fxxx' fxxxx' etc. In the case of a third-

order partial derivative we define:

<_v(f ) _l(f) _b2(f)_b3(f)>
xxx

= _(f ) el(f) ¢2(f) ¢3(f)
XXX

+ (P(f ) I¢l(f) ¢2 (f) _b3(g) +¢1 (f) _P2(g) ¢_(f) +el(g) ¢2 (f) _P3(f)]
xxy

+ ¢(f ) [_bl(f) _b2(g) _b3(g) + _Pl(g) _b2(f) ¢3(g) + _Pl(g) _P2(g) _P3(f) ]
xyy

+ _(f ) ¢I(g) ¢2(g) ¢3(g)
YYY

and similarly for higher-order partial derivatives.

Using the abbreviations (11), (12), we obtain from (2) for the total

derivatives of x (always taken for t = t 0):



u
X =f

III
x = D(f)

IV
,._ :: l;(f)+ {f f)

x

\7
x ---rfd'f) + 3 (_)(f)f} + {f D (f)}

x x

x = Ill(f) + 6 (D2(f)f} + 3 <f f2> + 4 (D(f) D(f)}
x xx x

VII
x

VIII
x

-+tfx +(fx{fJ }}

= I)5(f) + 10{[_(f )f} + 15 ,(Dtf )f2>+ 10{Ffi(f ) D(f)}
X XX X

+ 10<f fD(f)> + 5{D(f ) Vfi(f)}+S{D(f ){f f}}
XX X X X

+{f L_(f)} + 3{f {I)(f )f}}+{f {f D(f)}}
X X X X X

: I)6(f) ÷ 15{D4(f )f} + 45 <_ D2(f ) f2 Z>+ 20{Da(f ) D(f)}
X XX X

+ 15_fxxx _> + 60 _D(fxx)f D(f)_> + 15 {F_(fx) l_(f)}

+ 15 {I_(f ){f f}} + 10 _f [D(f)]2_ + 15_f f D2(f)_
X X XX XX

+ 15 <f f{f f}> + 6 {D(f ) l_(f)} + 18 {D(f ) {D(f )f}}
XX X X X X

+ 6{D(f ) {f D(f)}) + {f FYl(f)} + 6 {f {D'(f )f}}
X X X X X

+ 3 {fx <fxx f2> } + 4 {fx{D(fx) D(f)}} + {fx {fxI_(f)}}

+{f (f (fxf}}}x x j



1Xx r;(f)+21{D_(f )f) _ u)5 <l_(f )?>+35{_(f ) D(f))
X XX X

+ 105 <D(f )13> + 210 <D2(f )f D(f)> + 35 { I)3(f ) D2(f)}
X XX XX X

+ 35 {D3(f ) {f f))* 105<f f2 D(f)> + _D <D(f ) [D(f)]2>
X X XXX XX

+ 105 <D(f )f I)2(f)> + 105<D(f ) f {f f}> _- 21 {I)2(f ) D3(f)}
XX XX X X

63 {D2(f ) {I)(f ) f}} + 21{D2(f ) {f D(f)}} + 35<fxx D(f) L_(f)>
X X X X

+ 35<f D(f){f f}>+ 21<fxf F_(f)>+ 63<f f{I)(fx)f}>
XX X XX

+ 21<fxx f{fx I)(f)}>+ 7{D(fx) Dg(f)} + 42{D(f X) {D2{fx)f}}

+ 21{I)(fx)<fxxf2>} + 28 {D(fx)(D(fx)D(f)}} + 7 (D(f x) {fxDl(f)})

+ 7 {D(f x) {fx{fxf}}}+ {fx Ds(f)} + 10 {fx {Da(fx)f}}

+ 15(fx<D(fxx)f_} + 10{fx {I)2(fx) D(f)}} + 10{fx<fxxf D(f)> }

5 {f {l)(l ) I)2(1))} + 5 {f {l)(f ) {f f}}} _ {f {f l_(f)}}
X X X X X X X

+ 3(f {f {I)(f )f'}'}} _ (f {f {f D(f)}}}
X X X X X X

X = l)S(f) + 28 {D_(f )f} + 210 <I__(f )f2> + 56 {DS(f ) D(f)}
X XX X

_- 420 <D2(f )f_> + 560 <Daft )f D(f)> + 70{DI(f ) D2(f))
XXX XX X

70(D4(f ) {f f}) ÷ 105 <f fl> + 840 <D(f )f2 D(f)>
X X XXXX XXX

+ 280 <D2(f )[D(f)]2> + 420 <l_(f )f D2(f)> + 420 <Di(f )f{fxf}>
XX XX XX

_- 56 {D3(f ) L_(f)} + 168{D3(f ){D fix)f}} + 56(Da(f ) {f D(f)}}
X X X X

(13)

con. )

J



+ 280 <fxxx f [D(f)]2_ + 210 _fxxx f2 D2(f)> + 210 <fxxxf2 {fxf}_" _

+ 280 _D(f ) D(f) D2(f)_ + 280_D(f ) D(f) {f f}_
XX XX X

+ 168 <_I)(f )f D a (f)_ + 504 <D(f )f{D(f )f}_
XX XX X

+ 168 <D(f )f{f D(f)}_ +28{D2(f ) I)4(f)}
XX X X

+ 1(-18 {I)2(f ) {l)2(f )f'}} + 84 {D2(f ) <fxxf2> "}
x x x

-} 112 {I)2(f ){D{f ) I)(f)}) + 28 {D2(f ){f D 2(f)})
X X X X

+ 28 {D2(f ) {f {f f}}} + 56 <f D(f) Da(f)_>
x x x xx

+ 168 <f D(f) {D(f )f}_ + 35 <fxx ID2(f)]2_
xx x

+ 70 <f D2(f) {f f}_ + 56,_f D(f) {f D(f)}>
XX X XX X

t 35 <fxx{fxf}l>+ 28 <fxx f Dl(f)> + 168 <fxx f{Da(fx )f)>

+ 84 _f f +xx <fxx f2>> ll2<fxxf. {D(fx ) D(f)}>

( l:lt

( con .)

t

+ 28 <f f{f D2(f)}> + 28 <fxxf{f {f f}}_> + 8 {D(f ) DS(f)}XX X X X X

+ 80{D(f ){Da(f )f}} + 120{D(f ) <D(f )f2>}
X X X XX

+ 80{D(f ) {D2(f ) D(f)}} + 80{D(fx)_f fD(f) >}
X X XX

+ 40{D(f ) {D(f )EC(f)}} +40{D(f ) {D(f ){f f}}}
X X X X X

+ 8{D(f ){f I_)3(f)}}+ 24 {D(f ) {f {D(f )f}}}
X X X X X

+ 8 {D(f ) {f
x X

{f D(f)}}} + {f D6(f)} + 15{f {I)4(f )f}}
X X X X



+45{f <D2If )f2> }+20{f{D3¢f) DIf)}}
X XX X X

+ 15 {fx <fxxx f3> } + 60 { fx <D(fxx )f D(f)> }

+ 15 {fx(D2(fx ) D2(f)}} + 15{fx {D2(fx ) {fx f)))

+ 10 {f <f [D(f)]2> } + 15 {f <f f D2(f)> }
X XX X XX

+ 15{f <f f{f f)> } + 6{f {D(f ) D3(f)}} (13)
x xx x x x ((con.)

+ 18 {f {D(f ) {D(f )f}}} + 6{f {D(f ) {f O(f)}}}
X X X X X X

+{fx (f x I_ (f)}) + 6 ( fx (fx { D2 (f) f}} }+x 3{fx {fx <fxx f2>}}

+ 4 {fx {fx{D(fx ) D(f)}}} + {fx{fx {fx D2(f)}}}

+ {fx{f{fx{fxf}}}}

.

Corresponding expressions hold for the total derivatives of y.

Next, we have to expand (3) in a Taylor series. Let us list the result

for _ = 1:

1 1 1
fl = f +O(f) oilh+_ D2(f) allhi +_ {ff} a_h I +_ D 3 (f) a_h 3

_ I { D2(f x)f} O_41114i {D(f)f} cr31h3 + _4 D4(f) °_41h4 ++2

1 1 DS(f) ol_h5 + 1+ _ <fxxf2> c¢_ h4 + 12-'--0 _ { D3 (fx)f} oe_ hs

i <D(f ) f2> o_hS+ i D6(f ) (x_h6+4_{D4( f )f} ot6h 6+ -S xx 72---O x

+ _16 <D2(fxx)f2> a_ h 6 + _S <fxxx f3> or61h6 + 504"---_1D 7 (f) o_ h 7

+_(DS(fx)f} oz_hT+ <I_(f )f2>a_hT+ <D(f )f3>cr_h 724 0 xx xxx

,(14)



1 DS(f) a] h8+ {D6(f )f}a]h 8+ <D4(f )f2> oe] h8
40320 1440 x xx

+ _)-6 xxx
1 h83s4 <f t_> _

(14)
(con.)

1 2 Using
Because of (4), we replaced in (14) the coefficient 710 by_ al "

(4), we similarly eliminated y_,O (u = 2, 3 .... ) in the following expan-

sions for f2 fa .... We now list the expansion for f2. It consists of

similar terms as (14) which are obtained from (14) replacing a 1 by c_2

and ()f additional terms. We list only these additional terms:

f2 = .-. + {f D(f)} (T21 °el} ha + {D(f ) D(f)} oe2 (Y21 _1) h4
X x

{f {f×f}}(72,_])h4-1{f D2(f)}(72,_])h4+_ x2 x

-*{_(f ) D(f)) c_ (721c_1) hS+ 2_D(f ) D2 (f)} c_2 h 5
+2 x x

i <fxx f D(f)> _ (721 O/l) h5l(D(f ) (fxf}} oe2 (T21 a]) h 5+2+2 x

+

+

I {f {D(f )f}} (T21 c_3) h5i {f Da(f)}(V2,o_])h5+re x x6 x

I
_l{D3( f ) D(f)} aa (T21 °el) h6+_{D2(f ) D2(f)} a_ (Y21 c_]) h66 x x

I <D(fxx),fD(f)_ > °e3 (T21 cel) h6+4 x x

+

+

+

I {D(f ) {D(f )f}} _2 (T21 °ca) h6_1 {O(f ) D3(f)} oe2 (721 0_3) h6+ _ x x6 x

1 <fxx f {fxf}> ce_ (T21 °_2) h6_1 <f f D2(f), > a22 (T21 _]) h¢ +4 xx

 <fx [D(f)]2_ > (T21 al) 2 h6 +1{fx D4(f)} (721 (_) h6

J

io



"N

+! {fx <f××?> } (_,:,_) h6+ ! {f {_: (f)f)1 (_._,_4) h6
8 . 4 x x

l_{13i(fx ) I)(f)} a'_ (_<21 al )h? + 1-_ { D3 (fx) I)2(f)} '_ (7.1 if21) h'

