Nanotechnology for Water Purification and Waste Treatment

Frontiers in Nanotechnology US EPA Millennium Lecture Series July 18, 2005 Washington D.C.

Wei-xian Zhang

Acknowledgments

Research Team

Dr. C.B. Wang Dr. H.L. Lien **Dr. Daniel Elliott** Dr. J. Cao Y.P. Sun Xiao-qin Li **Steve Spear** Yu Xue **Steph Kravitz Patrick Clasen Tim Marks Jason Chen**

This research is funded by

U.S. EPA - Science To Achieve Results (STAR) Program

Nanotechnology is...

the art and science of manipulating matter at the atomic or molecular scale

Size

A billionth (10^{-9}) meter

Structure

How things are put together -- arranged or assembled.

Novel properties

<u>Novel and significantly changed</u> physical, chemical, and biological properties

The ultimate goal of nanotechnology is to build essentially anything from scratch, atom by atom Moon orbit (10⁹ m) C₆₀ (~ 1 nm)

Human

(~1 m)

Nanoscale has already been with our profession ...

Nanoscale Materials: Ultrafine Water and Air Contaminants?

A Research Framework for NanoEnvironTech

Promote Applications reactive to existing problems or proactive in preventing future problems.

Forecast Implications of

interactions of nanomaterials with the environment and possible risks that may be posed by the use of nanotechnology.

B.Karn, 2005, ACS

applications

Sensors Treatment Remediation Green manufacturing Green energy

implications

Natural nano processes Fate, transport, and transformation Lifecycle aspects Toxicology Exposure, bioavailability, and bioaccumulation

Nanotubes as SuperSorbent

SWNT for Dioxin Sorption (Long & Yang, 2001, JACS)

Sorbent	E (kJ/mol)	B (atm ⁻¹)
SWNT	315	2.7x10 ⁵²
Activated Carbon	119	1.3x10 ¹⁸
γ-Al ₂ O ₃	47.9	4.5 x10 ⁵

Sensing and Detection

Biological pathogens, heavy metals, organics, etc.

Chad Mirkin, Northwestern

IBM, Zurich

Nanocontact Sensor

N.J. Tao (Arizona State)

The electrodes are separated with an atomic-scale gap, so <u>a few ions</u> can be detected.

An Array of Atomic-Scale Gaps

N.J. Tao (Arizona State)

Environmental Technologies *at the* Nanoscale

Nanotechnology could substantially enhance environmental quality and sustainability through pollution prevention, treatment, and remediation.

> TINA MASCIANGIOLI AAAS ENVIRONMENTAL SCIENCE & TECHNOLOGY POLICY FELLOW

> > WEI-XIAN ZHANG LEHIGH UNIVERSITY

ES&T Feature Article March 1, 2003 *ES&T*, 2003, 37 (5), 73A - 112A

102 A B ENVIRONMENTAL SCIENCE & TECHNOLOGY / MARCH 1, 2003

© 2003 American Chemical Society

Iron Nanoparticles for Water & Wastewater Treatment

Advantages of Nano Remediants

Highly mobile

Highly Reactive

Shorter cleanup time & lower cost

<u>A little history</u> ...

- Summer 1995 original concepts
- July 1996 Sodium borohydride method
- April 1997 1st paper (ES&T)
- Summer 2000 1st pilot test
- > 15 projects so far in U.S.

Nano Iron

- Effective reductant
- Widely used in PRBs
- Nontoxic
- Cheap

50 nm

Key property - Efficient Electron Donor

 $Fe^0 \rightarrow Fe^{2+} + 2e^{-}$

N: number of total atoms, n: number of surface atoms

27 Fe atoms - 26 (93.3%) on surface

1 nm

A Cube of 64 Fe atoms 56 (87.5%) on surface

Surface Atoms

$$D = \frac{\text{number of surface atoms}}{\text{total number of atoms}} = \frac{2n^2 + (n-2)[n^2 - (n-2)^2]}{n^3} \cdot 100$$

% Atoms on Surface

nm

Calculations for Fe

Methods of Synthesis

Nano Iron for Remediation

- Materials Chemistry
 - Synthesis
- Environmental Chemistry
 - Contaminant degradation
- Geochemistry
 - Fate and transport

