

United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine

A Qualitative Pest Risk Analysis for the Importation of Fresh Unshu Orange Fruit (*Citrus reticulata* Blanco var. *unshu* Swingle) from the Republic of Korea into Alaska

Agency Contact:

Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology Plant Protection and Quarantine 1730 Varsity Drive, Suite 300 Raleigh, NC 27606

> Revision 2 December, 2006

Executive Summary

The export of fresh Unshu orange fruit (*Citrus reticulata* var. *unshui*), from the Republic of Korea (herein referred to as Korea) to the United States, was suspended in 2002 due to the increasing number of interceptions of *Xanthomonas axonopodis* pv. *citri* Vauterin *et al.* (Pseudomonadaceae), the causal agent of citrus canker. In late 2005, Korea made a request to APHIS to allow the shipment of Unshus to Alaska under different conditions. This pest risk analysis estimates the pest risk associated with importing fresh Unshu orange fruit from the Republic of Korea into the State of Alaska, including the risk associated with the possible unauthorized movement of some fruit from Alaska into other States.

A list of pests attacking Unshu oranges in Korea was compiled and a number of quarantine pests for the United States were identified. Two organisms, *Unaspis yanonensis* Kuwana (Homoptera: Diaspididae), and the bacterium, *Xanthomonas axonopodis* pv. *citri* Vauterin *et al.* (Pseudomonadaceae), causal organism of citrus canker, were determined to be quarantine pests with the potential to be introduced into the United States via fresh Unshu exports from Korea. *Unaspis yanonensis* is not known to occur in the United States. *Xanthomonas axonopodis* pv. *citri* is established in Florida but is under official control to prevent its spread to other areas of the United States¹.

The unmitigated Pest Risk Potential for *U. yanonensis*, and *X. axonopodis* pv. *citri*, was determined to be negligible for fruit imported into Alaska. Neither pest poses a threat to Alaska due to the inimical climate and the lack of host plants.

The unmitigated risk associated with the possible unauthorized movement of some fruit from Alaska to other areas of the United States was estimated to be slightly greater for both pests. There are small areas in the U.S. where the pests might establish (citrus growing regions), but the quantity of fruit that would move illegally into these areas would be expected to be quite small and the likelihood of establishment very low.

Korea has proposed to combine elements of the previous shipping program with the additional safeguard of limited movement to Alaska only. The proposed measures include: (1) the use of a field pest control program and cultural practices to reduce pests in the groves; (2) packing house selection (culling) to remove fruit with pests or disease symptoms; (3) a visual inspection of 2%

¹ A recent APHIS risk analysis, "Evaluation of asymptomatic citrus fruit (*Citrus spp.*) as a pathway for the introduction of citrus canker disease (*Xanthomonas axonopodis* pv. *citri*)" (March 2006) concluded that asymptomatic, commercially produced citrus fruit that meets certain requirements described in the analysis is not epidemiologically significant as a pathway for the introduction of citrus canker. The analysis also concluded that even if infected fruit were to enter a canker-free area with susceptible hosts, the establishment of citrus canker via this pathway is highly unlikely. That analysis is being reviewed based on public comment and peer review, and additional analysis is ongoing to evaluate the potential movement of asymptomatic citrus to nonquarantined areas of the United States. Any regulatory action on that risk analysis is being handled independently of Korea's request to allow movement of Unshu oranges into Alaska.

of fruit in each shipment; (4) phytosanitary certification; (5) shipment safeguards (especially labeling); and (6) port of arrival inspection. The proposal does not include disinfectant wash which was included in the previous authorization for shipment to all States.

The measures proposed by Korea are designed to substantially reduce the likelihood of pests being present based on multiple visual inspections. APHIS has successfully operated similar programs of low risk for tropical fruit commodities into Alaska such as sand pears and apples from Japan, avocados from Mexico and sand pears from Korea.

Table of Contents

I.	Introd	uction4
II.	Risk A	Assessment4
	A.	Initiating Event
	B.	Current Status
	C.	Assessment of Weediness Potential
	D.	Pest Interceptions
	E.	Prior Risk Assessments7
	F.	Pests Associated with <i>Citrus</i> spp. In Korea7
	G.	Quarantine Pests Likely to Follow the Pathway
	H.	Consequences of Introduction – Movement into Alaska25
	I.	Likelihood of Introduction – Movement into Alaska
	J.	Pest Risk Potential for Movement into Alaska
	K.	Consequences of Introduction – Movement into Other Areas of the U.S
	L.	Likelihood of Introduction – Movement into Other Areas of the U.S
	M.	Pest Risk Potential of Movement into other areas of the U.S
III.	Pest R	isk Management
IV.	Prima	ry Authors
V.	Literat	ture Cited
		adix A. Pest Interceptions on Citrus spp. from the Republic of Korea forted in the PPQ Pest Interception Database from 1985 to 200147

I. Introduction

This risk assessment was conducted by the Plant Epidemiology and Risk Analysis Laboratory of the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), to examine the risks associated with the importation of fresh Unshu orange fruit (*Citrus reticulata* Blanco var. *unshu* Swingle) from the Republic of Korea into Alaska, and the risk associated with the potential unauthorized movement of Unshu into other areas of the United States. Authority for APHIS to regulate the importation of citrus fruit from Korea is derived from the Plant Protection Act (2000) and Title 7 of the Code of Federal Regulations (CFR) Part 319, Subparts 28 and 56.

The International Plant Protection Convention (IPPC) provides standards for conducting pest risk analyses and the use of phytosanitary terms (IPPC, 2004a, b). The methods used to initiate, conduct, and report this analysis and the phytosanitary terms utilized are considered by APHIS to be consistent with these standards.

Pest risk analysis (PRA) includes risk assessment and risk management (IPPC, 2004b). PRA is the overall process of evaluating biological or other scientific and economic evidence in considering the regulatory status of a pest or regulated article, and the strength of any phytosanitary measures that may be implemented to reduce the risk (IPPC, 2004a, b).

Pest risk assessment evaluates the probability of the introduction and spread of a pest and the associated potential economic consequences (IPPC, 2004a, b). Pest risk management involves the process of identifying and evaluating options for reducing the risk of introduction of a quarantine pest (IPPC, 2004a, b) and is a key factor in decisionmaking regarding the import of a commodity or article which may provide a pathway for the introduction of harmful pests. In this document, the estimates of risk are expressed qualitatively (high, medium, or low), based on the criteria described in the document: Pathway-Initiated Pest Risk Assessment: Guidelines for Qualitative Assessments, Version 5.02 (PPQ, 2000).

II. Risk Assessment

A. Initiating Event

This commodity-based, pathway-initiated risk assessment evaluates the pest risks associated with the commercial importation of fresh Unshu orange fruit from Korea into Alaska and the potential unauthorized movement from Alaska into other areas of the United States. In 1994, PPQ assessed the risks posed by the proposed importation of fresh Unshu orange fruit from the Cheju Island production area of the Republic of Korea. After that review, the USDA approved the entry of fruit that met the requirements of 7 CFR § 319.28. Commercial shipments began in 1995. The U.S. market for Unshu oranges is small (around \$1-2 million *per annum*).

B. Current Status

During the Korean Unshu orange pre-clearance inspections of November, 2002, APHIS Preclearance Officers intercepted *Xanthomonas axonopodis* pv. *citri* Vauterin *et al.*, causal organism of citrus canker, several times at various packinghouses in Korea. Each interception came from fruit that originated from different approved export groves. Due to these interceptions, monitoring activities were increased at the U.S. ports of entry. This increased Rev. 02 December, 2006 monitoring resulted in the detection of two additional citrus canker-infected fruit from different export groves.

In an effort to take the least trade restrictive action, a statistically-based sampling regime was implemented at the U.S. ports of entry as an emergency measure. When this measure was implemented, it was believed that the *X. axonopodis* pv. *citri* detections represented an isolated problem. Since the implementation of this inspection regime, infected fruit from at least two additional groves were intercepted. The National Plant Quarantine Service (NPQS) of Korea conducted investigations and concluded that some groves may have applied pest control treatments too late in the season. NPQS also acknowledged that some packinghouses commingled export fruit with fruit from non-approved groves. It became apparent that serious problems existed in the management of this program. Effective December 10, 2002, APHIS suspended the imports of Unshu oranges from Korea.

C. Assessment of Weediness Potential

If the citrus species considered for import poses a risk as a weed pest (Table 1), then the pathway-initiated assessment is terminated and a pest-initiated assessment is conducted. The results of the weediness screening for *Citrus* spp. did not prompt a pest-initiated risk assessment.

Table 1. Weediness Potential of Korean unshu fr	ruit.
---	-------

Commodity	: Citrus reticulata Blanco var. unshu Swingle
Phase 1:	Many species of <i>Citrus</i> are cultivated in the United States.
Phase 2:	The genus is not listed as a weed in:
Wor	d's Worst Weeds (Holm et al., 1977), Geographical Atlas of World Weeds (Holm et al.,
1979	9), World Weeds: Natural Histories and Distribution. (Holm et al., 1997), Report of the
Tecl	hnical Committee to Evaluate Noxious Weeds; Exotic Weeds for Federal Noxious Weed
Act	(Gunn and Ritchie, 1982), Economically Important Foreign Weeds (Reed, 1977), Weed
Scie	nce Society of America list (WSSA, 1989). There are also no references indicating
wee	diness in AGRICOLA, CAB, Biological Abstracts or AGRIS.
Phase 3:	<i>Citrus reticulata</i> var. <i>unshu</i> is prevalent in the United States and there is no indication of weediness, therefore the pathway risk assessment proceeds.

D. Pest Interceptions

The pest interceptions on *Citrus* spp. from the Republic of Korea from 1985 to 2006 are listed in Appendix A. During this time, there were 374 interceptions of quarantine pests on *Citrus* spp. from the Republic of Korea. These include: 170 interceptions of *X.axonopodis* pv. *citri* Vauterin *et al.* (= *X. campestris* pv. *citri* (Hasse) Dye) (Pseudomonadaceae); 46 interceptions of *Guignardia citricarpa* Kiely (Loculoascomycetes: Dothideales); 56 interceptions of *Parlatoria ziziphi* Lucas (Homoptera: Pseudococcidae); and 34 interceptions of *Unaspis yanonensis* Kuwana (Homoptera: Diaspididae).

E. Prior Risk Assessments

In 1994, USDA approved entry of Unshu oranges from Korea, subject to the safeguards outlined in 7 CFR §319.28(b), into any area of the United States except: Arizona, California, Florida, Louisiana, Texas, American Samoa, Puerto Rico, Northern Mariana Islands and the United States Virgin Islands. The risk assessment conducted in support of this decision identified the following pests of quarantine significance: *U. yanonensis* Kuwana; *Conogethes punctiferalis* (Guenee); *Adoxophyes orana* Fischer von Roeslerstamm; *P. kraunhiae* Kuwana; *Frankliniella intonosa* Trybom; *Helicobasidium mompa* Tanaka; *Phyllosticta beltranii* Penz.; *X. campestris* pv. *citri* Dye [this is the older synonym of *X. axonopodis* pv. *citri*]; *Guignardia citricarpa* Kiely; *Haplothrips chinensis* Priesner; *Scirtothrips dorsalis* Hood; *Aculops pelekassi* (Keifer); and *Megalurothrips distalis* Karney. The 1994 assessment stated, "Permit entry of clean fruit subject to preclearance inspection and the safeguards [specified in an operational work plan]" Subsequent site visits by PPQ officials did not detect *G. citricarpa* on Cheju Island.

F. Pests associated with *Citrus* spp. in the Republic of Korea

Pests associated with *Citrus* spp. in Korea are listed in Table 2. The list identifies: (1) the presence or absence of these pests in the United States, (2) the affected plant part or parts, (3) the quarantine status of the pests in the United States, (4) the likelihood of the pests following the import pathway and entering the United States and (5) pertinent citations for distributions and biologies of the pests. Based on the biological and geographic information, many organisms are eliminated from consideration as sources of phytosanitary risk on Korean Unshu oranges because they do not satisfy the geographic and regulatory criteria of a quarantine pest.