+ 1
! {D3<fx){fxf}} a_ ('y2, n_)h?+_<D2(f )f D(f)> n<{ (721 c_l) h712 xx

I

I{D2(fx)12 Da(f)} c_ ('y2, a3)hT+-_{D2(fx){D(fx)f}} a_ ('y21o<3) h ?+

i _D(f
4-_ XX

i

4 _ _D(fxx

1 <D(f )f {f f} >a_ (3_1 r_21)h7)f D2(f)> c_,_ ("/21 °<21)h7+_ xx x

1

) [I)(f)]2_ _2('Y21 °Zl)2h7+-8 _fxxx f2 [)(f)_ °<4 (3/21 °<1 )h7

+ 1
l__{D(fx ) lyI(f)} 0<2 (721 n<_) hT+-_{D(f x) <fxx f2_} o<2 (T21°<_) h _
24

_l{I)(f ) {D2(fx)f)} c_2(T21 o<_)h7 +_2<f f I)3(f)> n<22(_/21a3) h74 4 X XX

l D2
-l<fxxf {D(f )I'}> c_22(T21 _3)h7 +w2<fxx l)(f) (f)> ('{2,_I) (T21 c_) h 74 X

+ l {f DS(f)} (3)21_)h 7
J <fxx D(f) {fxl')_> (T21 c_l) (_/21 n<_ )hT+ -_ x2

-l{fx'g <D(fxx)f2 >} (T21 c_) h7 +_2 {fx{D3(fx )f}} (721 a_) h7

i {D5( f ) D(f)) a_ (y21 al)hS+_8 {D4(f ) D2(f)} a_ (y2iot_) h 8
120 x x

+ _1_1 { D4 (fx) {fxf}} r_42(721 a21)h8 + i_ <D3(fxx)f D(f)> a_ (T21 al) h8
4S

+__1 {,DI (f) D a (f)} a_ (T21a]) h 8 + 1-_ {I_(fx) {D(fx)f}} a_ (T21a]) h B
36 x

(15)

(con.)

ll



"N

+ 1 <D2(fxx) f (fxf}> e_l (3:21 °_21)hs-1 <D2Ifxx)f o2(f)>-_ (3:21_) h_+-_8

+ ]1 <D2(fxx ) [ D(f)]2 > _ (3:21 _I)2h8 + -1<D(f8 xxx)f2 D(f)> _ ('Y21 _l)h 8

+ 4-_{D2(fx ) IJl(f)) o_ (T2x 0_) hS+l{D2(f8 x ) {E)2(fx)f}} °_22 ('):21 °:4)h8

+ 1 {D2(fx ) <fxxf2>} o_ (3:21 _41)h8 + 1-_ <D(fxx)f D'3(f)> _ (T21 _) h816

+ 14 <D(fxx)f { D(fx)f}_ c_ (3:21 °:3)h8

+21 <D(fxx) D(f) D2(f)> a 2 (3:21 _'1) (3:21 O_2) h8

1 <D(f ) D(f) {fxf}> o_2 (T21 c_1) (3:21 c_21) h8+2 xx

1

+ _-_<f,_ : D_If)>_, (-:_:,)h_

I i

+ 1-_ _fxxx : {fx f}_ _ (3'21 _) h8 + _ _fxxx f [D(f)]2_ _ (3:21 c_1) 2h8

_ {D(f ) [_(f)} a2 (T21 c_)h8+l {D(fx ) {D3lfx)f/} _2 (3:21 c_) ha+ 120 x

+1 {D(fx) <D(fxx)f2> ) "2 (3:21 c_) h8 +_8 <fxx f D4(f)> o_ (3'21 _'_) h88

1
+8

1

+-_

<fxx f {D2(fx)f}> o_ (T21 °_ )h8 + 1_ <fxx f <fxx f2>> cr_ (3:21 (_41)h8

<fxx D(f) D3(f)> (3:21 °_1) (721 °_) h8

1

+-2 <_fxx D(f) {O(fx)f}> (T21 crl) (T21 (_]) h8

J
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1 <f D2(f){fxf}> (T21 4_) 2h81 <f [I)2(f)]2> (T21 _2)2h8 +-4 XX+8 xx

1
+ -<f

8 xx
{f f}2> (T21 (x21)2h8 + _ {f

x 720 x
D6 (f)) (?21 4_ )h8

{s(f)f}} (,2,4_)h8+_ {fx<d(%):> }(?214_)h8

1--{f×<fxxxe% } (r.,,.._)h_'+48

(15)

(con.)

Next, we list the expansion of f3. This expansion consists of terms simi-

lar to those of (24); these terms are obtained replacing 4 1 by 4 3 in (14).

Furthermore, f3 contains terms similar to those of (15); these terms are

P l)

v _) by (T31 oz_ Ta2 or2 •obtained replacing in (15) 4 2 by c_a and (T21 + )

Finally, f3 contains additional terms which do not appear in (24) or (15).

We now list these additional terms of f3:

5 . + {t {l I)lf)}}ra_ ("r2,,',_)t',_'+ {t)(f ){f
• x x X X

1 {fx {ff {I)(f ) [)(f)}} ra2 _a (r2, -,) 1_6+ _ x
X X

+ 11 { t..,:{f {t t_,}} _a2('Y=,o,_)t¢ + _ {D=(fx) {t x

._{[)(f ) { I_(t ) I_(t)}},',a " _a2 '% ()'21 a'l) h7
X X

' -1 { t)(f:.:).) . {fx. I)aO-)}} a'a" vaa ('y2, _])h"

[)(f)'}} {_3 " "t'3:! (5'21 O_ 1) he'

t)2(O}} ra=(r2,c*_)h6

D(f)}} cr_ " ",'32 (T21 c_l) h7

-, -*{ l)(f×) it.,: {txf)}} _a • r32 (ra, _;,) h72

J <f t {t _)(f)}> o2 • :,'a:_(.2, _'_)h7
-_ XX X

i {[ iD2{[ ) D(1)))T32 _2(T_I _ i) hT+ L{f {D(fx) D2(f)}} (T32c_2) (T21 ce_) h 7
÷ "2 x x 2 2 X '

13



1 {fx _fxx f D(f)_ } (Y32 0/_)(Y21 al) h7+ 1 (fx {D(fx) (fx f)}) TM _2 (VZl a_) h_ + "_

i { D(f )f))) 732 {721 0/_)h7
+l{fx {fxD3 (f) )} 732 (721_)hV+2{f{fx x

+l{fx{l_(f x) D(f)}} (Y32 0/_) (Y21°z:t)h8 +l{fx{D2 (fx) D2 (f)}} (Y32 0/22) (Y2t 0/2) h86

1 <D(fxx)f D(f)> ) (732 0/_) (Y21 ffl )ha+ _14{fx {D2 (fx){fxf))) (TS2 0/22)(Y2i 0/_)h8 + _ {fx

+6{fx{D(fx) D3(f))) (732 0/2) (721 c_) h8 +-12{fx{D(fx) {D(fx)f}}} (732 0/2) (721 0/_)hs

+_ <fx<fxxf_(f_> ) (_320/I_(_2,0/_)h3+_ {fx<ft {tf)_ } (3`320/I_(3`3,0/_)h3

+ _i {fx<fx x [D(f)12> }3`32 (3'2,0/,)2h8 + 2-_ {fx {fx D4(f))) Y32 (72, 0/_)hs2

+- '(fx )) (72,0/_)hsI {fx (fx{D2(fx)f))) 732 (72, 0/41)h8+ 8 {fx <fxx f2> 3`324

+ <fxx D(f) {fx D(f))> 732 (731 0/I+ 3`32 0/2) (721 c_l)h8

+_1 ,_fxxf(m(fx) D(f))> o_2 (732 0/3'2) (721 0/1 )h32

+_1 _fxx f {fx D2(f)}_ 0/_" 3`32 (3`21 0/_) h3+ l_fxxf {fx(ff'})_ 0/_" 3`32(3`21 0/2)h84

+--l{D(f x) {D2(f x) D(f)}} 0/3 (732 0/_) (7210/I)hs2

_i{m(fx){D(f ) D2(f)) ) 0/3 (7a2 0/2) (3`210/_) ha+2

+-l{D(fx){D(f x) {fxf)))0/3 (732 _'2)(Y2tc_:_ )h32

+-l ( D(fx ) <fxx f D(f)> } 0/3 (732 0/_) (721 0/I)h82

+I{D(fx) {fx D3(f))} 0/3 "Ya2 (721 0/3)h3 +1{D(fx){f x (D(fx)f))) a3 "732 (721 0/_)h3

I

+_{I)2(f x) {D(f x) D(f))) c_ (732 c_2) (3`210/,)h3+_{Dz(f x){fx D2(f)}) a_ "y32 (721a_) h3

(16)

_(con.)

J
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l{D2(f4 x) {fx {fx f))) c_ "Y32 (T21 c_2) h8

_1 _D(f )f {f D(f)}_ c_] - Y32 (T21 c_1) h8
2 xx x

l{Da< f ) {f D(f)}} c_ .y32 (V21 al) h8
6 x x

(16)

(con.)

Finally, we list the additional terms for f4:

f4 =''- +{f {f {f D(f)})} Y43" Ta2 (Y21 _1) i_7
X X X

+ {fx {D(fx){fx D(f)}}) (T43 a3) T32 (T21 al) h8

+ {fx (fx {D(fx ) D(f)}}} T43 (Y32_2) (V21 °_1)h8

+_1 {f_ {fx {fx _(f)}}} V,3 " V32(V2__])h 8

(17)

+l{fx {f {fx{fx f))))T43" T32 (Y21a2)h82

.

+ {D(fx) {fx {f D(f)})) oq T43T32 (T21_l) h8
X

When proceeding to f5 .... , no more additional new terms for h a or

lower powers of h are obtained.

Formulas corresponding to (14), (15), (16), and (17) hold for gl, g2,

g3, g4* In all these formulas, all functions on the right-hand side are

to be taken for t = t o .