Properties of Nano Fe

- Size range: 10-100 nm
- Mean Size: 60 ± 15 nm
- Specific surface area
 10-50 m²/g
- Zeta potential
 - 10 to -30 mV

Properties of Nano Fe

Nominal Reaction Rate (Ω) 0.1-1 mg TCE/g nanoFe/hour @ 22°C @ 1-100 mg/L TCE @ pH=7

Lindane (HCH, C₆H₆Cl₆) (Sample from Jacksonville, FL)

Perchlorate (CIO₄⁻) (Sample from Phoenix, AZ)

Cr(VI)Reduction

COPR Samples from an industrial site in NJ Aqueous Cr(VI) - 43.38 mg/L, Soil Cr_T - 7,725 mg/kg, pH = 11

Cr(VI) Reduction/Immobilization

	Micro Fe (~10 μm)	Nano Fe (~50 nm)
Rate	0.0063 mgCr/m²/min	0.157±0.018 mgCr/m ² /min
Capacity	1.53-1.75 mg Cr/g Fe	84.0-109.3 mg Cr/g Fe

Contaminant Degradation

Chlorinated Methanes	Cr(VI)
Chlorinated Ethenes	Pb(II)
Chlorinated Ethanes	Ni(II)
Chlorinated Benzenes	Cd(II)
PCBs	Perchlorate
Lindane (HCHs)	As

> 100 compounds tested at Lehigh so far

Enhance Activity by Catalysts

Enhance Activity by Porous Nanoparticles

- Large surface area
- Better hydraulics
- High mobility

Synthesis of Porous Nanoparticles

Self-assembling Template

Template-directed Synthesis

0.4 mm

Surface Areas

Fe	SSA (m²/g)
Aldrich (~0.4 mm)	0.0012
BASF (~1 μm)	1.5
NanoFe (60 nm)	20-40
Nanoporous	142-250

Manipulate Nanoparticle Mobility

0.2 µm

Original Nanoparticle

Dispersed Nanoparticle

Iron Nanoparticle Aggregates

COSTS

Iron Filings	
\$0.5/kg	
<10 m²/kg	
<20 m ² /dollar	

COSTS

Iron Filings	Nano Iron
\$0.5/kg	~\$25/kg
<10 m ² /kg	~25,000 m ² /kg
<20 m²/dollar	~1,000 m²/dollar

COSTS

Iron Filings	Nano Iron	Porous Iron
\$0.5/kg	~\$25/kg	~\$50/kg
<10 m ² /kg	~25,000 m ² /kg	~200,000 m ² /kg
<20 m²/dollar	~1,000 m²/dollar	~4,000 m²/dollar

Conceptual Geologic and Hydrogeologic Model

Residuum

Sandstone Interbed

VIEW LOOKING SOUTHWEST

Combination of down-dip and strike-parallel fracture-controlled flow, in the shallower, water-bearing units

Gentle, southeast-dipping, Sandstone with interbedded Siltstone (H1 - H4) grading downward into Mudstones Likely strike-parallel flow to the northeast in the lower water-bearing units

Field Applications (11 projects so far, >10 Planned for 04')

Conceptual Model

The Nano Fe Slurry (1-2 g/L)

Test Set-up

ORP 2/4/02

Before Nano Fe Application

Oxidative Environment

+100 to + 400 mV

ORP 2/11/02

Right after Nano Fe Application

0 to + 400 mV

ORP 2/19/02

-200 to + 400 mV

ORP 3/4/02

Reducing Environment

-500 to + 400 mV

Sampling Results TCE - MW-4

Sampling Results TCE and cis-1,2-DCE at MW-4

Comparison: Bioremediation - and Nano Fe

Innovation and Research for a Clean Environment

NATIONAL CENTER FOR ENVIRONMENTAL RESEARCH 2002 Report

NATIONAL NANOTECHNOLOGY INITIATIVE RESEARCH AND DEVELOPMENT SUPPORTING THE NEXT INDUSTRIAL REVOLUTION

More on: NY Times USA Today WSJ >20 others

Questions ?