A quarantine pest is defined as, "A pest of potential economic importance to the area endangered thereby and not yet present there, or present but not widely distributed and being officially controlled" (IPPC, 2004a). Reports of harmful organisms associated with the commodity plant species indicate the organism is a pest of potential economic importance. A pest is likely to be transported on Unshu oranges if it is present in Korea, is associated with Unshu oranges at the time of harvest, and is expected to remain alive and associated with the fruit throughout the harvesting, packing and shipping procedures. Quarantine pests likely to follow the pathway may be capable of establishment and spread within the United States if suitable ecological and climatic conditions and vectors exist (this includes protected areas such as greenhouses).

The pests in Table 2 include 193 arthropods, 3 bacteria, 29 fungi, 7 nematodes and 3 viruses; 45 of these pests were identified as having the potential to follow the pathway.

Pest	Distribution	Plant part affected	Quarantine Pest	Follow Pathway	References
ARTHROPODA					
ACARINA					
ERIOPHYIDAE					
Aculops pelekassi (Keifer)	KR, US (FL)	Fruit, Leaf	No	Yes	Anon., 1990, 1998a; Denmark, 1962
TARSONEMIDAE					
Tarsonemus sp.	KR	Fruit	Yes	Yes	PIN 309

Table 2. Pests Associated with Citrus in Korea.

Rev. 02

Pest	Distribution	Plant part affected	Quarantine Pest	Follow Pathway	References
TETRANYCHIDAE					
Eotetranychus sexmaculatus (Riley)	KR, US	Fruit, Leaf	No	Yes	Anon., 1998a; Baker and Tuttle, 1994
Panonychus citri (McGregor)	KR, US	Fruit, Leaf, Stem/Trunk	No	Yes	Anon., 1990; CPC, 2001; Seizo, 1966
Tetranychus cinnabarinus (Boisduval)	KR, US	Fruit, Leaf	No	Yes	Anon., 1990; Jeppson et al., 1975
<i>Tetranychus hydrangea</i> Pritchard & Baker	KR, US	Fruit, Leaf, Stem/Trunk	No	Yes	Anon., 1998a; Navajas <i>et al.</i> , 2001
Tetranychus urticae (Koch)	KR, US	Fruit, Leaf, Stem/Trunk	No	Yes	Anon., 1994; CPC, 2001; Hill, 1983
Panonychus ulmi (Koch)	KR, US	Fruit, Leaf	No	Yes	CPC, 2001; IIE, 1996
INSECTA					
COLEOPTERA					
ANTHRIBIDAE					
Araecerus fasciculatus DeGeer	KR, US	Stem/Trunk	No	No	Anon., 1994; CPC, 2001; Shiraki, 1952
BUPRESTIDAE	-		•		
Chalcophora japonica (Gory)	KR	Stem/Trunk	Yes	No	Lee et al., 1992
Chrysochroa fulgidissima Schonherr	KR	Stem/Trunk	Yes	No	Anon., 1990; Shiraki, 1952
CANTHARIDAE					
Athemus suturellus Motschulsky	KR	Flower	Yes	No	Anon., 1990; Shiraki, 1952
CERAMBYCIDAE					
Anoplophora chinensis (Forster)	KR, US (HI)	Stem/Trunk	Yes	No	Duffy,1968 ; CPC, 1998
Anoplophora malasiaca (Thompson)	KR	Stem/Trunk	Yes	No	Anon., 1990; CPC, 2001; Duffy 1968; EPPO, 1996; Seizo, 1966
Apriona germari Hope	KR	Stem/Trunk	Yes	No	Anon., 1990; Duffy, 1968
Chlorophorus annularis (F.)	KR	Stem/Trunk	Yes	No	Anon., 1990, 1997; Duffy, 1968; Shiraki, 1952
Mesosa myops (Dalman)	KR	Stem/Trunk	Yes	No	Anon., 1990; Duffy, 1968
Pterolophia jugosa (Bates)	KR	Stem/Trunk	Yes	No	Anon., 1986, 1997; Shiraki, 1952
Pterolophia zonata Bates	KR	Stem/Trunk	Yes	No	Anon., 1986, 1997; Shiraki, 1952
CHRYSOMELIDAE	-		•	-	•
Aulacophora femoralis (Motschulsky)	KR	Leaf	Yes	No	Anon., 1990; Shiraki, 1952

Pest	Distribution	Plant part affected	Quarantine Pest	Follow Pathway	References
Aulacophora nigripennis Motschulsky	KR	Leaf	Yes	No	Anon., 1990, 1997; Shiraki, 1952
Coptocephala flaviventre (Motschulsky)	KR	Leaf	Yes	No	Anon., 1990
Longitarsus sp.	KR	Fruit	Yes	Yes	PIN309
Physauchenia bifasciata Jacoby	KR	Leaf	Yes	No	Anon., 1990
CURCULIONIDAE					•
Mesalcidodes trifidus (Pascoe)	KR	Root	Yes	No	Anon., 1998a; Anon., 1990; Shiraki, 1952
Scepticus insularis Roelofs	KR	Leaf, Root	Yes	No	Anon., 1990, 1997, 1998b; Shiraki, 1952
DERMESTIDAE			-		-
Anthrenus verbasi (L.)	KR, US	Flower, Leaf	No	No	Anon., 1990; Metcalf and Metcalf, 1993
ELATERIDAE					
Agriotes sericeus (Candeze)	KR	Root	Yes	No	Anon., 1997; ShirakI,1952
Agriotes sericeus (Candeze)	KR	Root	Yes	No	Anon., 1997; ShirakI,1952
Cardiophorus vulgaris Motschulsky	KR	Leaf, Root	Yes	No	Anon., 1997; Anon., 1990; Shiraki, 1952
Ectinus sericeus Candeze	KR	Root	Yes	No	Anon., 1990
Melanotus annosus Candeze	KR	Root	Yes	No	Anon., 1990, 1997; Shiraki, 1952
Melanotus legatus Candeze	KR	Root	Yes	No	Anon., 1990
Paracardiophorus pullatus (Candeze)	KR	Root	Yes	No	Anon., 1990
OEDEMERIDAE			•		
Xanthochroa waterhousei Harold	KR	Flower, Leaf	Yes	No	Anon., 1990; Shiraki, 1952
SCARABAEIDAE					-
Adoretus sinicus Burmeister	KR	Flower, Leaf	Yes	No	Anon., 1990, 1997; Shiraki, 1952
Adoretus tenuimaculatus Waterhouse	KR	Flower, Leaf	Yes	No	Anon., 1990, 1997
Anomala albopilosa Hope	KR	Leaf, Root	Yes	No	Anon., 1990, 1997
Anomala cuprea Hope	KR	Leaf, Root	Yes	No	Anon., 1990, 1997; Shiraki, 1952
Anomala daimiana Harold	KR	Leaf, Root	Yes	No	Lee et al., 1992
Anomala orientalis (Waterhouse)	KR, US	Leaf, Root	No	No	Anon., 1990; CPC, 2001
Anomala rufocuprea Motschulsky	KR	Leaf, Root	Yes	No	Lee et al., 1992
Ectinohoplia obducta Motschulsky	KR	Leaf, Root	Yes	No	Anon., 1990; Shiraki, 1952
Glycyphana fulvistemma Motschulsky	KR	Leaf, Root	Yes	No	Anon., 1990, 1997;

Rev. 02

Pest	Distribution	Plant part affected	Quarantine Pest	Follow Pathway	References
					Shiraki, 1952
Eucetonia pilifera (Motschulsky)	KR	Leaf, Root	Yes	No	Anon., 1990
Maladera orientalis Motschulsky	KR	Leaf, Root	Yes	No	Anon., 1997; Shiraki, 1952
Mimela flavilabris Waterhouse	KR	Leaf, Root	Yes	No	Anon., 1990
Mimela testaceipes Motschulsky	KR	Leaf, Root	Yes	No	Anon., 1990
Miridiva coreana Mijima & Kinoshita	KR	Leaf, Root	Yes	No	Anon., 1990
Nipponovalgus angusticollis Waterhouse	KR	Leaf, Root	Yes	No	Anon., 1990; Shiraki, 1952
Oxycetonia jucunda Faldermann	KR	Leaf, Root	Yes	No	Anon., 1997; Clausen, 1931; Shiraki, 1952
Poecilophilides rusticola (Burmeister)	KR	Leaf,Root	Yes	No	Lee et al., 1992
Protaetia brevitarsis Lewis	KR	Leaf, Root	Yes	No	Anon., 1990; Shiraki, 1952
Protaetia orientalis Gory & Percheron	KR	Leaf, Root	Yes	No	Anon., 1990
HETEROPTERA					•
ALYDIDAE					
Megalotomus costalis Stal	KR	Leaf	Yes	No	Anon., 1990, 1998a; Shiraki, 1952
COREIDAE					
Acanthocoris striicornis (Scott)	KR	Fruit	Yes	No	Anon., 1998a
PENTATOMIDAE					•
Glaucias subpunctatus Walker	KR	Fruit	Yes	No	Anon., 1998a; Anon., 1990
Halyomorpha halys (Stal)	KR	Fruit	Yes	No	Anon., 1998a; Anon., 1997; Anon., 1990
Homalogonia obtusa (Walker)	KR	Leaf	Yes	No	Lee et al., 1992
Nezara antennata Scott	KR	Fruit	Yes	No	Anon., 1990, 1997, 1998a; PIN309; Shiraki, 1952
Nezara viridula (L.)	KR, US	Fruit	No	No	Anon., 1990; Clausen, 1931; Henry and Froeschner, 1988
Plautia stali Scott	KR	Fruit	Yes	No	Anon., 1990, 1997, 1998a; Shiraki, 1952
HOMOPTERA					•
ADELGIDAE					
Adelges viridana (Cholodkovsky)	KR	Leaf	Yes	No	Blackman and Eastop, 1994
Aleyrodidae					
	KR, US	Leaf	Yes	No	Anon., 1990, 1997; PNKTO #14, 1982;
Aleurocanthus spiniferus (Quaintance)	(HI)	Leai	105	110	Shiraki, 1952

Pest	Distribution	Plant part affected	Quarantine Pest	Follow Pathway	References
Dialeurodes citri Ashmead	KR, US	Leaf	No	No	Anon., 1990; CPC, 2001; Syoziro <i>et al.</i> , 1965
APHIDIDAE	-	-			
Aphis craccivora Koch	KR, US	Leaf	No	No	Anon., 1990; Stoetzel, 1994
Aphis citricola van der Goot	KR, US	Leaf, Stem/Trunk	No	No	Anon., 1993; Blackman and Eastop, 1984; Metcalf and Metcalf, 1993
Aphis gossypii Glover	KR, US	Leaf, Stem/Trunk	No	No	Anon., 1990; Blackman and Eastop, 1984
Aphis spiraecola Patch	KR, US	Leaf, Stem/Trunk	No	No	Anon., 1990; Stoetzel, 1994
<i>Aulacorthum magnoliae</i> Essi and Kuwana	KR	Leaf	Yes	No	Anon., 1990; Blackman and Eastop 1984; Syoziro <i>et al.</i> , 1965
Aulacorthum solani (Kaltenbach)	KR, US	Leaf	No	No	Anon., 1990; Blackman and Eastop, 1984
Macrosiphum euphorbiae (Thomas)	KR, US	Leaf	No	No	Anon., 1994; Blackman and Eastop, 1984; CIE, 1984; Stoetzel, 1994; Syoziro <i>et al.</i> , 1965
Macrosiphum ibarae Matsumura	KR	Leaf	Yes	No	Lee et al., 1992
Myzus persicae (Sulzer)	KR, US	Leaf	No	No	Anon., 1990; Stoetzel, 1994
Tinocallis kahawaluckalami (Kirkaldy)	KR, US	Leaf	No	No	Alverson and Allen, 1992; Anon., 1990
Tinocallis zelkowae (Takahashi)	KR	Leaf	Yes	No	Anon., 1990
<i>Toxoptera aurantii</i> (Boyer de Fonscolombe)	KR, US	Leaf, Stem/Trunk	No	No	Anon., 1994; CPC, 2001; Stoetzel, 1994
Toxoptera citricidus Kirkaldy	KR, US (FL, PR)	Leaf, Stem/Trunk	Yes	No	Anon., 1990, 1997; Blackman and Eastop, 1984; CPC, 2001; Kranz <i>et al.</i> , 1977; Stoetzel, 1994
Toxoptera odinae van der Goot	KR	Leaf, Stem/Trunk	Yes	No	Anon., 1990, 1997; Blackman and Eastop, 1984
CERCOPIDAE	÷			-	-
Aphrophora intermedia Uhler	KR	Leaf, Stem/Trunk	Yes	No	Anon., 1990, 1998b; Shiraki, 1952
CICADIDAE	•	-	-	-	
Chryptotympana dubia (Haupt)	KR	Leaf	Yes	No	Anon., 1990