Introducing the expressions for fl, f2 .... into (5) and comparing the
resulting expansion (5) term by term with the expansion (8), using the

values (13) for the total derivatives in (8), we obtain the equations of

condition for the Runge-Kutta-Nystr_;m coefficients as listed in Table 1.1

1. All tables are at the end of this report.
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Tile left-hand part of Table 1 represents the equationsof condition for
x, y as obtained from the expansionsof (3) and the first (or first two)
equations (5); the right-hand part of Table 1states the equationsof
condition for k, 3", as obtainedfrom the expansionof (3) and the last
equation (5). For the right-hand part of Table 1, the weight factors
c _f tile table arc to be replaced by the weight factors d of the first

f{ K

derivatives ,q, _". In the marginal columns of Table 1, one finds listed

the h-power of the correstx_nding term in tile Taylor expansions for x, y

(left-hand side) or _, 5:' (right-hand side). These terms are listedin

the same order as in equations (13). Some of the equations of condition

of "Fable 1 are duplicates or multiples of other ones and are marked by, an

asterisk (,x). When we consider the leading term of the local truncation

era'or, these duplicates must also be taken int_ account.

Later in this paper, we will refer to the equations of Table 1 by a Roman

numeral (I throughX), indicating the h-power (left or right marginal

column in Table 1) to which the equation behmgs and by an Arabic

numeral indieating its bx_sition in the bloek of the equations of the h-power

under consideration. For example, the last equation in Table 1 should be

referred to as (X, 72) or, if eonsidered as an equation with the weight

factors d , as (IX, 72)'.
g

Equations (X, 1) through (X, 72) of Table 1 are required only as equa-

tions (IX, 1)" through (IX, 72)" for the local truncation error in :_, 5_.

We reduce the equations of condition of T'tble 1 by omitting the duplicat(,

or multiple equations (*) and by introducing, in addition to (6) and (7),

the following assumptions:

A = d 1 = 0 e 2 /_e 1 = e I , = e 2 = d 2 = 0, e a = _3 = e3 = 0, C_lo = oe11 = 1.

1

3'21 c_1 = 60g_

1

+ r42 + v4a =

1
Ylll °el + Tl12 °12+ 2/113 °!3 + .... + Tl110 °_10 =7 °t_1

U

(lS)

(19)
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3/21_ __ _

3/31_,+5,32_ _2_I

5,41_ +3/4__ +3/,3_

2 1

(x3 _ __l 0¢5
3/4,_ +5,42c_23+Y43 3-20 '

3 3 1

3 1
3/11,_ +3/,,__ +_,,3_ + +3/_i,o_,o=__

C4 _41

f 3/lOl

+ C5 3/51+ ''- + C9"Y91 + CI0_

!5,)/111

+ 65 3/51 + "'" + d93/sJ +dlo5,1ol =0

-0 /
d4 5,41

YI01 /

Ylll /

=0C4 0_43/41+ C5 0_53/51+ "'" + C9 0/95,91+ CI0

c4 °_4 3/41 + C5 c_5 Y51 + " " " + C9 °_9 Ygl + Clo 5'101 = 0

>
(20)

(21)

(22)

(23)

c4 c_25,41+ e5 0_ YsI +"" + e9 4295,91+ el0 Y111 = 0

_4 .2 _/42+ d5 c_ 5,51+ •.. + d_ a_ _'9,+ _1o5,1oI= o

(24)

17



C4 ")142 + C5 "Y52 + • • • _ c9 "/92 + Clo _'112 = 0 /

c4 3'42 + d5 3/52 _ "'' + d9 T._2 + d10T102 = 0 /

(25)

l

C4 _J43 + C5 ")/53+ • • ' + C9 "f,q3+ CI0 3/I13 = 0 [

I(}4 "Y43 + C5 "}'53 + " "" + (2fl "Y.q3 + CIO "Y103 : 0

(2(_)

C5 ")'54 _/41 + C6 ('}'64 "}'41+ )'_15"}'51) + " • " + C9 (')/94")/41+ " "" {- _/98 YS1)

+ Cto ('/114 _'41 + • + 3'toO "/101):-

+ dlo (Ylo4 Y41 + • + "_'1¢)__'91) = •

(27)

In the first equations (22) and (23), the upper line (T101) holds for the

eighth-order formula and the lower line ()'ill) [or tim nmth-()rder formula.

Introducing these assumptions, we convert the necessary and sufficient equa-

tions of condition of Table 1 into a system of sufficient equations of condition

that can be solved in a relatively easy manner. In fact, these assumptions

lransform tim equations of Table 1 into several separate systems of linear

equations for the coefficients T_ x.

Let us now consider the reductions of the equations of Table 1 cffected by

the above assumptions. Assumptions (19) -- together with the first

equation (18) -- lead to the following identities in Table 1:

(V, 3)= (V, I), (VI, 4)---(Vl, I), (VII, 4)-(VII, i)

(VIII, 4)-(VIII, 1), (VIII, 9) -= (VIII, 1), (IX, 4) --- (IX, 1

(IX, lO) =- (IX, 1), (X,4) = (X, i), (X, 11)--:- (X,I) I (28)

)(x,35)=- (X,16), (x,(;1) --- (x, 5(;)
J

Because of the identities (28) the equations (V, 3), (VI, 4), (VII, 4),

(VIII, 4), (VIII, 9), (IX, 4), (IX, 10), (X, 4), (X, 11), (X,35), (X,(;1),

and the corresponding equations in d can be omitted from Table 1.
K
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Assumptions (20) -- together with (19) and the first equation (18) -- yield
the following identities in Table 1:

(VI, 5)- (VI, 1), (\t11, 6) = (VII, t), (VIII, 7)-- (VIII, 1),"5

(VIII, 19)- (VII1, 1,';), (IX, 7)= (IX, 1), (IX, 16) = (IX, 1)

(IX, 25)-- (IX, 24), (IX,32) s (IX, 30), (X, 7) =- (X,1), (29)

(x, '2o)= (X, i), (x, 2!_)_- (x, 2s), (x, 33)-= (x, l)

(X, 4S)- (X, 47), (X, 5,'))-= (X, 5S), (X, 71)= (X, 70) ,

eliminating equations (VI, 5), (VII, 6), (VIII, 7), (VIII, 19), (IX, 7),

(IX, 16), (IX, 25), (IX, 32), (X, 7), (X, 20), (X, 2.(t), (X, 33),

(X, 48), (X, 5!t), and (X, 71) from Table 1.

Assumptions (21), together with (19) and the first equation (18), lead to

the following identities:

= (VII, 1), (VIII, 12) = (VIII, 1), (IX, 13) - (IX, 1),/(VII, 8)

i (30)(x, 14) = (x, 1), (x, 31) -= (x, i),

thereby eliminating equations (VII, 8), (VIII, 12), (IX, 13), (X, 14)

and (X, 31) from Table 1.

Because of (7) and the first equations (18) and (2'2) :

Till = YlOl = 0

Similarly because of (7) and (18) :

_/112 = 0, _/li3= 0 .

(31)

(32)
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Therefore, we can omit the last term on the left-hand side of (22), (23),

and (24) and of the first equations (25) and (26). We can also omit the

last term on the left-hand side of the first equation (27) since (7) and the

first equation (22) hold.

From (22) and the previous assumptions, the following identities result:

(VII, 10)_ (VII, 8), (VIII, 18)= (VIII, 16),

(IX, 30) =- (IX, 27), (X, 56) - (X, 53) ,

(33)

eliminating equations (VII, 10), (VIII, 18), (IX, 30), and (X, 56), from
Table 1.

Assumption (23) and previous assumptions lead to:

(VIII, 14) - (VIII, 12), (IX, 24) - (LX, 21), (X, 46) - (X, 43), (34)

eliminating equations (VIII, 14), (IX, 24),and (X, 46) from Table 1.

By (24) and previous assumptions equations (IX, 15) and (X, 28) are

eliminated from Table I since they then become identical with (IX, i)

and (X, 25), respectively.

Finally, assumptions (25)and (26), together with previous assumptions,

Lead to the identity:

(IX, 34) - (IX, 27), (X, 64) - (X, 53), (35)

and assumption (27), together with previous assumptions, to:

(IX, 36) _ (IX, 27), (X, 66) _ (X, 53), (X, 70) _ (X, 67), (36)

thus eliminating equations (IX, 34) (IX, 36), (X, 64), (X, 66), and

(X, 70) from Table 1.

Omitting in Table 1 all equations which are duplicates or multiples of other

ones or which can be eliminated by using the above assumptions, the table

reduces to the following equations:(II, i), (Ill, i), (IV, 1), (V, 1), (VI, I),

(VII, 1), (VIII, i), (IX, I), (VILI, 15), (IX, 21), (IX, 27), which are

listed in this order in Table 2. To write the last three equations in a more

concise form, we introduced in Table 2 the abbreviation:
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1)+ o_+ + u _T_ 1 o_1 T#2 ... T/I,__ I cep_I- Pp_, (37)

The remaining equations in Table 1 which belong to ninth-order terms for

will be considered later when dealing with the local truncation errors in

x and _.

In the ninth equation of Table 2, the upper line (Pl0a) holds for the eighth-

order formula and the lower line (_0) for the ninth-order formula. From

the two lines of this equation, it follows that

,

must hold.

The equations of Table 2 have to be solved together with the assumptions

(19) through (27).

The first eight equations of Table 2 do not contain the coefficients T_X.

They represent linear equations for the weight factors c or d . By
K g

solving these equations, we can express the weight factors by the ff 's.
K

Next, we have to solve for the coefficients Y )( Obviously, equations

(22), (23), (24), and (27) are satisfied by

T41 = 2/51 = T61 = T71 = Y81 = T91 = TlOl = Till = O. (38)

The first equation (19) together with the first equation (20) leads to a

restrictive condition for o_1:

(39)

Similarly, the third equation ( 19), together with the third equation (20)

and the first equation (21), yields because of T41 = 0, the following re-

strictive condition for o_2:

1 5cL_ - 3oq

0/2 =-5 _4 2(X3 _ O_4
(40)

21



The remaining c_ 's may be chosen arbitrarily. We tried to select these

-values ill such a way that the leading term of the truncation error be-

comes small for our Runge-Kutta-Nystr_Jm formula.

The remaining coefficients Tj(X can easily be determined as follows: The

first equation (19) yields T21; the second equation (19) and the second

equation (20) determine Ta_ and Ta=. Since 3'41 = 0, from the third equation

(19) and the third equation (20) the coefficients 742 and T43 can be obtained.

Because of Tsl = 0 we can obtain the coefficients T52, Tsa, and Tsa from the

fourth equation (1,9), the fourth equation (20), :tnd the second equation
_21).

From the ninth and the tenth equations of Table 2, we can determine PG4,

I)'_a, P84, and P,_4, since these equations are four linear equations for

these quantities (P4(, Ps4 being known already).

The fifth equation (19), the fifth equation (20), the third equation (21),

and P_;4, together with T61 = 0, yield the coefficients TG2, T63, TG4, and Tgs.

Since we have more coefficients TK x than equations of condition, we may

set some of these coefficients equal to zero:

T72 = T82 = T83 = T104 = (}. (41)

The coefficients ")f73, 5'74, "Y75, 3/76 can then be obtained from the sixth

equation (19), the sixth equation (20), the lourth equation (21), and P74.

Similarly, T84, "gas, Tag, and T87 are determined by the seventh equation

(19), the seventh equation (20), the fifth equation (21), and P84.

Next, we use the first equation (25) and the first equation (26) to find /gz

and "Y93- The first line of the last equation in Table 2 yields P_5" This

value P95, together with P94, the eighth equation (19), the eighth equation

(20), and the sixth equation (21), determines the coefficients ,/_, T95, Tg_,

T_,7, and T98. Similarly, we use the second equations (25) and (26) to

compute 3'_02 and Tim. From the second line of the last equation in Table

2 we find P105. Since T104 = 0, we can determine the remaining coefficients

3q05, T106, 7_07, Tlos, and T109 from Pl05, Pl0_ (= 3-_), the ninth equation (19),
the ninth equation (20), and the seventh equation (21).
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10.

This concludesthe computationof the co_fficients TKXsince _/' 11X

(X= 0, 1, 2 ..... 10) is given by (7), and T_ 0 (_ = 1, 2, ..., 11) can

be determined from (4)•

Table 3 lists the coefficients of an eighth-order Runge-Kutta-Nystr_)'m

formula RKN 8( 9). The expression TE in Table 3 represents the
x

leading term of the local truncation error in x for our eighth-order
formula and is obtained as difference between the first and the second

formula (5).

In Table 4, the error coefficients for the leading truncation error term

and x and _ arc listed. If the error coefficients dilfer by a constant

numerical factor only, the coefficient with the largest factor is listed.

The product of the error coefficient and the corresponding expression

in the partial derivatives, as listed in (13), times h 9 is the actual con-

tribution t() the leading truncation error term.

i

Because of P104 - 30' the tenth equation of Table 2 holds also for the

oighth-order formula RKN 8, so that this equation does not contribute to

the leading truncation error term in x. The only contributing equation

of Table 2 is the last one [equation (IX, 27) of Table 1]. Replacing

equation (IX, 27) by equation (IX, 29), because of the larger factor of

the latter one, the error coefficient that determines the contribution to

the leading truncation error term in x reads:

1 15 (42)
T29 --_-_ (ca P4s + c5 Pss + • .- + % P9,5 + c10 Plo,_) - 362 880

In the case of i:, there are seven essentially different error coefficients

that contribute to the leading truncation error term: T10, T26 , T4s, T51 ,

T52, Tss, and T_8.

It is essential that the error coefficients in R are of about the same order

of magnitude as the error coefficients in x. If the error coefficients in

:_ are large compared with the error coefficients in x, large truncation

errors in x might be generated since in our method the integration step-

size is determined by the local truncation error in x (by TE ).
X
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SECTION II. SEVENTH-ORDERFORMULARKN 7(8)

II. The derivation of a seventh-order llunge-Kutta-Nystrgm formula RKN 7(8)

closely follows the same pattern as in the case ()f our eighth-order formula

IIKN 8(9) of Section I. Naturally, a seventh-order formula requires fewer

evaluations of the differential equations per step than an eighth-order for-

mula. We shall present in the following a seventh-order formula based on

nine evaluations per step, a tenth evaluation being taken over as first eval-

uation for the next step.

In the case of a seventh-order formula, equations (3), (5), and (6) must

then be replaced by:

fo = f(to, Xo, Yo)

_:-1 Y/;_.f_. '
f = f o + oe h, x o + ioC_ h + h2.
K K g

?t=0

Y0 + 5_0 o_ h + 1]2 _K " 3'KX gx
X=O

(_ = 1, 2 ..... 9)
8

x=x0+_0h+h2._ c f +0(h 8)

K=0

9

°x=x o+:_o h+ h2 V _ f + 0(h 9)
K ff

g=0

(43)

(44)

8

:_ =Xo + h- _ d f + O(h 8)
ff g

/_=0

A
C =C

g K
for K= 0, 1, 2 .... , 7

A

C8 = O

A

C 9 = C 8

(45)
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In Table 1 the last 72 equationsof condition nowhave to be omitted,
since they correspond to tenth-order terms in the Taylor expansionfor
x or to ninth-order terms in the expansionfor _.

Instead of equations (18) through (27), we nowmake the following
assumptionm

A A

c 1 = e 1 = d 1 = 0, e 2 = e 2= d 2 = 0, _A = n'._ = 1.

i 3

_/21_i =T(_2

_/31 (I' 1 -I- "Y32 °12 =

1

2 1 ee_

J

2
_/41c_I+ "/42o_ + _'43cv_= i' 12 c_4

I 4

1

._=-_

!

(46)

(47)

(48)

(49)
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C3 731 4- e 4 741 4-

c3 T31 ÷ c4 ?41 +

4- C7 ?71 4- C8 _{ ?81 _I
• g B

t Ygl I

• .- + c7 ?71 4- 58 ?81 = 0

=0 (50)

C3 (F3 731 4- C4 0/4 _41 4- • ' • 4- C7 (_7 771 ÷ C8 791 =- 0

C3 0/3 ")/314- C4 _4 741 4-. • • 4- C? 0/7 TTI + C8 )181 = 0

(51)

C3 T32 + C4 _/42 +

63 ?32 + 64 ?42 +

• .. 4- C7 ?72 4- C8 ?92 = 0 [

f• -" + C7 "Y72 4- C8 ?82 - 0

(5 `))

Because of T91 = cl 0, we obtain from the first equation (50):

T81 = 0 (53)

The assumptions (46) through (52) reduce tile equations of conditions

of Table 1 to those of Table 5.

12. We now have to solve the equations of Table 5 together with the assump-

tions (47) through (52): The first seven equations of Table 5 allow us

to express the weight factors by the _'s. From the first equation (47)

we obtain T21. The second equation (47), the first equation (48), and

the first equation (49) lead to a restrictive condition for the (_'s:

1 50/2 - 30/3 (54)
_i = 5 0/3 20/2 - _3

and to 731, ?32. The third equation (47), the second equation (48), and

the second equation (49) yield ?41, ?42, ?43-

On the other hand, equations (50) and (51) allow us to express 741, ?51,

T61, and T71 by Tal, the _'s and the weight factors. Therefore, we have

two different expressions for T41- Equating them leads to another

restrictive condition for the c_'s:



13.

Since Ys1 is already known, the coefficients "F52, ")t53, `/54 are obtained

from the fourth equation (47), the third equation (48), and the third

equation (49).

Putting `/62= 0,we obtain, since 5'61is already known, 763, YM, 765 from

the fifth equation (47), the fourth equation (48), and the fourth equation

(49).

Since 792 = c2 = 0, the first equation (52) yields Y'12. Since ¥71 is known,

we can obtain "/73,774, `/75,`/7_fromthe sixth equation (47), the fifth

equation (48), the fifthequation (49), and the last equation of Table 5

(written as equation with weight factors c ).

Similarly, the second equation (52) yields ?82. Setting Y83 = 0, we obtain

YM, Y85, "/86,`/87from the seventh equation (47), the sixth equation (48),

the sixth equation (49), and the last equation of Table 5 (written as

equation with weight factors d ).
P

This concludes the computation of the coefficients _ X since "/9_

(_= 0, I.... , 8) are equal to the weight factors cA (_= 0, i, ..., 8)

andYK0 (_ = l, 2 ..... 9) can be determined from (4).

Table 6 lists the coefficients of a seventh-order Runge-Kutta-Nystr3m

formula RKN 7 (8). The restrictive condition (55) makes it somewhat

harder than in the case of the formula RKN 8 (9) to find reasonably

simple a-values. This explains the somewhat unwieldy coefficients

"/K?tof Table 6.

We notice in Table 6 that a_ and d4 are negative. It is possible to obtain

positive values for all oe's and all weight factors by a different choice

of oe3 e.g., c_3 = . However, the coefficients "/K_. then turn out to

be even more formidable.

In Table 7 the error coefficients of the formula of Table 6 are listed in

the same way as we have listed in Table 4 the error coefficients of the

formula of Table 3.
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SECTION III. SIXTH-ORDERFORMULARKN6(7)

• 14. For the derivation of a sixth-order Runge-Kutta-NystrSm formula

RKN 6(7), we proceed in a quite similar way as in Sections I and II.

In the case of a sixth-order formula RKN 6[ 7) we have to consider only

the first 43 equations of Table 1. We base our sixth-order formulas on

seven evaluations of the differential equations per step and allow for an

eighth evaluation that will be taken over as first evaluation for the next

step. We then have:

fo = f (to, Xo, Yo)

It K= 1f = f o + c_K h, x o +:_o h+ h2 • _ T_X fxg
X=O

Y0 +);0h+ h2"_j TgX gx
X=0

(K = 1, 2 ..... 7)

(56)

and

and

x = x0 +xo h + h2 "

7

Ax = x o + :_o h + h2

K=0

6

_=_o+h • _ d f
K K

K=O

A

c =e for K=0, 1, 2,
g K

A

C 6 = 0

A

C 7 = C 6

c f + 0 (h7)
-J K g

I{=0

f + 0 (h8)
K g

+ 0 (h7)

.... 5 I

I

(57)

(58)
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In the case of a sixth-order formula RKN 6(7), we make the following

assumptions:

A

c 1 = c 1 = 61 = 0, _6 = a7 = I. , (59)

1 _3

i

1
vTi_, + 772_2 + ... + 776_6 = 7 _i

t}

• (60)

771 C_2+ 772 (_ + "'' +776 Oz_ - 12

15.

C2 721 + c3 ")/31 + C4 741 + C5 _/5i -_ c6 _/71 = 0

C2 721 + c3 _/31 + 54 741 + c5 751 + C6 761 = 0

(62)

Obviously, these assumptions reduce the equations of Table 1 to those of

Table 8.