Pest	Distribution	Plant part affected	Quarantine Pest	Follow Pathway	References
Cryptotympana dubia (Haupt)	KR	Leaf	Yes	No	Anon., 1990, 1997; Shiraki, 1952
Graptopsaltria nigrofuscata (Motschulsky)	KR	Leaf	Yes	No	Anon., 1990, 1997; Shiraki, 1952
Meimuna mongolica (Distant)	KR	Leaf	Yes	No	Anon., 1990
Meimuna opalifera (Walker)	KR	Leaf	Yes	No	An, 2000
Platypeura kaempferi (F.)	KR	Leaf	Yes	No	Anon., 1990, 1997; Shiraki, 1952
CICADELLIDAE	-	-			
Bothrogonia japonica Ishihara	KR	Leaf, Stem/Trunk	Yes	No	Anon., 1990, 1997, 1998a
Cicadella viridis (L.)	KR	Leaf, Stem/Trunk	Yes	No	Anon., 1997, 1998a; Shiraki, 1952
Dictyophara patruelis (Stal)	KR	Leaf, Stem/Trunk	Yes	No	Anon., 1998a
Empoasca vitis (Gothe)	KR	Leaf	Yes	No	Anon., 1990, 1997, 1998a; CPC, 2001
Epiacanthus stramineus (Motschulsky)	KR	Leaf	Yes	No	Anon., 1990, 1998a
Hishimonus sellatus Uhler	KR	Leaf	Yes	No	Anon., 1990, 1998a
Kolla atramentaria (Motschulsky)	KR	Leaf, Stem/Trunk	Yes	No	Anon., 1990, 1998a; Syoziro <i>et al.</i> , 1965
Ledra auditura Walker	KR	Leaf, tem/Trunk	Yes	No	Anon., 1990, 1998a
Nephotettix cinctceps (Uhler)	KR	Leaf	Yes	No	Anon., 1990, 1998a
Recilia dorsalis (Motschulsky)	KR	Leaf	Yes	No	Anon., 1990, 1997, 1998a
Stroggylocephalus agretis (Fallen)	KR	Leaf	Yes	No	Anon., 1990, 1998a
COCCIDAE					
Ceroplastes ceriferus (Fabricius)	KR, US	Leaf, Stem/Trunk	No	No	CPC, 2001; An, 2000
Ceroplastes floridensis (Comstock)	KR, US	Leaf, Stem/Trunk	No	No	CIE, 1982; CPC, 2001; Shiraki, 1952
Ceroplastes japonicus Green	KR	Leaf, Stem/Trunk	Yes	No	Anon., 1990, 1997; CPC, 2001
Ceroplastes pseudoceriferus Green	KR	Leaf, Stem/Trunk	Yes	No	Anon., 1990, 1997; Syoziro <i>et al.</i> , 1965
Ceroplastes rubens Maskell	KR, US (FL)	Leaf, Stem/Trunk	Yes	No	Anon., 1990, 1997; Shiraki, 1952; Syoziro et al., 1965
Coccus hesperidum L.	KR, US	Leaf, Stem/Trunk	No	No	Anon., 1990; Gill, 1988; Hill, 1983; Syoziro <i>et al.</i> , 1965
Parasaissetia nigra (Neitner)	KR, US	Leaf	No	No	Anon., 1990
Parthenolecanium corni (Bouche)	KR, US	Leaf	No	No	Ben-Dov, 1993; CPC, 2001

Pest	Distribution	Plant part affected	Quarantine Pest	Follow Pathway	References
Saissetia coffeae (Signoret)	KR, US	Leaf, Stem/Trunk	No	No	Anon., 1990 ;CPC, 2001; Hamon and Williams, 1984; Hill, 1983
Takahashia japonica Cockerell	KR	Leaf, Stem/Trunk	Yes	No	Anon., 1990, 1998a
DELPHACIDAE	•	•			
Sogatella furcifera (Horvath)	KR	Leaf	Yes	No	Anon., 1990, 1998a; CIE, 1980
DIASPIDIDAE	•	•			
Aonidiella citrina Coquillete	KR, US	Fruit, Leaf	No	Yes	Anon., 1990; CPC, 2001; EPPO, 1996; Metcalf and Metcalf, 1993; Nakahara, 1982
Aspidiotus destructor Signoret	KR, US	Leaf	No	No	Anon., 1990; Nakahara, 1982
Chrysomphalus aonidum L.	KR, US	Fruit, Leaf	No	Yes	CPC, 2001; Nakahara, 1982
Chrysomphalus bifasciculatus Ferris	KR, US	Fruit, Leaf	No	Yes	Anon., 1990; Shiraki, 1952; Syoziro <i>et al.</i> , 1965
Chrysomphalus dictyospermi (Morgan)	KR, US	Fruit, Leaf	No	Yes	Anon., 1990; Nakahara, 1982
Hemiberlesia lataniae (Signoret)	KR, US	Fruit, Leaf	No	Yes	Anon., 1990; Nakahara, 1982
Lepidosaphes gloveri (Packard)	KR, US	Fruit, Leaf	No	Yes	Anon., 1990; Nakahara, 1982
Lepidosaphes ulmi (L.)	KR, US	Fruit, Leaf	No	Yes	Anon., 1990; Nakahara, 1982
Lopholeucaspis japonica Cockerell	KR, US	Fruit, Leaf	No	Yes	Anon., 1990; CPC, 2001; EPPO, 1996; Nakahara, 1982
Parlatoria pergandii Comstock	KR, US	Fruit, Leaf	No	No	Anon., 1990; Nakahara, 1982; Syorizo <i>et al.</i> , 1965
Parlatoria proteus (Curtis)	KR, US	Fruit, Leaf	No	Yes	Anon., 1990; Nakahara, 1982; Syoziro <i>et al.</i> , 1965
Parlatoria theae Cockerell	KR, US	Fruit, Leaf	No	Yes	Anon., 1990; Nakahara, 1982
Parlatoria ziziphi Lucas	KR, US (FL)	Fruit, Leaf	No	Yes	Anon., 1998b; Deckle, 1976; PIN309
Pinnaspis aspidistrae Signoret	KR, US	Leaf	No	No	Anon., 1990; Nakahara, 1982; Shiraki, 1952
Pseudaonidia duplex (Cockerell)	KR, US	Leaf	No	No	Anon., 1990; Nakahara, 1982; Shiraki, 1952

Pest	Distribution	Plant part affected	Quarantine Pest	Follow Pathway	References
Pseudaulacaspis pentagona (Targioni & Tozzetti)	KR, US	Leaf	No	No	Anon., 1990; Nakahara, 1982
Quadraspidiotus perniciosus Comstock	KR, US	Leaf	No	No	Anon., 1990; Metcalf and Metcalf, 1993; Nakahara, 1982
Unaspis euonymi Comstock	KR, US	Fruit, Leaf, Stem/Trunk	No	Yes	Anon., 1990; Nakahara, 1982
Unaspis yanonensis Kuwana	KR	Fruit, Leaf, Stem/Trunk	Yes	Yes	Anon., 1990, 1997; PIN 309; PNKTO #45, 1984
FLATIDAE	•	•			
Geisha distinctissima Walker	KR	Leaf, Stem/Trunk	Yes	No	Anon., 1990, 1998a
MARGARODIDAE	-	-			
Drosicha corpulenta (Kuwana)	KR	Fruit, Leaf , Stem/Trunk	Yes	No	Anon., 1997, 1998a; Shiraki, 1952
Drosicha howardi (Kuwana)	KR	Leaf	Yes	No	Anon., 1990; Shiraki, 1952
Icerya purchasi Maskell	KR, US	Fruit, Leaf, Stem/Trunk	No	No	Anon., 1990; CPC, 2001; Syoziro <i>et al.</i> , 1965
MEENOPLIDAE	l .	l .			
Nisia atrovenosa (Leithierry)	KR	Leaf	Yes	No	Anon., 1990, 1998a
MEMBRACIDAE					
Gargara genistae F.	KR, US	Leaf	No	No	Anon., 1990, 1997, 1998a; Cave and Lightfield, 1994; Shiraki, 1952
Machaerotypus sibricus (Lethierry)	KR	Leaf	Yes	No	Anon., 1990, 1998a
Orthobelus flavipes Uhler	KR	Leaf, Stem/Trunk	Yes	No	Anon., 1990, 1998a; Syoziro <i>et al.</i> , 1965
PENTHIMIIDAE	•	•			
Penthimia nitida Walker	KR	Leaf	Yes	No	Anon., 1990, 1998a
PSEUDOCOCCIDAE					
Antonia crawii Cockerell	KR	Leaf	Yes	No	Anon., 1990, 1998a
Nipaecoccus nipae (Maskell)	KR, US	Leaf, Stem/Trunk	No	No	Anon., 1994; CPC, 2001
Phenacoccus pergandei Cockerell	KR	Leaf	Yes	No	Lee et al., 1992
Planococcus citri (Risso)	KR, US	Leaf, Fruit, Stem/Trunk	No	Yes	Cave and Lightfield, 1994; CPC, 2001
Planococcus kraunhiae (Kuwana)	KR, US (CA)	Leaf, Stem/Trunk, Fruit	No	Yes	Anon., 1990, 1997, 1998a; Ben-Dov, 1993; Shiraki, 1952
Pseudococcus sp.	KR	Leaf, Fruit, Stem/Trunk	Yes	Yes	Anon., 1997
Pseudococcus comstocki Kuwana	KR, US	Leaf, Fruit,	No	Yes	Anon., 1990; Shiraki,

Pest	Distribution	Plant part affected	Quarantine Pest	Follow Pathway	References
		Stem/Trunk			1952
RICANIIDAE	-	•			-
Ricania japonica Melichar	KR	Leaf, Stem/Trunk	Yes	No	Anon., 1990, 1997, 1998a
HYMENOPTERA					
FORMICIDAE					
Formica japonica Motschulsky	KR	Stem/Trunk	Yes	No	Anon., 1990; Syoziro et al., 1965
VESPIDAE					
Vespa crabro Smith	KR, US	Fruit	No	No	Anon., 1990
Vespa mandarina Smith	KR	Fruit	Yes	No	Anon., 1990
LEPIDOPTERA					
ARCTIIDAE					
Amsacta lactinea (Cramer)	KR	Leaf	Yes	No	Anon., 1990, 1997; Clausen, 1931; CPC, 2001
Hyphantria cunea (Drury)	KR, US	Leaf	Yes	No	Anon., 1990; Nagalingam, 1981
Utetheisa pulchella L.	KR	Leaf	Yes	No	PIN 309
GEOMETRIDAE					•
Apochima juglansiaria (Graeser)	KR	Leaf	Yes	No	Anon., 1990
Ascotis selenaria (Denis & Schiffermuller)	KR	Leaf	Yes	No	Anon., 1990, 1997; Shiraki, 1952
Chariaspilates formosaria (Eversmann)	KR	Leaf	Yes	No	Anon., 1997; Anon., 1991
Ectropis bistortata (Goetze)	KR	Leaf	Yes	No	Anon., 1990
Ectropis excellens (Butler)	KR	Leaf	Yes	No	Anon., 1990
Hemithia aestivaria Hubner	KR	Leaf	Yes	No	Anon., 1990, 1997; Shiraki, 1952
<i>Ophthalmitis irrorataria</i> Bremer & Grey	KR	Leaf	Yes	No	Anon., 1990; Shiraki, 1952
Pylargosceles steganioides (Butler)	KR	Leaf	Yes	No	Anon., 1990
GRACILARIIDAE					
Phyllocnistis citrella Stainton	KR, US (FL, LA, TX)	Leaf	Yes	No	Anon., 1990, 1997; CPC, 2001; INKTO #65, 1958; Shiraki, 1952
HEPIALIDAE	•	•			-
Endoclita excrescens Butler	KR	Stem/Trunk	Yes	No	Lee et al., 1992
HESPERIIDAE	•		•	•	
Parnara guttata Bremer & Grey	KR	Leaf	Yes	No	Anon., 1990, 1997; CPC, 2001
LASIOCAMPIDAE	-	•			-
Dendrolimus spectabilis (Butler)	KR	Leaf	Yes	No	Anon., 1990