We now solve the equations of Table 8 together with the assumptions

(60), (61), and (62). The first six equations of Table 8 yield the weight

factors as functions of the a's. From the first equations (60) and (61),

we obtain the restrictive condition:

1
_I = _ _. (63)
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16.

and the coefficient 3'21. The second equations (60) and (61) yield Yal and

Ta2. Setting 741 = 0, we obtain Y4z, T4a from the third equations (60) and

(61). Since3,rl = cl- 0, the first equation (62) yieldT51. The coef-

ficients 7s2, T,sa, Y54 are then obtained from the fourth equations (60),

((;1) and the last equation of Table 8, written as equation with weight

faet()rs c .
P

The coefficientTG1 is determined by the second equati,)n (62}. Setting

&2 = 0, the coefficients ?'c,a, To,4, Y¢5 can be computed from the fifth

equ:_tic)ns (60) and (61) and t'rom the last equati¢)n of Table 8, written as

equation with weight factors d .
P

This concludes the comput_tion of the coefficients t_2,. sitmeY7 k

(k = 0, 1 ..... 6) are equal to the weight fact,)rs c (X : 0, 1 ..... 6)
k

an(ITg 0 (g = 1, 2, ... 7) can be determine(I [r()m (4).

In 'Fable 9 the coefficients of a sixth-order l/unge-I,iutta-Nystr_Jm formula

I{KN (i{7) are presented. In Table 10 the error coelfieients for the

leading truncation error term in x an(t x are listed. Again, if the error

coefficients differ by a constant numerical factor only, the coefficient

with the largest factor is listed. As Table 10 shows, the error coef-

ficients in )i are of about the same order of magnitude as the error

coefficient in x.

SECTION IV. FIFTH-ORDERFORMULARKN5(6)

]'7. 'F(, derive a fifth-order Runge-Kutta-Nystr_m f_)rmul,q RKN 5(6), we pro-

teed in a quite similar way as in Sections I to IIl. Wc base our fifth-

order l!ormula on six evaluations of the differential equations per step

and allow for a seventh evaluation that wil[ be taken over as first evalua-

ti(m for the next step. We then have.

f0 :: f(t0,x0,Y0)

f_ f(to

K-1

+o/h, xo+kocvh+h 2-S' y .f.,
g K _ t,_A A

)_=0

g-1 )yo+_rooe_h +h2. 2 T_cxg x
X=0

(K = 1,2, .... 6)

(64)
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X

A

X

5

= x0+k0h+h 2 • _ c f
K g

K=0

6

= x 0+_0 h +h 2. _ _ f
K K

K=0

5

ko+h. _ _ f +0(h 6)
K K

K=0

+ oOV)

+ O(h _) (65)

A
C = C

K K

A

C5= 0

for K = 0, 1,2,3,4

((35)

We make the following assumptions:

A

= c 1= 6 i =0 , as =a6= iCl

I
_21_1 = -- (_

6

1

1

1

1 _3
"//61 OIl + _/62(_2 + _/_3OZ3+ _64_4 + _/650_5 = _ 6

"Y3I = 0 , "/41 = 0 , T51 = 0 , _/61 = 0 ,

which reduce the equations of condition of Table i to the equations of
Table 11.

(67)

(6,_)
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IS.

19.

The first five equations of Table 11 yield the weight factors e

functions of the a Vs.
K

or d as
g

From the first two equations (68) we obtain 721 and 3'32. From the third

equation (68) and from the last equation of Table 11, this equation

written with weight factors c , the coefficients 3'42 and 3/43 can be deter-

mined. Using the fourth equation (68) and the last equation of Table 11,

written as equati(m with weight factors d , the coefficients "/_3 and 3/54 can
K

be expressed by the (_ 's and by ?52- By still having )'52 available, we
K

could select ?52 in such a way that some of the error coefficients of our

fifth-order Runge-Kutta-Nystr_m formula become small. By doing so,

we obtained error coefficients, some of which were considerably smaller

than those obtained from setting ?52 = 0. The coefficients ?63, of the

last equation (68) are naturally equal to the weight factors eX, since it

was intended to take over the seventh evaluation as first evaluation for

the next step.

In Table 12 arc listed the coefficients of a fifth-order Runge-Kutta-

Nystrgm formula RKN 5( 6), arid in Table 13 the error coefficients in x

as well as in :_ for the formula of Table 12. Table 1"_ shows that the error

coefficients in _ are of the same order of magnitude or smaller than

the error coefficient in x.

SECTION V. FOURTH-ORDER FORMULA RKN 4(5)

20. A fourth-order Runge-Kutta-Nystrb'm formula RKN 4(5) can be based on

four evaluations per step if we allow for a fifth evaluation that will be

taken over as first evaluation for the next step:

fo f(to, Xo, Yo)

f = f to+ a h, x o +koCe h +h e ' f

X: 0

h +h 2 2Y0 + _'0a • ?_g_

(_ 1,2,3,4)

(70)
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X

3

= x 0* _0 h + h 2. _ c f
K K

K=O

+ O(h 5)

4

x = x 0 + x0 h + h 2 • c f
K K

K=0

3

= k o+h. _ 5 f + O(h 5)
K g

K=O

/%
c = c torK =0,1, z

g g

A
C 3 = 0

A

C 4 = C 3

+ O(h 6)

1
(71)

(72)

21.

°_3 = _4 = 1 (73)

Table 14 shows the reduced equations of condition for a fourth-order

formula RKN 4(5).

The first four equations of Table 14 determine the weight factors c

6 as functions of the _ 's. K
K K

and

Since we require that the fifth evaluation should be taken over as first

evaluation for the next step, the coefficients 5'4k must be equal to the

weight factors c A (k = 0, 1, 2, 3). Setting _/31 = 0, the coefficients 72i

and _/_2 can then be determined from the two eqtmtions in the last line of

Table 14.

22. In Table 15 are listed the coefficients of a fourth-order Runge-Kutta-

NystrSm formula RKN 4(5) and in Table 16, the error coefficients in x

as well as in i for the formula of Table 15. There is only one error

coefficient in x which is different from zero. The six error coefficients

in _ which are all different from zero are equal in magnitude or smaller

than the error coefficient in x. Again, if the error coefficients differ

by a constant factor only, those with the largest factor are listed in

Table 16.
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SECTION VI. SOME RUNGE-KUTTA-NYSTROM

FORMULAS OF OTHER AUTHORS

23.

24.

In Section VII we shall apply the Runge-Kutta-Nystrb'm formulas of

Sections I through V to a numerical example. We shall compare their

performance with that of our earlier Runge-Kutta formulas for first-

order differential equations [ 1], [2] and also with the performance of

some Runge-Kutta-NystrSm formulas by other authors.

For the convenience of the reader we list in 'Fables 17 through 22 the
Runge-Kutta-Nystr_Jm coefficients and also the error coefficients for a

fourth-, a fifth-, and a sixth-order Runge-Kutta-NystriJm formula, which

we have used for comparison in Section VII. As before, if the error

coefficients differ only by a constant factor, we list those with the largest

factor. The fourth- and the fifthTorder Runge-Kutta-Nystr_Sm formulas
were published by E. J. NYSTROM ([4], p. 24) and the sixth-order

formula by J. ALBRECHT ([5], p. 103).

A comparison of Table IS with Table l[i shows that NYSTR()M's error

coefficients are two to nine times as Large as ours. Therefore,
NYSTR_JM's formula of Table 17 can be expected to have a larger lead-

ing truncation error term than our formula RKN 4(5).

A comparison of Table 20 with Table 13 shows again that our formula

RKN 5(6) has considerably smaller error coefficients than NYSTR(3M's

formula RKN 5. For instance, our error coefficient T 5 is only about
one-seventeentb of NYSTROM's coefficient 'F5

Again, the error coefficients of our Runge-Kutta-Nystrb'm formula

RKN 6(7), as listed in Table 10, are smaller than those of ALBRECHT's

formula, Listed in Table 22. For instance, our largest error coefficient

in x, Tg, is only about one-fifth of ALBRECHT's coefficient T 9.

The formulas of NYSTR()'M and ALBRECHT of this section do not include

an automatic stepsize control as our formulas of Sections I through V do.
Therefore, we have to apply to the formulas of NYSTROM and ALBRECHT

the standard stepsize control procedure that consists of recomputing two

consecutive steps of stepsize h by one step of double stepsize 2h. It can

easily be shown that the truncation error after one step of stepsize h

is approximately

1
E = /k x2 , (74)

2(2 n -1)

34



with n being the order of the formula under consideration and A x2 the
difference of our two results after two steps of stepsize h or one step of
stepsize 2h, respectively. If the formula under consideration requires
m evaluations per step, this stepsize control procedure would increase
the number of evaluations per step to 2m - 1. SoNYSTR(_M'sformulas
RKN 4 and RKN 5 and ALBRECHT's formula RKN 6 would require five,
seven, and nine evaluations per step, respectively. For NYSTROM's
formulas, this is one evaluation more per step thanour formulas
RKN 4 (5), RKN 5(6) require, and for ALBRECHT's formula RKN 6,
this is two evaluations more thanour formula RKN 6[7) requires, since
for our formulas we can take over the last evaluation as first evaluation
for the next step. Only for the very first integration step our formulas
would require five, seven, and eight evaluations, respectively. Com-
pared with NYSTR(_M'sor ALBRECHT's formulas, our formulas have
the further advantagethat they have considerably smaller leading trunca-
tion error terms andtherefore permit the useof a larger integration
stepsize without loss of accuracy. The numerical exampleof Section VII
will demonstrate this advantage.

SECTION VI I: APPLICATION TO A NUMERICAL PROBLEM

25.

26.

In this section we apply the Runge-Kutta-Nystr_;m formulas of this report

and some of the Runge-Kutta formulas of our earlier reports [ 1], [ 2] to

a numerical problem. For comparison, we also apply the Runge-Kutta-

Nystrb'm formulas of Section VI to the same problem.

In Table 23 the problem is stated, and the results of the numerical inte-

gration are presented for the various formulas.

All calculations were executed on an IBM-7094 computer in double preci-

sion (16 decimal places). The computer was equipped with an electronic

clock to measure the ru_nning time for the various formulas.

The stepsize control for our Runge-Kutta-Nystrb'm formulas RKN 4 (5),

.... RKN 8(9) was set up in the following way. For a preset tolerance

TOL (in Table 23 we used TOL = 0.1 • 10-16), we computed for each

step the products TOLX=TOL. [x0f, TOLY=TOL. [Y01 which we con-

sider as the tolerable errors in x and y for the step under considera-

tion. Having computed the approximate truncation errors TE , TE
x y
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27.

according to Tables 3, 6, 9, 12, or 15, respectively, we then deter-
mined the maximum of the ratios fTE t/TOLX, ITE )/TOLY and then

x y
required that for this maximum (max) the following inequalities hold:

1) n+ 1 < max _<-1 , (75)

n being the order of our formula.

If necessary, we halved or doubled the stepsize until (75) held. However,

since the values TE , TE are only approximations of the true trunca-
x y

tion error, it can happen that (75) never holds: If a certain stepsize h

is too small max < _ , the stepsize 2h might be too large:

max > 1. In such a case, we accepted the smaller stepsize h as final.

The stepsize control for ourRunge-Kutta formulas RK 4(5) ,...,

1RK 8(9) was set up quite similarly, but here we also tested the trunca-

tion errors in :_ and j_, since for these formulas we had to rewrite the

differential equations of Table 23 as a system of four first-order dif-

ferential equations in x, y, :_, 5_.

In the case of the Runge-Kutta-Nystrb'm formulas of Section VI we used

equation (74) as approximation for the truncation error.

Table 23 shows the result of the various formulas for t = 10. Since our

problem has a solution in closed form, the total errors Ax, Ay, A)[,
A); are easily available and are listed in Table 23 for t = 10. In each of

the £ive groups of formulas, these errors do not differ much from one

another. This means that all fourth-order formulas, etc., are of about

the same accuracy.

However, the formulas of each group differ considerably from one

another with respect to the number of steps required to cover the interval

from t. = _'2"to t = 10 and with respect to the execution time on the

computer. Our new Runge-Kutta-Nystrb'm formulas RKN 4(5),...,

RKN 8(9) require half or less than half the execution time of our earlier

Runge-Kutta formulas RK 4(5) ..... RK 8(9) or of the formulas of
Section VI.

Computation Laboratory

George C. Marshall Space Flight Center

National Aeronautics and Space Administration

Marshall Space Flight Center, Alabama 35812, September 9, 1971
014-00-00-00-62
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TABLE 1. COMPLETE EQUATIONSOF CONDITIONFOR
EIGHTH-ORDERFORMULA RKN 8(9)

I. h 2

1. h a

1, h 4

2. _(*)

i. h s

2. hS( * )

3. h s

1

2 = C0 + el + c2 ÷ c3 + C4 + ' " " 1

t

_- C16Yl +C2rX2+ C3CV3+ C4_4 +. • •

1 1 1 1 c3ce _ + I e4(r _ + . . . 1

i I O/I+ 1 e2oe]+ 1 C3.] + 1 1

I 20

3

2O

1

1 20

I + I 1 C3_334 1 c4{_ _ _...

02 " qg21C_l + C3{'Y31OL1 * "y32C_2} + C4{T41Cgl + '}'42C¢2 + _430'3)+ • . •

1

3

24

1

Ti-

h

h 2

h a

(,x) h _

h 4

(*) h 4

h 4

1. h _

2l hS( _: )

3. h 6( :'

4. h ¢

5 h _

6. h6{ *

2 * " "

72o g g g X- ¢'_ ....

3 1 l C2{_ I + 1 1:z. ; ¢''_' + T 7 ea'_ + T {''_' .....

4

72(I C2O2'?Z1(_1 + eae_3{Y3i°q + 7azoe_} J c4(r4(T41°gl + 2"420e2 _ Y43Cr3} + " " '

I 1 1 1

1 1 l 2 1

720 _ C2-'Y21(_'_ I TCa('yaltL)t'I + Ta2OL_)+ _- C4('Y41_2_+ T420t_ +_'430_) ....

1 hS

120

(; (,:=) h _
1 2O

3
(:) h s

120

4 h. _
120

i hS

120

1
(*) h s

120

1. h 7

I 2. hT( * )

4. h 7

5. h _ (*

6. h ?

7, h _ ( ':'

8, h "/

9. h?( *

10, h ?

1

5 040

10

5 t) !{)

15

5 040

10

5 040

10

5 041)

5

5 {}40

5

5 040

I

5 040

3

5 040

1

5 040

1 1 e2¢_ _ _ 1 I csez_ 4 . I ha

i 1 _2 _ 10 (':') h 6

1 cta_ + I cz°_ _ + t caa_ + 1 15 (,a) h a

1 1 2 1 10 hg
-- : T cz_ .'YZla't+ Tca(ra (Tat°e! +T3_°_2) + T c_Oe_(74t_t+ 74zo, Z + T_,zo_a) +... 720

1 1 1 10 he

1 1 1 5

i 1 I 5 (e_ } h s

1 1 3 1 1 h_

1 1 1 3 hS

l hS
-- = c3"_32 "'_210el + C4['Y42 ' T2l°_i + T43(_31°_1 + "Y320_2}]+ ' ' " = "72_
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TABLE 1. COMPLETE EQUATIONSOF CONDITIONFOR
EIGHTH-ORDERFORMULA RKN 8(9) (Continued)

J. h 8

2. h _ (,)

3. h 8 (*)

4. h 8

5. hH (:,)

6. hS(*)

7. b 8

8. h s (*)

9. h 8

10. h 8 (*)

11. h _ (::')

12. h 8

13+ h 8 (*)

14. h 8

15. h _

16. h _ (*)

.17. h 8 C.')

18. 118

19. h s

20. h 8 (*)

x c ,

720 c8_3 7_- (4 • • ,

15

40 320

45

40 320

2o

40 320

15

4O 32O

40 32O

i7.

4O 32O

]5

4O 32O

10

40 320

15

40 320

15

4O 32O

(;

4O 32O

18

40 320

-_- e2'_2 _ _ " 4,, " •

1 1 c2_ _ _ t c3c__ + t c4_q ,

I I I C4(_ _ + + . . .I_ C20'3" _2''1 ' _) C3(_(_31 0 ' + "}32_i'2) _ _" (_"41(_1 ?42"2 _3C_3] _

1 1 l _ 1

• 321 2 (3O3(_'31¢_1 + _+32¢_2) + 2 C4C_('_41(kl ' ?4202 " +)'43a3) ' ' " "

1 )2 1 , 1
.-_ C2(_,'21L_1 ' 2 C3( _31A1 _ 532(>2)" # 2 C4(')41 (}1 _ 5'4202 + )43(i3j 2 _ . . ,

1 1

1 I 1 1

, 343031 + . . .

4O 320

3

40 320

4

4o 32O

1

41) 32O

1

40 320

1 T21(v_ + 1 1

1 4 ,

C3" _'320 _ , "Y21(_ I + C4 [_420'2 . ")'21(_1 _ %43(_3(')31_ 1 _ "),32(_2)] _ , , .

1 l _43( ,'3_ch _ ]32°_)] + . • .

1 ,2 1

_-c_. _,, _,_,_ , Eo_h._z. _,._ __.,3(._,_ , _)1 ....

k

1 h_

5 040

t5
(,:,) h

5 040

45
(:) h:

5 040

21) h:
5 040

t5 ( )

5 040

I;0
(_:) h 7

5 040

15
h'

5 O40

15
(,:) t, 7

5 040

Io
h'

5 O40

15
(,,:) h _

5 040

-_'_ ) h'
5 O40

-';_ h'
5 040

!: ) h"
5 040

6 h7
5 040

1 h;
5 040

G

5 040 ::_ "_U¢

- :_-- I':) h 7
5 040

4 hV
5 040

1 h;

5 040

1

5 040 (':) b:
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TABLE i. COMPLETE EQUATIONSOF CONDITIONFOR
EIGHTH-ORDERFORMULA RKN 8(9) (Continued)

I.

3. h s *1

4. h :_

2 h _' * )

7 h

n Ii_* (:)

l i. h _ _)

I.. I':'

I,> ]i> _ /

;_ ;, ( )

9. ]1_ ! i

362 880 5 04() el ....5 040 c2 _2 I :5 tl4O c3 _/3 + 5 040 el a_ + . . .

240 cl ell 2-t0 c_ * 2_ 2't') 4

362 880 = 48 cl n+l 48 4

35

362 850

105

362 _80

210

362 8_0

35

362 880

35

105

362 _4140

70

362 _0

105

362 _0

I

40 320

21

40 320

105

-.t0 320

1 _ 1 35
,I0:120

40 320

1 1 , 4 1 210

4c2 °_ ' )21°tl e 4(3_3 (_'31 ')1 + 7"32 ¢'Z) ' 4 ('4 °'_ (T41 (il _ "/'2 O2 + ")"43 Gt3)+ ''' 41"_:]20

12 c4 _'4 (_¢'41 ('l] ,c _'42 Y43 "" 40-320

-- " _'_ "_ " m <_,' 7 c_ _ (m <h + _'_2 _r_) + _ c, _I (v. a, _ _'_2 _2 + y,_ _) + 4o _°5" ' " 320

1 c2 o2 ttl) _ I 1 c30_ i._)2 _ I (:4 0'4 + 70

40 320

41(_ "_ " Y- "] _; <'_.<_:(m "_. 4 (_" _'_+_ _) + _o_°_32o

105 1 1

.t 4 '_ )'42 " ' * = 40 :J20

2i 1 2 ('l] l
1"7 % <_t ()31 ,,] 732 O_) _ _ /.4 <i_ ( ,ll :l] f Tl2 rt_ , T4_ a_)+ 21

.... ; 40 ._ZO

;14;2 "_(} : 4 3'21 _ C3 (3'31 332 4 (_/41 ,.. = .....

21 1 1 21

t0 320

33 1 ,l):_,;2 ss(I =Sc2" _'rl e_i ' :'_i "_t c.3 (-:_ ol + _l (-;_i c_ , _)+ 35
G:l? ")'_2 .... 40 32(}

35 1 I (

- 40 320

t;3 _ I 2 1 1

4O 320

21 1 2 1
3(;_ _HO= 2 C3(13 " Y32 " G'2i Oil + ._ cl (tl t '12 • 521 (ll + 543 (T3101 +_,32 _2)1¢ .... 2_

40 320

(,_) h _

('<) h e

h s

(*) h s

(,,) las

(>..) h s

(*) h s

h a

(_,) h s

(*} h _

h _

(*) i__

hi#

h_

*) h 8

*) ti s

*) i_a

*) h s

4O



TABLE 1. COMPLETE EQUATIONS OF CONDITION FOR

EIGHTH-ORDER FORMULA RKN 8(9) (Continued)

21. h 9

22. h _ (*)

23. h s (*)

24. h _

25, h _

26. h s (*}

27. h s

28, h _ {*)

29. h _ (*)

30. h _

31. hs (*J

32. h s

33. h _ (*)

34. h s

35. hS {*)

36. h9

42 1 c_+ 1
4 c4 " "

28

7 ! l

362 880 2 c3 a3 ' Y3Z ' Y_I c_l , _ c 4 _4 " ' " .