Pest	Distribution	Plant part affected	Quarantine Pest	Follow Pathway	References
LIMACODIDAE					
Cnidocampa flavescens Walker	KR, US	Leaf	No	No	Anon., 1990; Shiraki, 1952
Monema flavescens Walker	KR	Leaf	Yes	No	Anon., 1990
Parasa consocia (Walker)	KR	Leaf	Yes	No	Anon., 1990, 1997
Thosea sinensis coreana Okano & Park	KR	Leaf	Yes	No	Anon., 1990, 1997; CPC, 2001
LYMANTRIIDAE					
Euproctis piperita Oberthür	KR	Leaf	Yes	No	Lee et al., 1992
Euproctis pseudoconspersa (Strand)	KR	Leaf	Yes	No	Anon., 1990
Euproctis pulverea (Leech)	KR	Leaf	Yes	No	Anon., 1990, 1997; Shiraki, 1952
Euproctis similis (Fuessly)	KR	Leaf	Yes	No	Anon., 1994, 1997; CIE, 1978
Latoia consocia (Walker)	KR	Leaf	Yes	No	Lee et al., 1992
Latoia sinica (Moore)	KR	Leaf	Yes	No	Lee et al., 1992
Lymantria dispar L	KR, US	Leaf	Yes	No	Anon., 1994; Zhang, 1994
NOCTUIDAE					
Acronicta rumicis oriens (Strand)	KR	Leaf	Yes	No	Anon., 1997
Agrotis segetum (Schiffermuller)	KR	Leaf, Root, Stem/Trunk	Yes	No	Anon., 1994; IIE, 1987; INKTO #25, 1957
Agrypnus binodulus Motschulsky	KR	Root	Yes	No	Anon., 1990, 1997; Shiraki, 1952
Agrotis ipsilon (Hufnagel)	KR, US	Root, Stem/Trunk	No	No	Anon., 1994; Zhang, 1994
Amata germana (Felder & Felder)	KR	Leaf	Yes	No	Anon., 1990, 1997; Shiraki, 1952
Anomis mesogona (Walker)	KR	Fruit	Yes	No	Anon., 1990; Poole, 1989; Zhang, 1994
Apamea aquila Donzel	KR	Leaf	Yes	No	Anon., 1990; Poole, 1989
Arcte coerulea (Guenee)	KR	Fruit Piercing	Yes	No	Anon., 1990; Poole, 1989; Yoon and Lee 1974
Artena dotata (F.)	KR	Fruit Piercing	Yes	No	Anon., 1990; Poole, 1989; Yoon and Lee, 1974
Autographa gamma L.	KR	Leaf	Yes	No	Anon., 1997; PNKTO #75, 1986
Calyptera lata (Butler)	KR	Fruit Piercing	Yes	No	Anon., 1990; Poole, 1989
Calyptera thalictri (Borkhousen)	KR	Fruit Piercing	Yes	No	Anon., 1990; Poole, 1989
Chrysodeixis eriosoma Doubleday	KR, US	Flower,	Yes	No	Anon., 1997

Rev. 02

Pest	Distribution	Plant part affected	Quarantine Pest	Follow Pathway	References
	(HI)	Leaf			
Dysgonia arctotaenia (Guenee)	KR	Fruit Piercing	Yes	No	Anon., 1990; Cave and Lightfield, 1994
Dysgonia maturata (Walker)	KR	Fruit Piercing	Yes	No	Anon., 1990; Poole, 1989
Eudocema fullonia (Clerck)	KR	Fruit	Yes	No	Anon., 1990, 1997; Poole, 1989; Shiraki, 1952
Eudocema tyrrannus Guenee	KR	Fruit	Yes	No	Anon., 1990; Poole, 1989
<i>Eudocima tyrannus amurensis</i> Staudinger	KR	Fruit Piercing	Yes	No	Anon., 1993; Zhang, 1994
Helicoverpa armigera (Hubner)	KR	Fruit, Leaf	Yes	No	Anon., 1994, 1997; Avidov and Harpaz, 1969; CPC, 2001
Helicoverpa assulta assulta Guenee	KR	Fruit, Leaf	Yes	No	Anon., 1997, 2000
Mamestra brassicae L.	KR	Leaf	Yes	No	Anon., 1997
Ophiusa tirhaca Cramer	KR	Fruit Piercing, Leaf, Stem/Trunk	Yes	No	CPC, 2001; Zhang, 1994
Oraesia emarginata (F.)	KR	Fruit Piercing	Yes	No	Anon., 1990, 1997; CPC, 2001; Poole, 1989; Shiraki, 1952
Oraesia excavata (Butler)	KR	Fruit Piercing	Yes	No	Anon., 1990, 1997; Clausen, 1931; CPC, 2001; Poole, 1989; Shiraki, 1952
Parallelia maturata (Walker)	KR	Leaf	Yes	No	Anon., 1990, 1997
Parallelia arctotaenia (Guenee)	KR	Leaf	Yes	No	Anon., 1990
Spodoptera exigua (Hubner)	KR, US	Leaf	No	No	Anon., 1994; Kranz et al., 1977
Spodoptera litura (F.)	KR	Leaf	Yes	No	Anon., 1990, 1997; CPC, 2001; PNKTO #24, 1982; Poole, 1989; Shiraki, 1952
Thyas juno (Dalman)	KR	Fruit Piercing, Leaf	Yes	No	Anon., 1990; Clausen, 1931; Poole, 1989; Zhang, 1994
Xestia c-nigrum (L.)	KR, US	Leaf	No	No	Anon., 1990; Poole, 1989
NOTODONTIDAE					
Phalera assimilis Bremer & Grey	KR	Leaf	Yes	No	Lee et al., 1992
OECOPHORIDAE					
Psorosticha melanocrepida Clarke	KR	Leaf	Yes	No	Anon., 1990, 1997, 1998a; Shiraki, 1952

Rev. 02

Pest	Distribution	Plant part affected	Quarantine Pest	Follow Pathway	References
Papilio bianor Cramer	KR	Leaf	Yes	No	Anon., 1990, 1997; Shiraki, 1952
Papilio maackii Menetries	KR	Leaf	Yes	No	Anon., 1990, 1997; Shiraki, 1952
Papilio protenor (Cramer)	KR	Leaf	Yes	No	Anon., 1990, 1997; Shiraki, 1952
Papilio xuthus L.	KR	Leaf	Yes	No	Anon., 1990, 1997; CPC, 2001; Ebeling, 1959
PIERIDAE		•			•
Aporia crataegi L.	KR	Leaf	Yes	No	Anon., 1997; INKTO #149, 1962
PSYCHIDAE		•			•
Bambalina sp.	KR	Leaf	Yes	No	Lee et al., 1992
PYRALIDAE	•				•
Cadra cautella (Walker)	KR, US	Fruit, Leaf	No	No	Anon., 1994; Zhang,1994
Conogethes punctiferalis (Guenee)	KR	Fruit	Yes	No	Anon., 1990, 1997, 1998a; INKTO #19, 1957
Glyphodes pyloalis Walker	KR	Leaf	Yes	No	Anon., 1990, 1998a
SATURNIIDAE	•				
Dictyoploca japonica (Moore)	KR	Leaf	Yes	No	Lee et al., 1992
Samia cynthia walkeri C & R Felder	KR	Leaf	Yes	No	Anon., 1990
SESIIDAE					
Synanthedon hector Butler	KR	Leaf	Yes	No	Lee et al., 1992
TORTRICIDAE		-			-
Adoxophyes orana Fischer von Roeslerstamm	KR	Fruit, Leaf, Flower, Stem/Trunk	Yes	No	Anon., 19998a, 1990, 1997; Shiraki, 1952
Archips breviplicana (Walsingham)	KR	Leaf	Yes	No	Anon., 1990, 1998a, 1997; Shiraki, 1952
Archips crataeganus (Hubner)	KR	Leaf	Yes	No	Anon., 1990, 1998a
Archips ingentana Christopher	KR	Leaf	Yes	No	Anon., 1990, 1998a, 1997; Shiraki, 1952
Archips xylosteana L.	KR	Leaf	Yes	No	Anon., 1990, 1997, 1998a; Shiraki, 1952
Homona magnanima Diakonoff	KR	Leaf	Yes	No	Anon., 1998a; Anon., 1997; Anon., 1990
ORTHOPTERA			•		-
ACRIDIDAE					
Chondracris rosea (De Geer)	KR	Leaf	Yes	No	Anon., 1994; CPC, 2001
Oxya chinensis formosana Shiraki	KR	Leaf	Yes	No	Anon., 1990, 1997
Oxya japonica Thunberg	KR	Leaf	Yes	No	Anon., 1990, 1997

Pest	Distribution	Plant part affected	Quarantine Pest	Follow Pathway	References
GRYLLOTALPIDAE					
<i>Gryllotalpa africana</i> Palisot De Beauvois	KR	Leaf	Yes	No	Anon., 1997; CPC, 2001
PYROGOMORPHIDAE					
Atractomorpha bedeli Bolivar	KR	Leaf	Yes	No	Anon., 1990, 1997; Shiraki, 1952; Syoziro <i>et al.</i> , 1965
TETTIGONIIDAE	-				
Gampsocleis sedakovi abscura Walker	KR	Leaf	Yes	No	Anon., 1993
Gompsocleis sedakovi obscura (Walker)	KR	Leaf	Yes	No	Anon., 1990, 1998a
<i>Holochlora japonica</i> Brunner von Watten	KR	Leaf	Yes	No	Anon., 1990, 1997, 1998a; Shiraki, 1952
THYSANOPTERA					
PHLAEOTHRIPIDAE					
Haplothrips chinensis Priesner	KR	Flower, Leaf, Stem/Trunk	Yes	No	Anon., 1998a; Anon., 1997; Anon., 1990; Shiraki, 1952
THRIPIDAE					
Frankliniella intonsa Brybom	KR, US	Flower, Leaf	No	No	Anon., 1990, 1997; CPC, 2001
Heliothrips haemorrhoidalis Bouche	KR, US	Leaf	No	No	Anon., 1990; Hill, 1983; Syoziro <i>et al.</i> , 1965
Megalurthrips distalis Karny	KR	Flower, Leaf	Yes	No	Anon., 1990, 1997, 1998b
Thrips hawaiiensis (Morgan)	KR, US	Leaf	No	No	Anon., 1994; CPC, 2001
Thrips palmi Karny	KR, US (FL, HI)	Fruit, Flower, Leaf	Yes	Yes	Anon., 1998b; CPC, 2001
Thrips setosus Moultan	KR	Flower, Leaf	Yes	No	Anon., 1998b
BACTERIA					
<i>Rhizobium tumefaciens</i> (Smith & Townsend) Conn (Proteobacteria alpha subdivision: Rhizobiaceae)	KR, US	Whole Plant	No	No	Bradbury, 1986; Cave and Lightfield, 1994
<i>Pseudomonas syringae</i> pv. <i>syringae</i> van Hall (Proteobacteria gamma subdivision: Pseudomonas group)	KR, US	Fruit, Leaf, Stem/Trunk	No	Yes	Bradbury, 1986; Cave and Lightfield, 1994
Xanthomonas axonopodis pv. citri Vauterin et al (Proteobacteria gamma subdivision: Lysobacterales)	KR, US (FL)	Fruit, Leaf, Stem/Trunk	Yes	Yes	Anon., 1990, 1997, 1998b; PNKTO #27, 1983; PIN309
FUNGI					-
Alternaria citri Ellis & N. Pierce in Pierce ² (Fungi Imperfecti: Hyphomycetes)	KR, US	Fruit	No	Yes	Anon., 1986, 1990, 1993, 1998b; Knorr, 1973; Reuther <i>et al.</i> , 1978; Timmer <i>et al.</i> ,

Pest	Distribution	Plant part affected	Quarantine Pest	Follow Pathway	References
					2000
Antennella citrina Hara (Loculoascomycetes: Dothideales)	KR	Leaf	Yes	No	Anon., 1986
Ascochyta citri Penz. (Fungi Imperfecti: Coelomycetes)	KR	Fruit, Leaf	Yes	Yes	PPQ Interception
<i>Ascochyta pisi</i> Lib. (Fungi Imperfecti: Coelomycetes)	KR, US	Fruit	No	Yes	CMI, 1985; Timmer <i>et al.</i> , 2000
Aspergillus niger Tiegh. (Fungi Imperfecti: Hyphomycetes)	KR, US	Fruit	No	Yes	Onions, 1966; Timmer <i>et al.</i> , 2000
<i>Botryosphaeria rhodina</i> (Cook) Arx (Loculoascomycetes: Dothideales)	KR, US	Fruit, Stem/Trunk	No	Yes	Anon., 1998b; Farr <i>et al.</i> , 1989; Santacroce, 1993; Timmer <i>et al.</i> , 2000
<i>Botrytis cinerea</i> Pers. <i>ex</i> Fr. (Fungi Imperfecti: Hyphomycetes)	KR, US	Fruit	No	Yes	Anon., 1998b; Bai, 1977; Timmer <i>et al.</i> , 2000
<i>Capnodium tanakae</i> Shirai & Hara (Loculoascomycetes: Dothideales)	KR	Fruit, Leaf, Stem/Trunk	Yes	No	Anon., 1986, 1990
Capnophaeum fuliginodes (Rehm) Yamamoto (Loculoascomycetes: Dothideales)	KR	Fruit	No	No	Anon., 1986; Cave and Lightfield, 1994
<i>Chaetothyrium spinigerum</i> (Hohnel) Yamamoto (Loculoascomycetes: Dothideales)	KR	Leaf	Yes	No	Anon., 1986, 1990
<i>Cladosporium</i> sp. (Fungi Imperfecti: Hyphomycetes)	KR	Fruit	Yes	Yes	PPQ Interception
Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. in Penz. (Fungi Imperfecti: Coelomycetes)	KR, US	Fruit	No	Yes	Anon., 1986, 1990, 1998b; Knorr, 1973; Timmer <i>et al.</i> , 2000
<i>Corticium rolfsii</i> Curzi (Basidiomycetes: Corticiaceae)	KR, US	Fruit	No	Yes	CMI, 1992; CMI, 1974
<i>Diaporthe citri</i> F. A. Wolf (Pyrenomycetes: Diaporthales)	KR, US	Fruit	No	Yes	Anon., 1986, 1990, 1998b; Timmer <i>et al.</i> , 2000
<i>Elsinoë australis</i> Bit. & Jenkins (Loculoascomycetes: Dothideales)	KR	Fruit	Yes	Yes	PPQ Interception
<i>Elsinoë fawcetti</i> Bit. & Jenkins (Loculoascomycetes: Dothideales)	KR, US	Fruit	No	Yes	Anon., 1986, 1990, 1998b; CMI, 1986; Timmer <i>et al.</i> , 2000
<i>Elsinoë</i> sp. (Loculoascomycetes: Dothideales)	KR	Fruit	Yes	Yes	PIN309
<i>Geotrichum citri-aurantii</i> (Feiraris) E. E. Butler (Fungi Imperfecti: Hyphomycetes)	KR, US	Fruit	No	Yes	Anon., 1998b; Farr <i>et al.</i> , 1989
Guignardia citricarpa Kiely (Loculoascomycetes: Dothideales) Anamorph: <i>Phoma citricarpa</i> McAlpine (Fungi Imperfecti: Coelomycetes)	KR	Fruit	Yes	Yes	CMI, 1990; CPC, 2001; PIN 309; Sutton and Waterston, 1966
<i>Guignardia</i> sp. Anamorph: <i>Phoma citricarpa</i> McAlpine var. <i>mikan</i> Hara (Fungi Imperfecti: Coelomycetes)	KR, US	Fruit	No	Yes	Anon., 1990; CMI, 1990; CPC, 2001; PIN309

Pest	Distribution	Plant part affected	Quarantine Pest	Follow Pathway	References
Helicobasidium mompa Tanaka (Basidiomycetes: Ceratobasidiaceae)	KR	Root, Stem/Trunk	Yes	No	Anon., 1986; Knorr, 1973
Macrophomina phaseolina (Tassi) Goidanich (Fungi Imperfecti: Coelomycetes)	KR, US	Root	No	No	CPC, 2001; Farr <i>et al.</i> , 1989; Knorr, 1973
<i>Microsphaeropsis</i> sp. (Fungi Imperfecti: Coelomycetes)	KR	Fruit	Yes	Yes	PIN 309
<i>Limacinia japonica</i> Hara (Loculoascomycetes: Dothideales)	KR	Fruit	Yes	No	Anon., 1990; Anon., 1986
Penicillium digitatum Sacc. (Fungi Imperfecti: Hyphomycetes)	KR ,US	Fruit	No	Yes	Anon., 1998b
Penicillium italicum Wehmer (Fungi Imperfecti: Hyphomycetes)	KR, US	Fruit	No	Yes	Anon., 1998b; Bai, 1977; Hong <i>et al.</i> , 1991; Timmer <i>et al.</i> , 2000
Phaeopeltis japonica Yamamoto (Loculoascomycetes: Dothideales)	KR	Fruit	Yes	No	Anon., 1986, 1990
Phyllosticta beltranii Penzig (Fungi Imperfecti: Coelomycetes)	KR	Leaf	Yes	No	Anon., 1986, 1990, 1998b; Knorr, 1973
<i>Phyllosticta erratica</i> Ellis & Everh. (Fungi Imperfecti: Coelomycetes)	KR, US	Leaf	No	No	Anon., 1998b; Farr <i>et al.</i> , 1989
Phytophthora citrophthora (R.E. Sm. & E.H. Sm.) Leonian (Oomycetes: Pythiaceae)	KR, US	Fruit	No	Yes	Anon., 1986, 1990, 1998b; Timmer <i>et al.</i> , 2000
<i>Phytophthora nicotianae</i> Breda de Haan var. <i>parasitica</i> Dastur (G.M.Waterhouse) (Oomycetes: Pythiaceae)	KR, US	Fruit	No	Yes	Anon., 1998b; Timmer <i>et al.</i> , 2000
Rosellinia necatrix Prill. (Ascomycetes: Xylariaceae)	KR, US	Root	No	No	CMI, 1987; Farr <i>et al.</i> , 1989
Sclerotinia sclerotiorum (Lib.) deBary (Ascomycetes: Sclerotiniaceae)	KR, US	Fruit	No	Yes	Bai, 1977; Reuther <i>et</i> <i>al.</i> , 1978; Timmer <i>et</i> <i>al.</i> , 2000
NEMATODA					
CRICONEMATIDAE Criconemoides informis (Micoltzdy)	KR	Root	Yes	No	Anon., 1990; Anon., 1984
Hemicriconemoides mangiferae Siddiqi	KR, US	Root	No	No	Anon., 1984; CPC, 2001
LONGIDORIDAE					
Xiphinema americanum Cobb	KR, US	Root	No	No	Anon., 1984; CPC, 2001
Xiphinema insigne Loos (Longidoridae)	KR	Root	Yes	No	CPC, 2001
PRATYLENCHIDAE		I			1
Pratylenchus penetrans (Cobb) Filipjev & Schuurmans Stekhoven	KR, US	Root	No	No	Anon., 1984; CPC, 2001
TRICHORDORIDAE			•		•
Paratrichodorus porosus (Allen) Siddiqi	KR, US	Root	No	No	Anon., 1984; CPC, 2001
TYLENCHIDAE				L	1

Pest	Distribution	Plant part affected	Quarantine Pest	Follow Pathway	References			
Tylenchulus semipenetrans Cobb	KR, US	Root	No	No	Anon., 1990; Anon., 1984			
VIRUSES								
Citrus tatter leaf virus (Capillovirus)	KR, US (CA, FL)	Whole Plant	No	No	Brunt <i>et al.</i> , 1995; Cave and Lightfield, 1994; CPC, 2001;			
<i>Citrus tristeza virus</i> (Closteroviridae: Closterovirus)	KR, US	Whole Plant	No	No	Anon., 1990; Brunt <i>et al.</i> , 1995; CPC, 2001			
Satsuma dwarf virus (Bromoviridae: Nepovirus)	KR	Whole Plant	Yes	No	Anon., 1990; CPC, 2001			
MOLLUSCA								
BRADYBAENIDAE								
Acusta despecta (Grey)	KR	Whole Plant	Yes	No	An, 2000			

¹AZ-Arizona, CA-California, FL-Florida, HI-Hawaii, KR-Korea, PR-Puerto Rico, LA-Louisiana, TX-Texas, US-United States.

²*Alternaria* spp. cause four distinct diseases of citrus: Alternaria brown spot of mandarins, Alternaria leaf spot of rough lemon, post-harvest black rot of fruit, and mancha foliar de los citricos. The causal agent of Alternaria brown spot of mandarins, leaf spot of rough lemon and post-harvest rot was described originally as *A. citri* Ell. & Pierce. Recently, the pathogen that affects mandarins was designated *A. alternata* Fr. (Keissler) pv. *citri* Solel. And, ten new species were described among isolates pathogenic to mandarins and rough lemons. Timmer *et al.*, 2000.

G. Quarantine Pests Likely to Follow the Pathway

The quarantine pests selected for further analysis are listed in Table 3.

Table 3. Quarantine Pests Selected for Further Analysis

Unaspis yanonensis Kuwana	Homoptera: Diaspididae
Xanthomonas axonopodis pv. citri Vauterin et al.	Pseudomonadaceae

Other quarantine pests not included in this listing have the potential to be harmful if introduced into the U.S. but are not likely to follow the import pathway. There were a variety of reasons for not subjecting them to further analysis, *e.g.*, the primary association of the pest may be with plant parts other than the part being exported; the pests may not be associated with the commodity during transport or processing because of their inherent mobility; sexually immature insect stages can be transported in a shipment but are unable to establish viable populations; the pests may be associated with the fruit as incidental contaminants but are not expected to be present in many shipments.

The biological hazard of organisms identified only to the order, family or the generic level is not often assessed because of the lack of biological information. Lack of species identification may indicate the limits of taxonomic or life-stage knowledge or the quality of the specimen submitted for identification. In this assessment, this applies to: *Cladosporium* sp.; *Elsinoë* sp.; *Longitarsus* sp.; *Microsphaeropsis* sp.; and *Tarsonemus* sp. (Appendix A).

By necessity, pest risk assessments focus mainly on the organisms for which biological information is available. The lack of biological information on any given pest insect, mite or

pathogen of a major crop suggests that this pest is of minor economic importance or does not present a high pest risk. Lack of information, however, cannot be taken as proof of this supposition. The lack of identification at the specific level does not rule out the possibility that a dangerous pest was intercepted or that it was not a quarantine pest. The development of detailed assessments for known pests that inhabit a variety of ecological niches, such as internal fruit feeders or foliage pests allow effective mitigation measures to be crafted that will eliminate the known organisms as well as similar, but incompletely identified organisms that mayinhabit the same niches.

Certain Noctuidae, (fruit piercing moths) attack fruit as adults (Banzinger, 1982). The following taxa of fruit piercing moths are not likely to follow the import pathway: *Anomis mesogona*, *Arcte coerulea*, *Artena dotata*, *Calyptera thalictri*, *Dysgonia arctotaenia*, *D. maturata*, *Eudocema tyrannus amurensis*, *Ophiusa tirhaca*, *Oraesia emarginata*, *O. excavata* and *Thyas juno*. A trip report (Redlin, 2002) stated that it was a standard practice to keep the packing house doors closed, and prohibit packing at night because the lights attract moths and other insects.

In addition, *Vespa mandarina*, (Hymenoptera: Vespidae), *Acanthocoris striicomis*, (Heteroptera: Coreidae) and *Glaucias subpunctatus*, *Halyomorpha halys* and *Plautia stali* (Heteroptera: Pentatomidae) will not remain with the fruit during harvest or packing and *Drosicha corpulenta* (Homoptera: Pseudococcidae) and *Helicoverpa assulta assulta* (Lepidoptera: Noctuidae) mainly attack parts other than the fruit.

There are no references to *C. reticulata* as a host for the yellow peach moth, *Conogethes punctiferalis*, (Lepidoptera: Pyralidae), however, *C. nobilis* is a secondary host (CPC, 2001; INKTO #19, 1957). The larvae of this moth are internal feeders in host fruit (CPC, 2001; INKTO #19, 1957; Sekiguchi, 1974) and have never been intercepted on *Citrus* spp. (PIN309). Other hosts include: *Averrhoa carambola, Carica papaya, Gossypium, Helianthus annuus, Macadamia ternifolia, Morus alba, Nephelium lappaceum, Prunus persica, Psidium guajava, Sorghum bicolor*, and *Zea mays* (CPC, 2001; INKTO #19, 1957). Based on the reported host range and the lack of interceptions on citrus, PPQ believes that it is unlikely that *C. punctiferalis* will follow the import pathway.