1 1 + i 1
362 850 " 120 c2 " "_21 a_ 120 c3 ('31 a_ + *32 c_) _ _0 c, (_t'41 o_ + _"42 c_ + _'13 Cr5) ....

10 i o_. 1 c_ + _,,4_ c__ I'y_, c_ + _,)]

362 550 -_c3 )'32 °2 _;2_ 2 ¢ {')'tZ _"Z ' '2 { 0'_ " "z¢_ c;3 ('_3 t _'_ + ) 32 '"_) J ....

5 1

3fi2 880 2 c3 *'/32 c_z " _"21 _2 + !

362 -8S0 - _,03 )'32 ' *'/21_I • _ 0¢ '

+_
3623-880 =_ c2 ",'3,' "21 a_ 2 c'l l'r4z " '21 o,_ + *¢3 ('31 c'3{+ *;_mrr_)j ....

1

- c,t " 3'_m ' v3z " 3'z{ a,_ . c_ {)'s_ " _m2 " _2t °l -_ _'_4 {'_',t2 " "zt °l " 7¢3 (Y3t o_ . "m_ ct2)]) * ','

7

40 320

42

: 40 320

21

40 320

2_

4_) 320

7

40 320

7

- 40 320

1

40 320

10

40 320

_5

411 320

l0

4O 320

lO

40 320

5

40 320

5

40 820

1

4O 320

3

- 4O 32O

1

40 320

41



TABLE 1. COMPLETE EQUATIONSOF CONDITIONFOR
EIGHTH-ORDERFORMULA RKN 8(9) (Continued)

1. hi°

2. h m I _)

3. h1° _ ' }

4. h le

6 h Io 4 ')

7 h In

9. h D q * )

19, h 1° (*)

ll h Im

12. h l° _" )

13 h I° (

lq hle

15. h D (+)

](_ h 1o

17 h 1_ { )

I'_. h :u (*)

19 h I° (*)

2o. h 1_

21. h I_ (*)

22. h l° ( * }

23. h I$ (*}

2-1. hD ¢ _' )

25 h1_

26. hlO ( * }

x w -- c K, d _L

I h$
362 g_O

20

362 080 (*) h+

210 h)
362 SSO (*)

: 56 hq
362 _0

42O
362 800 (*) h+

560

: 362 PSi-6 (*) h_

70

302- _so hS

7O

105 h_
362 _80 (*}

362 P_ml

• 2HO h_
31;2 )_+_0

420

420 ( * ) h+
362 g_O

: 56 hS
362 fl_O

168 (,) hS
362 880

: 56 hS
362 880

280 h+
= 362 8R6 (*)

= 210 (.) hS
362 880

210 ha
= 362 8gO (*)

= 280 h+
362 880

280 h_
= 362 880 (*)

168 (,) h_
362 880

504 h+
- 362 880 (*)

168 h+
362 880 (*)

28 hS
362 880

168 (,) h_
362 880
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TABLE 1. COMPLETE EQUATIONS OF CONDITION FOR

EIGHTH-ORDER FORMULA RKN 8(9) (Continued}

27. h 1° (¢)

2_L h 1°

29, h 10

30. h 10 (_)

31, h IO

32. h I¢ (*)

33, h t°

34. h 1° { *)

35, h 1°

3(; h I° (*)

37. h t° {*)

3!) bl° (*}

,10, h 10 { * }

41. hi° (*)

42, ht_ {*)

43. h 1°

44. h I° (*)

45. h I_ (*)

46 h I°

x " c K , d K

112 i 1

56 1

(; C3 ...

5(;

35 t I c

3 62H _00

112

28

3 62_ _00

2S

8

120

_40

3 62_ H00

4c.3 • . ...

120 c3 " " "

$4

112

362 _80

362 _m_

28

362 _HO

.56

16g

362 _80

35

3(;2 _4(;

7O

7)(; _

__3A__
3G2 _q)

2j4

3(;2 NH0

362 )4_0

_4

llZ

2_

zs
" 3s_ -_so

362 -gaO

80

362 _aSO

120

362 8_0

80

362 880

{*} h:'

h _

h _

(*) h*

{*) h _

h _

(*} h _

h *

( * ) tQ

{*) h'

(*) h _

)*) h _'

I*} h _

(*) h _

(*) h _

h _

(_] I__

(*) h*

h _
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TABLE 1. COMPLETE EQUATIONSOF CONDITIONFOR
EIGHTH-ORDERFORMULA RKN 8(9) (Concluded)

47. h t° Ca)

4H. h t_

4!). hxrj(_=)

5O. h 1_

,)1 h I_ I")

52, h l/'

7)3 I111)

54. h In (_ )

55 hie ( ,: )

]+L h I_

57 h v_ ( )

5 _ h Iv (_ 1

_,j h lO

I;(P. h Iv (_)

GI h 1°

{;2, h l° (#)

+;3. h IO ( )

6-I h t¢

d5 hu' (*)

+;I;. h le

67. hI0

(;S, h 1° (*)

69. h 10 (*)

70. h tO

71. hlO

72. hlO (*)

X. c, &"K

3 62_

1

3 628

6

3 628

3

3 628

4

3 628

I

3 628

1

3 628

1 Tll _41 + Isoo - --z,_oa ' 'r_a • 2_ °' I'e4;+• "e:,,oat+ 'r4_ r'e_,_I + r,, (,+_)J+ ...

1 I

1 + _ c4 c,i + (v_,'+i+ :'*, •

800 = C4 ' 3'15 " TaZ a_ , 3'aS Ctl a C5 {.y_ , T$| e2 ' 'g:tl Otl + "Y_4 l_4l a'l " Ya, el + TO c'a ('Fat ¢rl + "¢_1 _I)]} + ..-

_I I ('Y53 ' Taa Yal ++_ + g.5,l [3_4:_ ' "/21 _ + 'yi3 (T31 _ + TSZ t_))]} .,.800 - 2 c4 . "/m " _Yaz " 7_j c_ * _ e+ • +

1

800:2 c4+ T43" "k'32 " T21 0*214 _l (T$3" "Y$) _Y21C+] + T54 [TII_ "gal tY_ ")/43 {Val _ + V32 _))J} +2 c5 " " + .,.

80

362 880

40

362 880

40

: 36/880

24

362 880

= 3628-880

: 362180

15

362 880

45

362 _80

2O

362 _80

15

362 8_0

60

362 880

15
=

362 880

15

: 362 880

IO

362 880

15

362 880

i5

362 880

= 6
362 880

18
=

362 880

- 3626-880

- 362180

- a_ss6

3

362 880

- 36?880

- 36/880

1

362 880

(*) ha

hs

(*) h *

h s

(*) h s

h _

h _

(*) h _

(*) h _

h++

(*) h _

(*) h _

h _

(*) h _

h +

(*) h _

(*) h_

h s

(*) h_

h a

h s

(*) h_

(*) h _

h _

ha

(*) h _
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TABLE 2. REDUCED EQUATIONS OF CONDITION FOR

EIGHTH-ORDER FORMULA RKN 8(9)

h, !
2

ha !
= C4 ¢r4 + c5 °5 + cs _6 + c? _7 + c! _8 + c9 _ + cl0

6

h4 l

h_ 1

42

56

72

h 8

= co + c4 + cs + c{ * c7 + ca + c_ + cio

h'_

I

I 68o : el P4l + c5 Ps4 * c_ PG4 + cT P74 + c_ P_4 " c_ I)_4 * ClO

c¢ P44 ' ds Psi. + ¢:_ P_l + (5_ P:l " d_ P_4 _ d,_ P_4 * Cio + Pl_l

1 I

3 024 c4 P45 ' cs Pa_ " ct_ P_ + c: P_s + c_ P_ * c_ pl$ + clo ,

=1
2

_I
3

=_1

4

=_1

5

=!

6

7

210

i

240

!

336

45
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_ m m

O0

2;

0

c_
0

!

m_
o

;.q

z

e-

o ,_ _ _ _.1_

<

0

r.D
m

0
r_

_4

_ °_

c_
<

_r_ °I°_ _ _ _o° oo ®_ _ _ o_
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cO

<

o

cr_

ao

O

z

C.)

M
O

O

.4

<

00
oO
cO

_D
cD_
0

0
0
0

0
0
0

0

I

+

0

+

0

,-q00
II

b-
CO
GO

u_

LO

0
0
0

0
0
0

I

+

+

.d'

II

O

0
0

0
0
0

0
0
0

Cxl

I

+

N

.C
+

.d"

II

N

0
0
0

0
0
0

I

+

N

.d _
+

.d'

II

u-a

O0

0,1

0

0
0
0

0
0
0

I

+

+

+

+

+

.d"

II

b.-

O

0
0
0

0
0
0

I

I

+

+

v

+

.d"
+

.d'

II

tt_

oO
00
0

0
0
0

0
0
0

I

e_

I

+

+

.d"

II

N

CO

0
0
0

0
0
0

0
0
0

I

I

+

4-

+

II
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[I 2

TABLE 5. REDUCED EQUATIONS OF CONDITION FOR

SEVENTH-ORDER FORMULA RKN 7(8)

1

2 -- C 0 + C 3 ÷ C 4 + C 5 ÷ C 6 ÷ C 7 ÷ C 8 =l

h 3
1

6 -- C3 0!3 + C4 (XA + C5 (_5 + C6 (_6 ÷ C7 (_7 ÷ C8

i

2
h 2

h 4

h 5

h 6

h 7

h 8

h 8

i

12

l

2O

1

30

1

42

1

56

i

1 680

=o__ +o,_,_+o__5_+c__ +o,_ +o_

I

= c3 P34 + c4 1:)44+ c5 P54 + c6 I_64+ c7 I)744-C8

c3 P34 + c4 P44 + c5 P54 + C6 P64 + c7 P74 + c8 P84

i

3

l
z --

4

I

5

I

6

i

7

I

210

h 3

h 4

h 5 ,

h 6

h 7

h 7

48



oo

Z

0

I:z:;
0

I

Z

OQ

©

;z;

0
o

r..4

_! _! _! _! _ _l_ I

n

4:9



©

0

r/'_

Z
r-.q

,r...)

;..q
0

0

r...q

r..q
,-.1
r-.q
-t

b.-

0

0
0

0

0

0

0

I

I C'-,1

I_..0

I

-F

0

-I-

0
v

tl

C",,I

CO

0

0

0

I

-.F

,b

.0"
-.F

.d _

II

O0

CO

0
0

C.