In 1995, one adult *Nezara antennata* (Heteroptera: Pentatomidae) was intercepted during a preclearance inspection (PIN309). The closely related *N. viridis* is controlled on fruit by normal packinghouse procedures (Dixon, 1995). So it is reasonable to assume that *N. antennata* would be controlled in a similar manner.

In the last 20 years, *Thrips palmi* (Thysanoptera: Thripidae) has spread from tropical to temperate Asia and has been introduced into the southern coastal areas of Korea (including Cheju Island), Australia, the Caribbean, and the United States (Florida and Hawaii) (Cho *et al.*, 2000; Layland *et al.*, 1994; Nakahara, 1984; Tsai *et al.*, 1995; Kajita *et al.*, 1996; Banks *et al.*, 1996; FAO, 1990). This pest affects ornamentals and vegetables, and hosts include asters, chrysanthemums, cucurbits, ficus, cotton, orchids, members of the Solanaceae and some weeds (EPPO, 1997; Kawai, 1990; Martin and Mau, 1992; Vierbergen, 1995). It is listed as a citrus pest on fruit and leaves in Florida, but is controlled on fruit by normal packinghouse procedures (Dixon, 1995). There were no interceptions on any fruit commodities from Korea (PIN309),

Rev. 02

despite being identified as a citrus pest in Korea (NPQS, 1998; Thaw, 1997). Additionally, this pest was not observed during a three-year survey (1996-98) on Cheju Island (NPQS, 1998). Based on the preceding evidence, *T. palmi* is unlikely to follow the pathway on imported Unshu oranges produced on Cheju Island.

Sooty mold fungi are generally considered minor leaf pathogens that grow superficially on plant tissue (Agrios, 1997). The four sooty molds identified as citrus pests in Korea are quarantine pests because they are not present in the United States: *Antenella citrina* (synonym: *Scorias citrina*), *Capnodium tanakae*, *Limacinia japonica* and *Phaeopeltis japonica*. It is unlikely that any of these fungi will follow the pathway because these fungi are likely to be washed off in packing house procedures.

The inclusion of *Ascochyta citri* and *E. australis* (Appendix A) are based on single interceptions of these fungi on citrus fruit in passenger baggage from Korea. Additional interceptions are expected if these fungi are prevalent. Neither fungus is further analyzed because these lone interceptions are considered anomalies.

Guignardia citricarpa, the causal agent of citrus black spot disease, is a quarantine pest (Sutton and Waterston, 1966). But the report of *G. citricarpa* does not mean that citrus black spot disease and its causal fungus are present (Timmer *et al.*, 2000). The genus *Guignardia* includes species that are morphologically similar to, but physiologically and pathogenically different from *G. citricarpa* (McOnie, 1964). The endophyte *Guignardia* sp. causes symptomless infections in many plant species (McOnie, 1964). The presence of *Guignardia* sp. in citrus producing regions where citrus black spot disease does not occur led to confusion in the literature regarding the true distribution of *G. citricarpa*. The pest risk assessment conducted by PPQ in 1994 noted that Korean officials were unable to detect citrus black spot disease during several years of survey in the citrus growing areas on Cheju Island.

A list of *Citrus* pests submitted by the Republic of Korea (Anon., 1990) included *Phoma citricarpa* McAlpine var. *mikan* Hara as a causal agent of storage rot of citrus. *Phoma citricarpa* McAlpine is an anamorph of *G. citricarpa* (EPPO, 1997). The same situation was described in Japan, where a low percentage of stored Unshu fruit developed a decay caused by *G. citricarpa* var. *mikan* (anamorph: *P. citricarpa* var. *mikan*) (McOnie, 1967, pers. comm.). McOnie (pers. comm.) concluded that *G. citricarpa* var. *mikan* was actually the nonpathogenic strain of *G. citricarpa* var. *mikan* (anamorph: *P. citricarpa* var. *mikan* was actually the nonpathogenic strain of *G. citricarpa*, that small irregular marking on fruit, thought to be caused by *G. citricarpa* were due to mechanical or insect injury, and that the *G. citricarpa* isolated from those fruit was the nonpathogenic *Guignardia* sp. Based on this information, PPQ believes that the *Guignardia* present in the Republic of Korea is nonpathogenic. This concurs with reports of *G. citricarpa* in the Republic of Korea as being either doubtful or reports of the non-pathogenic *Guignardia* sp. (CPC, 2001; CMI, 1990). The non-pathogenic *Guignardia* was reported in Florida (Alfieri *et al.*, 1994) and Texas (Okamura and Davis, 1987) and is not considered a quarantine pest.

H. Consequences of Introduction - Movement into Alaska

The undesirable consequences that may occur from the introduction of quarantine pests are assessed within this section. For each quarantine pest, the Pest Risk Potential is calculated by summing the values for the Consequences of Introduction and the Likelihood of Introduction.

The major sources of uncertainty in this risk assessment are similar to those in other risk assessments. They include the approach used to combine risk elements (Bier, 1999; Morgan and Henrion, 1990), and the evaluation of risk by comparisons to lists of factors within the guidelines (Kaplan, 1992). To address this last source of uncertainty, the lists of factors were interpreted as illustrative and not exhaustive. This implies that additional biological information, even if not explicitly part of the criteria, can be used when it informs a rating. Sources of uncertainty in this analysis stem from the quality of the available biological information (Gallegos and Bonano, 1993), and the inherent, natural biological variation within a population of organisms (Morgan and Henrion, 1990).

The potential consequences are evaluated using the following five Risk Elements: Climate-Host Interaction, Host Range, Dispersal Potential, Economic Impact, and Environmental Impact. These risk elements reflect the biology, host range and climatic and geographic distribution of each pest, and are supported by biological information on each of the analyzed pests. For each risk element, pests are assigned a rating of Low (1 point), Medium (2 points), or High (3 points). The summation of the points for each risk rating is the cumulative value for the Consequences of Introduction (Table 4). A cumulative value of 5 to 8 points is considered Low risk, 9 to 12 points is Medium, and 13 to 15 points is considered High.

Risk Element 1: Climate-Host Interaction

This risk element considers ecological zonation and the interactions of quarantine pests with their biotic and abiotic environments. When introduced into new areas, pests are expected to behave as they do in their native areas if the potential host plants are present and the climates are similar. Broad availability of suitable climates and a wide distribution of suitable hosts are assumed to increase the impact of a pest introduction. The ratings for this risk element are based on the relative number of United States Plant Hardiness Zones (USDA, 1990) where the pest could establish.

Risk Element 2: Host Range

The risk posed by a plant pest depends on its ability to establish a viable, reproductive population and its potential to cause plant damage. This risk element assumes that the consequences of pest introduction are positively correlated with the pest's host range. Aggressiveness, virulence and pathogenicity also may be factors. The consequences are rated as a function of host range and consider the ability of a pest can attack a single species, multiple species within a genus, a single plant family, or multiple families.

Risk Element 3: Dispersal

After introduction, pests may disperse into new areas. The dispersal potential, expressed by aspects of the pest's reproductive potential, inherent mobility and dispersal facilitation, indicates the rapidity and range of the pest's potential economic and environmental impact. Criteria for rating the dispersal potential include: the presence of multiple generations per year or growing season, the relative number of offspring or propagules per generation, inherent capabilities for rapid movement, the presence of natural barriers or enemies, and dissemination enhanced by wind, water, vectors, or human assistance.

Risk Element 4: Economic Impact

Introduced pests cause a variety of direct and indirect economic impacts such as reduced yield,

Rev. 02

reduced commodity value, loss of foreign or domestic markets, and non-crop impacts. Factors considered during the ranking process included: affect on fruit yield or quality, ability to cause plant mortality, ability to act as a disease vector, increased costs of production and pest control, ability to lower market prices, affect on market availability, increased research or extension costs and potential reduction in recreational land use or aesthetic value.

Risk Element 5: Environmental Impact

The ratings for this Element were based on three aspects: the potential interaction with species that are listed as Threatened or Endangered (50 CFR §§ 17.11-12); the potential for disrupting native plants based on the pest's habits within its current geographic range; and the initiation of chemical or biological control programs. The importation of these oranges is as a commodity for consumption. In the marketplace, commodities for consumption are often separated from ecosystems and generally the fruit is unlikely to be in contact with non-agroecosystems.

Unaspis yanonensis Kuwana (Homoptera: Diaspididae)

Risk Element 1: Climate-Host Interaction

This predominately Asian species prefers warm temperate, Mediterranean, and tropical climates (CPC, 2001) which correspond to at least four Plant Hardiness Zones (NASS, 1997; NPQS, 1998; NRCS, 2001). However, due to the absence of suitable climates, *U. yanonensis* will be unable to establish in Alaska. Therefore, the rating for this Risk Element is Low (1).

Risk Element 2: Host Range

This insect is associated primarily with *Citrus*, *Fortunella* and *Poncirus* (Rutaceae), *Damnacanthus* (Rubiaceae) (PNKTO #45, 1984), *Camellia* (Theaceae) and *Dimocarpus* (Sapindaceae) (Li-zhong, 2000). However, none of these plants occur in Alaska. For this reason, the rating for the host range risk element is Low (1).

Risk Element 3: Dispersal

Due to the absence of suitable climates and lack of host material, this insect will be unable to establish in Alaska. Because of this lack of dispersal potential, the rating for this Risk Element is Low (1).

Risk Element 4: Economic Impact

Due to the absence of suitable climates and lack of host material, this insect will be unable to establish in Alaska and cause any negative economic impact. Therefore the rating for this Risk Element is Low (1).

Risk Element 5: Environmental Impact

None of the hosts for *U. yanonensis* corresponded to any genera on the Endangered Species List. Therefore, the rating for this Risk Element is Low (1).

Xanthomonas axonopodis pv. citri Vauterin et al. (Proteobacteria: Lysobacterales)

Risk Element 1: Climate-Host Interaction

Citrus canker disease occurs in Asia, Africa, Central America, the Caribbean, South America, Oceania, and only the D-strain was reported in Mexico. In the United States, *X. axonopodis* pv. *citri* has the potential to establish in USDA Plant Hardiness Zones 8 to10 (USDA, 1990).

Rev. 02

However, due to the lack of suitable climates, this bacterium will be unable to establish in Alaska. Therefore, the rating for this Risk Element is Low (1).

Risk Element 2: Host Range

Primary hosts of *X. axonopodis* pv. *citri* include: *Casimiroa*, *Citrus*, *Poncirus*, *Eremocitrus* and *Limonia* (Rutaceae) (CPC, 2001). Secondary hosts include: *Fortunella* (Rutaceae)(CPC, 2001). The following plants were also reported to be susceptible to *X. axonopodis* pv. *citri*, however, the original descriptions either were not confirmed or contradict those of other authors: *Aegle*, *Balsamocitrus*, *Feroniella*, *Toddalia* (Rutaceae) and *Matthiola* (Brassicaceae) (CPC, 2001). None of these plants occur in Alaska. Therefore, the rating for this Risk Element is Low (1).

Risk Element 3: Dispersal

Due to the absence of suitable climates and lack of host material, this bacterium sect will be unable to establish in Alaska. Because of this lack of dispersal potential, the rating for this Risk Element is Low (1).

Risk Element 4: Economic Impact

Due to the absence of suitable climates and lack of host material, this bacterium will be unable to establish in Alaska and and cause any negative economic impact. Therefore the rating for this Risk Element is Low (1).

Risk Element 5: Environmental Impact

None of the hosts for *X. axonopodis* pv. *citri* corresponded to any genera on the Endangered Species List. Therefore, the rating for this Risk Element is Low (1).

Pest	Climate/	Host	Dispersal	Economic	Environmental	Consequences of
	Host	Range	Potential	Impact	Impact	Introduction
Unaspis yanonensis	Low	Low	Low	Low	Low	Low
	(1)	(1)	(1)	(1)	(1)	(5)
Xanthomonas	Low	Low	Low	Low	Low	Low
axonopodis pv. citri	(1)	(1)	(1)	(1)	(1)	(5)

Table 4: Risk Ratings for the Consequences of Introduction.

I. Likelihood of Introduction - Movement into Alaska.

The Likelihood of Introduction for a pest is rated relative to six factors (USDA, 2000). The assessment rates five of these areas based on the biological features exhibited by the pest's interaction with the commodity. These areas represent a series of independent events that must all take place before a pest outbreak occurs. The value for the Likelihood of Introduction is the sum of the ratings for the Quantity Imported Annually and these biologically based areas (Table 6). The scale is used to interpret this total is: Low (6-9 points), Medium (10-14 points) and High (15-18 points).

Quantity Imported Annually

Korea's export of Unshu oranges to the United States began in 1995 and ended in 2002 (Table 5). The number of 40' containers fell within the range of 10 to 100 containers per year The rating would be Medium (2) for both of the pests based on the assumption that a similar volume would be exported to Alaska.

Table 5. Shipp	Table 5. Shipping Volumes of Korean Unshu fruit, 1995 - 2002.						
Year	Volume (metric tons)	Approx. no. of 40' containers					
1995	50	2.5					
1996	220	11					
1997	1,190	59.5					
1998	40	2					
1999	380	19					
2000	240	12					
2001	1,434	71.7					
2002	1,601	80					

Table 5. Shipping Volumes of Korean Unshu fruit, 1995 - 2002.

Survive Postharvest Treatment

Standard postharvest treatments include culling and washing. It is doubtful that these practices directly kill *U. yanonensis* or *X. axonopodis* pv. *citri*. Based on these practices, the rating for both pests is High (3).

Survive Shipment

This sub-element evaluates the mortality of the pest population during shipment of the commodity. Shipments of Unshus are likely to be refrigerated and spend less than 20 days in transit to the United States (Jennifer Lemly, pers. comm.). *Unaspis yanonensis* can survive refrigeration, but may be killed by exposure to sub-freezing temperatures if they exceed a specie specific duration (CPC, 2001; Lee and Denlinger, 1991; McKenzie, 1967; PNKTO #44, 1984; PNKTO #45, 1984; Rosen, 1990). , *Unaspis yanonensis* was intercepted 23 times on citrus from Korea between 1985 and 2006. These interceptions came from passenger baggage and ship's quarters, not from cargo (PIN309). Based on this evidence, it is likely that some insects on fruit may survive shipment and thus the rating for this Risk Element is Medium (2).

The pathogen, *X. axonopodis* pv. *citri*, is a relatively labile bacterium (Civerolo, 1995). It is generally believed that bacterial populations decline rapidly even within lesions of infected fruit after harvest (Civerolo, 1981; USDA, 1985). The extended drying period during shipping causes mortality of superficial populations of the bacterium, thus, the epidemiological significance of the surviving bacteria is questionable (Schubert *et al.*, 1998). Viable bacteria have been re-isolated from infected citrus tissues even after several months under dry conditions (Graham *et al.*, 1987; Koziumi, 1972). However, Timmer *et al.* (1996) found that although epiphytic *X. axonopodis* pv. *citri* were detected on asymptomatic plants, the occurrence of epiphytic populations was not related to subsequent appearance of symptoms, and evidence indicates that this organism is highly unlikely to persist on hosts or non-hosts in the absence of symptoms for long periods.

Although an occasional fruit with symptoms of citrus canker may escape detection, normal industry practices for commercial exports would exclude fruit with blemishes, including citrus canker lesions. This substantially reduces the potential for survival of the pathogen since epiphytic contamination is short-lived. Due to these reasons, the rating is Low (1).

Not Detected at the Port of Arrival

U. yanonensis is rated Medium (2) because careful inspection for the mobile stages of this insect can detect it despite its small size (Rosen, 1990). The high number of interceptions of this pest from many countries and commodities confirms that inspectors can find them. *Unaspis yanonensis* was detected in surveys by the [Korean] National Institute of Agricultural Science and Technology during 1996–1998, but was categorized as a "very minor pest" in commercial Unshu orange groves and only partially occurs in groves that are "not managed" (An, 2000).

Trained inspectors can readily detect symptomatic canker diseased fruit by the necrotic lesions on the rind (EPPO, 1997; Schubert *et al.*, 2001; Timmer *et al.*, 2000). These bacteria may remain viable in citrus tissue after several months under dry conditions (Graham *et al.*, 1987; Koziumi, 1972). Shorter-lived epiphytic bacterial populations however cannot be detected by visual examination. This pathogen was intercepted numerous times on citrus fruit, (Appendix A). For these reasons, the rating is Medium (2).

Moved to a Suitable Habitat

This sub-element considers the geographic location of likely markets and the chance of the commodity moving to locations suitable for the pest's survival. Fruit that arrives in the United States does not normally arrive at a single port, but is distributed according to market demand. Restricting the distribution of commodities reduces the likelihood that any associated pests can reach a suitable habitat. Since 1995, an estimated 24 million Korean Unshu oranges have been shipped to the United States. In that time, there was only one PPQ interception of an Unshu orange shipment from Korea being sent into a citrus producing State (Schwartz, 2002). This was an accidental redirection of an air shipment; resolved by re-exportation to a non-citrus producing state (Schwartz, 2002). The proposed export program would move the fruit only into Alaska, an unsuitable habitat for either organism to survive. For this reason, the rating for U. *yanonensis* and *X. axonopodis* pv. *citri* is Low (1).

Contact with Host Material

The proposed export program would restrict the distribution of fruit to Alaska. Lack of suitable hosts and climates restricts the opportunities for pests to establish populations. While passive factors such as wind, water, or animals may aid in the dispersal of certain stages of pests (Kosztarab and Kozar, 1988; Rosen, 1990), the opportunity for these mechanisms of dispersal is decreased by the proposed program because of the absence of host plants and inimical climate. In addition, fruit exposed to, but asymptomatic for *X. axonopodis* pv. *citri*, is unlikely to have sufficient level(s) of viable bacteria to cause infection (Civerolo, 2002). For these reasons, the ratings for both pests is Low (1).

			Pest Survival Potential					
Pest	Quantity Imported Annually	Survive Postharvest Treatment	Survive Shipment	Not Detected at the Port of Entry	Move to Suitable Habitat	Contact with Host Material	Likelihood of Introduction	
Unaspis yanonensis	Medium (2)	High (3)	Medium (2)	Medium (2)	Low (1)	Low (1)	Medium (11)	
Xanthomonas axonopodis pv. citri	Medium (2)	High (3)	Low (1)	Medium (2)	Low (1)	Low (1)	Medium (10)	

Table 6. Ratings for the Likelihood of Introduction for Movement into Alaska.

J. Pest Risk Potential for Movement into Alaska

The sum of the values for the Consequences of Introduction and the Likelihood of Introduction produce the Baseline Pest Risk Potential (PRP) value. This cumulative total expresses the risk on the following scale: Low (11-18 points), Medium (19-26 points), and High (27-33 points). The Baseline PRP for each quarantine pest is summarized in Table 7.

Pests with a Low Baseline PRP value typically do not require mitigation measures other than port of arrival inspection, while a value within the Medium or High ranges indicates that specific phytosanitary measures, supplemental to port of arrival inspection, are necessary. The Baseline PRP values for *U. yanonensis* and *X. axonopodis* pv. *citri* are Low.

Pest	Consequences of Introduction	Likelihood of Introduction	Pest Risk Potential
Unaspis yanonensis	Low	Medium	Low
	(5)	(10)	(15)
Xanthomonas axonopodis	Low	Medium	Low
pv. citri	(5)	(10)	(15)

Table 7. Pest Risk Potential for Movement into Alaska

In this case, the pests of concern are clearly not a risk to Alaska because the climate and lack of suitable hosts make it impossible for them to establish even if introduced. The Low rating is more appropriately characterized as negligible.

K. Consequences of Introduction - Movement from Alaska into other Areas of the U.S.

If shipments of Korean Unshus are imported into Alaska, there is a potential for some of these fruit to move out of Alaska via smuggling, passenger baggage, *etc.* APHIS, PPQ has had good results with similar programs limiting the importation of fruits from tropical regions of Asia and Mexico to Alaska for consumption. None of these programs has ever been linked to the outbreak of a quarantine pest (Cave and Lightfield, 1994). Because the potential exists for movement of Unshus out of Alaska, the two pests of concern were analyzed for their potential to become introduced in other areas of the United States. The summation of the points for each risk rating for the Consequences of Introduction is summarized in Table 8.

Unaspis yanonensis Kuwana (Homoptera: Diaspididae)

Risk Element 1: Climate-Host Interaction

This species prefers warm temperate, Mediterranean, and tropical climates (CPC, 2001) which correspond to at least four Plant Hardiness Zones (NASS, 1997; NPQS, 1998; NRCS, 2001). Host plants grow in North America, in Plant Hardiness Zones 5 to 10 (USDA, 1990). For these reasons, the rating is High (3).

Risk Element 2: Host Range

This insect is associated primarily with *Citrus*, *Fortunella* and *Poncirus* (Rutaceae), *Damnacanthus* (Rubiaceae) (PNKTO #45, 1984), *Camellia* (Theaceae) and *Dimocarpus* (Sapindaceae) (Li-zhong, 2000). The host range of this pest suggests that establishment in nonagronomic ecosystems may be limited if this pest is introduced into the continental United States (Li-zhong, 2000; PNKTO #45, 1984). However, the host plants of this insect are economically important in the U.S. For this reason, the rating for the host range risk element is High (3).

Risk Element 3: Dispersal

This pest has up to three generations per year in Japan (Clausen, 1931; PNKTO #45, 1984) and females may lay up to 200 eggs (Miller, 1985). First instar crawlers may settle on the host shortly after hatching (PNKTO #45, 1984), or disperse by wind or other means (Rosen, 1990; Stehr, 1991). Because of this high reproductive rate and wind-aided dispersal, this pest is rated High (3).

Risk Element 4: Economic Impact

Feeding by this pest can severely distort the fruit resulting in rejection of the fruit from markets, inhibit plant growth which causes the death of small trees (Clausen, 1927; CPC, 2001; PNKTO #45, 1984), can lower the yield and value of agricultural commodities and cause damage serious enough to require the use of pesticides for control (PNKTO #45, 1984). During 2004-2005, the value of commercial citrus production in the four largest citrus producing States as was follows: Arizona (\$38,276,000), California (\$1,131,851,000), Florida (\$1,130,444,000) and Texas (\$88,684,000) (NASS, 2005). Because of the potentially large negative economic impact that could be caused by this insect, the rating for this Risk Element is High (3).

Risk Element 5: Environmental Impact

None of the hosts for *Unaspis yanonensis* corresponded to any genera on the Endangered Species List. Therefore, the rating for this Risk Element is Low (1).

Xanthomonas axonopodis pv. *citri* Vauterin *et al.* (Proteobacteria: Lysobacterales)

Risk Element 1: Climate-Host Interaction

Xanthomonas axonopodis pv. *citri* occurs in Asia, Africa, Central America, the Caribbean, South America, Oceania, and only the D-strain was reported in Mexico. In the United States, *X. axonopodis* pv. *citri* has the potential to establish in Plant Hardiness Zones 8 to10 (USDA, 1990). This bacterium naturally infects green citrus tissues (stems, fruit, and leaves) in the later stages of growth or tissue expansion, and wounds from mechanical damage and insect feeding can cause mature tissues to become infected (Schubert *et al.*, 2001). Additionally, in Florida, a well managed citrus tree will undergo three to five growth flushes every growing season, each accompanied by a period of susceptibility (Schubert *et al.*, 2001). This combination of naturally susceptible tissue and wounded tissue means that canker infection can occur year-round. For these reasons, the rating is Medium (2).

Risk Element 2: Host Range

Primary hosts of *X. axonopodis* pv. *citri* include: *Casimiroa edulis, Citrus aurantium, C. maxima, C. hystrix, C. limetta, C. limon, C. medica, C. madurensis, C. natsudaidai, Citrus x paradisi, C. reticulata, C. reticulata x Poncirus trifoliata, C. sinensis, C. sunki, C. unshiu, Eremocitrus glauca, Limonia acidissima, Poncirus trifoliata, C. aurantiifolia, C. tankan, C. junos* and *C. reshni* (CPC, 2001). Secondary hosts include: *Fortunella japonica* and *F. margarita* (CPC, 2001). There are no native members of these genera within the continental United States (NRCS, 2001; Wunderlin, 2001). The following plants were also reported to be susceptible to *X. axonopodis* pv. *citri*, however, the original descriptions either were not confirmed or contradict those of other authors: *Aegle malmelos, Balsamocitrus paniculata, Feroniella obligata, Matthiola incana* var. *annua*, and *Toddalia asiatica* (CPC, 2001), and only the possibility of an extension of a host range may be inferred (Cave, 2000). However, the confirmed hosts of *X. axonopodis* pv. *citri* are members of a single plant family (Mabberly, 1998). For these reasons, the rating is Medium (2).