0
0

0

!

-t-

,b

b.-
.¢.

b-y

.0"
-F

<b

II

CO

0

0
0

0

0

0

f°
I

÷

.8"
+

g
.d_

II

0

0

0

0

I

J°,,-.4 t"-

I

+

a?

.d'
-t-

.d _

II

c..O

0

0

0

0
0

d
I

I+
I

+

.8+
+

N

.d _

,,-tl00
II

t'.-

0

0
0

0

0

0

I

!

-t-

÷

-d'

II
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TABLE 8. REDUCED EQUATIONS OF CONDITION FOR

SIXTH-ORDER FORMULA RKN 6(7)

_2

h3

h 4

h,5

h 6

h 7

h 7

X

1

2

1

6

1

12

1

20

1

3O

1

42

1

84O

: CO -t- C2 -t- C3 -t- C4 -t- C5 + C6

= C2 _2 + C3 0t3 + C4 C_4 + C5 (_5 + C6

= C2 _2 + C3 _2 + C4 Q,2 + C5 _ + C6

: C2 C_ ÷ C3 C_ + C40l_ + C5 0_35+ C6

= 02 _42 + C3 C_4+ C4 _4 + C5 (24 + 06

1

= c2 P23 + c3 P3s + ca P43 + c5 P_ + c6 "

52 P23 + 53 P33 + 54 ]?43+ 55 P53 + 56 P63

=i

1

4

1

5

1

6

1

120

h

]12

h 3

h4

h5

h6

h6
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b.-

°0

0 _o

0
I

:_ c'O

0 _"

Z

M
0
r..)

0

<

J_•,_ C,

0

0

_1_ _1_ ___t_ _1 _ '

0

°1_o_ I_ "

0

olo

ol_

_1: _
I

o _1o_
_1_ _,1__1:

_,1oo
"1.. _1_ _1_

I !

!

0

I

0

,-,Is

52



TABLE 10. I,]RII()Y/ COEFFICIENTS FOR I{IZN 6(7) OF TABLE 9

11
(e, P2a -_ % l"r, _ <-"4P43 + e5 Psa + % Ps3 } --- _ - 0. 000 014 90:)

= 72 .... ' 1 680

'; c t c_'_ + d s {_ _Lde, (v_) -- i 0 000 017 460

'[_.:3 :: 2 (c:_ ,e. P23 + da (_a Paa + dl cq P4_ + {:'; <5 l',_n + de, r*'6 Pe,a)..... 280

+-'-- (} (:0{) ):'").... +{I-t

1

,_de,_e, (_,.,e,:(,_+ _,,;.__,_4->,,_,,_]+ _,,_o,_)l --840

1

-- _ - 0.000 008 185

1
4- da Pa4 _- d4 Pta + '55 P54 + d_, Pc4) - 840

--_='- 0.000 078 323

TABI,E 11. REDUCED EQUATIONS OF CONDITION

FOIl FIFTH-ORDER FORMUI_A RKN 5{6)

h 2

53

h 4

h 5

h e,

h 6

x - e 6 . .
K _C

1

2 :: c° + c2 -_ ca + c4 + {;5 = 1

1 1

6 = c2o_ 2 -r C3_ 3 + C4Og4 + 05 2

1 1

12 - c2_+ ca_]* c4al + c5 3

1

20 - c2 ca c s 4

l_J._ = c2(_ _+ c3ce _+ c4c_ I+ c5 _ 1
30 5

1 1

360 = c2 P22 + ca P32 + c4 P42 ÷ {:5 • I-_
i

c2 P22 + da Pa2 _- d4 P¢2 + cs P52 6O

52

h 3

54

h 5

h 5

53



TABLE 12. COEFFICIENTS FORA FIFTH-ORDER FORMULA RKN 5(6)

_ll [
Ct, K

0 0

1
1

12

1
2

6

1
3

2

4
4 l

5

5 1

(', 1

7KX

0 1 2 3 4 5

1

288

1

216

16

125

247

1 152

11

240

1

0

4

125

12

19

,t75

4

25

7

432

8

45

4 375

65 664

125

2 75)6

1

300

c C
K K

II I

240 24

0 0

108 27

475 95

1

•t5 ;_

125 125

2 736 456

1 1

3OO 15

1

TEx :: 30--0 ( l._ - 1¢) h _

54



TABLE 13. ERROR COEFFICIENTS FOR RKN 5(6) OF TABLE 12

T5
1 1

=_- (c2 i_22+ c3 1332+ c4 1342+ c5 P52) - 72----O
- 0.000 031 829

I

1

1

• 1

T_o = _

1

(d 2 o_52+ d 3(x_+ c4(_45 +cSe@ --_ 0.000 034 722

(62 a2 P22
1

+ c3 °_3 P32 + 64 oQ P42 + c5 °_5 P52) - 144
_ - 0.000 028 935

1
-_ - 0.000 005 838

(C2 P23 + d3 P33 + C4 P43 + c5 P53) 240

1

(d3 P33 + c4 1343 + 55 P53) -720
-- _ - 0.000 002 200

TABLE 14. REDUCED EQUATIONS OF CONDITION FOR

FOURTH-ORDER FORMULA RKN 4(5)

c 6
K K

h2 1
_- = C o + C 1 + C 2 + C 3

h3 1
-_- = ClO_ 1 + c2_ 2 + C 3

h4 1
1-'2 c1_ + c2_4 c_

1

h5 -_= c,_+c2_+c3

1 1

h 5 -_= c 2 .y21t_t + c 3 . -_

c2 "Y2t _I + c3 (731 _I + T32 a2)

= ] h

1
= -- h 3

3

_ 1 h4

4

1
_ h 4
24

55



TABLE 15. COEFFICIENTS FORA FOURTH-ORDERFORMULA RKN 4(5)

,)

3

4

OL
K

0

0

1 1

3 18

2
- 0
3

1
1

3

13
1

120

2

9

3

l0

7_X

1

6

3

4O

13

120

3

3

4O

1

6O

1

6O

d
g

1

8

3

8

3

8

1

8

TE 1 h2
x : 6-6(f3 -

TABLE 16. ERROR COEFFICIENTS FOR RKN 4(5) OF TABLE 15

i

1

T3 = c2 tJ21 + e3 P31 - 120
_ - 0.000 925 926

1 1

2 1
"1'4 = c2 °z2 " P21 + c3 °_3 P31-_ _ - 0.000 925 926

3O

1 1
T5 =_(d2 V22 + c3 P32) -_ _ 0.000 925 926
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TABLE 17. COEFFICIENTS FORNYSTROM'S
FOURTH-ORDERFORMULA RKN 4

0

O_
K

0

i

2

i

8

0

7K_

i

2

C
K

1

6

1

3

0

K

i

6

2

3

1

6

H

TABLE 18. ERROR COEFFICIENTS FOR NYSTROM'S

FOURTH-ORDER FORMULA RKN 4 OF TABLE 17

1 1
T 2=_c 1 _-_ _ - 0.004 166 667

- 0.008 333 333

1 1
T2 =_ ¢_1_ + 62 _) - _ _ o. 002 083 333

1
--- _ 0.008 333 333T4 = d2 _2 P21

30

1 1
T5 : _ d2 Pz2 - 12o_ 0.002 083 333
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TABLE 19. COEFFICIENTSFOIl NYSTROM'S
FIFTtI-ORDER FORMULA RKN 5

3 1

1
5

2
3

1
50

1
27

3
10

')'_: 7t C
K

1

24

25

84

7

27

2 9

35 35

9

56

K

1

24

125

336

27

56

5

48

TABLE 20. ERROR COEFFICIENTS FOR NYSTR()M'S

FIFTH-ORDER FORMUL¢ RKN 5 OF TABLE 19

1 1
+ c 2 (v_).. - 12----0_ - 0.000 277 77S

1 1

T5 ::2 c2 P22 - 720
_ - 0.000 555 556

1 1
-- _ 0.000 138 889
48

l 1
@6 2 (d2 0,2 P22 + (}3 C_3 P32) - 14"-'-_ 0.000 555 556

. 1
,i,9 i.) i(} 2 P23 + c3 P33) - _ _ 0.000 277 778
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TABLE 21. COEFFICIENTS FOR ALBRECHT'S

SIXTH-ORDER FORMULA RKN 6

4

O_
K

i

4

I

2

3

4

TKX

i

32

I

24

3

32

1

6

1

8

2

1

16

3 1

7 14

3

90

4

15

I

15

4

45

i
0

7

c
K K

7 7

90

16

45

2

15

16

45

7

9O

59



TABLE 22. ERROR COEFFICIENTS FORALBRECHT'S

SIXTH-ORDER I"ORMULA RKN 6 OF TABLE 21

']3
1 1

-- -_ _ - 0.000 046 50:3c, + 336

! l
T 4 2(c2 oe_ P21 + c3 c_ P31) 504- -- _ - 0.000 074 405

1
T_; 1., ( c2 _2 P22 + c3 °z3 P32) 1 008 _ 0. 000 037 202

1
l'o -_ (c2 P23 + c3 P33) 1 680 _ O. 000 074 405

T10 C3 T32 P21
5 040

0.000 032 873

'i"3
1 1
16 (di c_ + d2 c_6 + d3 C_ + d4 c_6) - I12 0.000 023 251

1
'J'6 =Z1 ((}2 (Z_ P21 + (_3 0_ P31 + C40t] P41) - _ _ O. 000 074 405

1 1
'i'7 ::4- ( (}2 c_ P2:, + c3 o_ P32 + c4 a_ P42) - 33----6 z 0. 000 018 601

,i.9 i l:-- (d2 P]I + c3 pZ + (}4 P_I) ---- 0.000 066 138
') ' 504

• 1 1

'['13 :_ (c2 c_2 P23 + c3 c_3 P33 + c4 oQ P43) -_ _ 0.000 074 405

• 1
7'14 c3 c:3 3/32 P21 + c4 c_4 (742 P21 + 3/43 P31) - _ _ - 0. 000 033 069

1

'1"1_ 4 ((}Z P24 + c3 P34 + c4 P44)
1

---_ 0.000 946 503
840

• 1

'1"18 = (_3 " Y32 _2 Pzl + (}4 (Y4z C_z P21 + "Y43 C_3 P31) 1 260

• 1 1
"I'19 = 2 [ d3 T32 P22 + c4 (')/42 1322 ÷ 3/43 P32 ) ] 5 040

0.000 074 405

0.000 018 601
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