Risk Element 3: Dispersal

The documented evidence indicates that the primary modes for long distance dispersal of *X. axonopodis* pv. *citri* are the movement of infected or infested plant material, movement of inoculum on personnel, clothing or equipment and weather events such as thunderstorms and tropical storms (Gottwald *et al.*, 2001; Schubert *et al.*, 1998). The latter are responsible for dispersal of the bacteria from a few hundred meters to several miles (Stall *et al.*, 1980; Civerolo, 1981; Gottwald *et al.* 1992, 1997). Outbreaks of citrus canker have never been directly attributed to infested commercial shipments of citrus fruit (EPPO, 1997; Timmer *et al.*, 2000).

Within a tree, this bacterium is disseminated by rainwater running over the surfaces of lesions and splashing onto uninfected, unprotected shoots. The concentration of bacteria is largely dependent on the age of the lesions with a maximum of 100 million–1000 million cells/drop (CPC, 2001) or about 10^5 to 10^6 colony forming units (cfu) per ml in rainwater (Stall, 1980). The effective inoculum dose is estimated at somewhere between 10^2 and 10^3 cfu per ml (Schubert *et al.*, 1998). Based on this evidence, the rating for this pest is High (3).

Risk Element 4: Economic Impact

Rev. 02

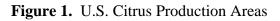
Citrus canker, under favorable conditions, causes defoliation, shoot dieback, and fruit drop (Timmer *et al.*, 2000). Development and maturity may be delayed by several years in severely infected, young trees (CPC, 2001). Although the internal quality of maturing fruit is not affected, fresh fruit with lesions is reduced in market value (EPPO, 1997; Timmer *et al.*, 2000). The disease is most serious in areas with temperatures between 14-38 C and rainfall greater than 1,000 mm per year) (EPPO, 1997). This bacterium is considered a quarantine pest by EPPO, NAPPO and most citrus producing countries (EPPO, 1997). The costs associated with eradication or management of the disease combined with the loss of export markets due to domestic and international quarantine would be expected to have a substantial economic impact. Based on this, the rating for this Risk Element is High (3).

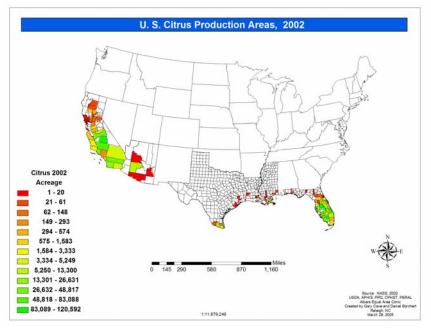
Risk Element 5: Environmental Impact

None of the hosts for *X. axonopodis* pv. *citri* corresponded to any genera on the Endangered Species List. Therefore, the rating for this Risk Element is Low (1).

Tuble 0. Risk Rulligs for the Consequences of Introduction Movement From Musku						
Pest	Climate/ Host	Host Range	Dispersal Potential	Economic Impact	Environmental Impact	Consequences of Introduction
Unaspis yanonensis	High	High	High	High	Low	High
	(3)	(3)	(3)	(3)	(1)	(13)
Xanthomonas	Medium	Medium (2)	High	High	Low	Medium
axonopodis pv. citri	(2)		(3)	(3)	(1)	(11)

Table 8. Risk Ratings for the Consequences of Introduction - Movement From Alaska


L. Likelihood of Introduction - Movement from Alaska into Other Areas of the U.S.


The analysis of factors to be considered for estimating the likelihood of introduction into States other than Alaska is substantially different than what is described above for import into Alaska only. The key difference is that movement is not via authorized imports but rather through the accidental misdirection of shipments or smuggling.

Since 1995, an estimated 24 million Korean Unshu oranges have been shipped to the United States. In that time, one air shipment of Unshu oranges from Korea was mistakenly redirected into a citrus producing State and was immediately re-exportated to a non-citrus producing State (Schwartz, 2002). The proposed export program into Alaska will prohibit the movement of fruit directly into States with suitable habitats for the introduction of the pests of concern, so it it not expected that whole shipments would be shipped to and distributed in citrus growing areas of the United States. Based on APHIS' past experience with similar programs for limited distribution, it is highly unlikely that whole shipments or containers of Korean Unshus would move from Alaska into other areas of the U.S. What is more likely is that a few fruit may move in passenger baggage or a few boxes may move as illegal cargo. This represents a tiny proportion of the total quantity imported.

It is estimated that under the current proposal, 10-100 40' containers would be shipped to Alaska each year (Table 5). By allowing imports to Alaska, the likelihood of fruit moving into other States with suitable habitats for pest establishment is increased. However, the distribution of host plants is limited (Fig. 1) and the likelihood that significant numbers of *U. yanonensis* and *X. axonopodis* pv. *citri* infested/infected fruit would be present in shipments and then move from Alaska to one of these areas is small. The small proportion of fruit that might move illegally from Alaska to a suitable habitat in the U.S. would need to have sufficient inoculum to be Rev. 02

infective and be in the vicinity of (or in contact with) host material at the right time and under the right combination of circumstances for the pests to establish.

Considering the very small number of fruit that might move to suitable habitats and the unlikely set of circumstances required for the establishment of the pests of concern, the likelihood for introduction via fruit misdirected from Alaska is <u>very low</u>.

M. Pest Risk Potential - Movement from Alaska into Other Areas of the U.S.

Although the likelihood of introduction for either pest is very low, the consequences are significant enough to justify measures to reduce the probability that the unauthorized movement of fruit would be a pathway for introduction.

III. Pest Risk Management

Pest risk management is the process used to identify and evaluate options for mitigating the risk of introduction of a quarantine pest (IPPC 2004a, b). The reduction of phytosanitary risk occurs through the use of mitigation measures that eliminate, reduce, or prevent the presence of pest populations within shipments of commodities primarily in the country of origin. In this case, the pest risk management aspect of the analysis is to evaluate measures proposed by Korea.

The risk mitigation measures proposed by Korea are: (1) the use of a field pest control program and cultural practices to reduce pests in the groves; (2) packing house selection (culling) to remove fruit with pests (including fruit with symptoms or damage that could harbor disease); (3) a visual inspection of 2% of fruit in each shipment; (4) phytosanitary certification; (5) shipment safeguards (especially labeling); and (6) port of arrival inspection.

Boxes will be stamped with "distribution limited to Alaska", and shipments will be accompanied by a phytosanitary certificate that includes an additional declaration stating that the shipment

was inspected and found free of citrus canker. As a general requirement, imported fruit must also be free of leaves and soil and the origin of the fruit identified by stamps or labels on individual shipping boxes.

The effect of phytosanitary measures proposed by Korea is to substantially reduce the likelihood that the pests of concern will be associated with shipments to Alaska. As discussed above, the pests of concern pose no threat to Alaska. However, account is also taken of the potential for the unauthorized movement of fruit from Alaska into other States. This possibility increases the likelihood that the pests of concern can move into suitable habitats for establishment. The proposal by Korea includes a range of mitigation measures designed to reduce this likelihood by substantially reducing the likelihood that fruit will carry the pests of concern.

A key element of this approach is the combination of inspections designed to remove fruit that are infested with insects or have symptoms or injuries that could harbor citrus canker and ensure that only the highest quality fruit is shipped. Although any program based on inspection cannot be 100% effective, these measures can be expected to greatly reduce the potential for the pests of concern to be present in shipments to Alaska, thereby substantially reducing the already low risk associated with the potential for unauthorized movement of some fruit to other States.

IV. Primary authors:

Gary L. Cave, Ph.D., Entomologist Scott C. Redlin, Ph.D., Plant Pathologist

Reviewed and modified by Robert Griffin, PERAL Laboratory Director

V. Literature Cited

Agrios, G. N. 1997. Plant pathology, 4th ed. Academic Press, CA.

Alfieri, S. A., Langdon, K. R., Kimbrough, J. W., El-Gholl, N. E. and C. Wehlburg. 1994. Diseases and disorders of plants in Florida, Bull. No. 14. Dept. Agric. Consumer Serv., FL.

Alverson, D. R. and R. K. Allen. 1992. Bionomics of the crape myrtle aphid (Homoptera: Aphididae). J. Entomol. Sci. 27(4): 445-457.

An, K. W. 2000. Letter from Kwang-Wook An to Rob Tanaka (on file with the USDA, APHIS, PPQ, subject: Survey Results, List of Citrus Insect Pests Found in 1996-1998 survey).

Anon. 1984. Distribution of plant parasitic nematode species in North America. Soc. Nematol.

Anon. 1986. List of plant diseases, insect pests and weeds in Korea. Korean Soc. Plant Protec.

Anon. 1990. The list of major pests and diseases known to occur on citrus in Korea. Ministry Agric. Forestry Fisheries, Korea.

Anon. 1991. Integrated Pest Management for Citrus, 2ed. Pub. No. 3303, Univ. Calif.

Anon. 1993. List of citrus pests and diseases in Cheju Island. National Plant Quarantine Service Korea.

Anon. 1994. Check list of insects from Korea. Ent. Soc. Korea. Kon-Kuk Univ. Press.

Anon. 1997. Pests and organisms of concern. Korean mandarin work plan. MAF/NPQS-USDA, APHIS.

Anon. 1998a. Data sheet, Korean citrus pests. National. Plant Quarantine Service Korea.

Anon. 1998b. List of plant diseases in Korea, 3ed. Korean Soc. Plant Pathol.

APHIS. 2002. Fruit and Vegetables Manual and the Airport and Maritime Operations Manual. USDA, APHIS, PPQ <u>http://www.aphis.usda.gov/plant health/manuals/pdf</u>

AQIM. 1998. Agricultural Quarantine Inspection Monitoring. USDA, APHIS, PPQ.

Avidov, Z. and I. Harpaz. 1969. Plant pests of Israel. Israel Universities Press, Israel.

Bai, D. H. 1977. Study on the storage diseases control of cold damaged mandarin. Korean J. Plant Protec., 16(4): 245-247.

Baker, E. W. and D. M. Tuttle. 1994. Guide to the spider mites (Tetranychidae) of the United States. Indira Publishing. House.

Banks, J. N., Collins, D. W., Rizvi, R. H. and B. J. Northway. 1996. Immunochemical studies for the development of a rapid assay against *Thrips palmi*. *In*: Pests and Diseases, Proc.

International. Conf., Brighton, United Kingdom 3: 1053-1058.

Banzinger, H. 1982. Fruit-piercing moths (Lep., Noctuidae) in Thailand: General survey and some new perspectives. Bull. Entomologique Suisse 55: 213-240.

Ben-Dov, Y. 1993. Systematic catalogue of the soft scale insects of the world, Flora Fauna Handbook #9. SandHill Crane Press, Inc.

Bier, V. M. 1999. Challenges to the acceptance of probabilistic risk analysis. Risk Analysis 19(4): 703-710.

Blackman, R. L. and V. F. Eastop. 1984. Aphids on the world's crops, an identification guide. John Wiley and Sons, NY.

Blackman, R. L. and V. F. Eastop. 1994. Aphids on the world's trees, an identification and information guide. John Wiley and Sons, NY.

Bradbury, J. F. 1986. Guide to plant pathogenic bacteria. CAB International., Mycol. Inst., United Kingdom.

Brunt, A.; Crabtree, K.; Dallwitz, M.; Gibbs, A. and L. Watson. 1995. Viruses of plants, descriptions and lists from the VIDE database. CAB International., Wallingford and Univ. Press, United Kingdom.

Cargo Systems. 2001. Container Shipping. Informa, United Kingdom http://www.containershipping.com.

Cave, G. L. and J. Lightfield. 1994. Importation of Pears from China into the United States. USDA, APHIS, PPQ.

Cave, G. L. 2000. Quarantines and regulations, pest risk analysis and international trade. *In*: Rechcigl, J. E. and N. A. Rechcigl (eds). Insect Pest Management, Techniques for Environmental Protection. Lewis Pubs., FL.

Childers, C. C. and J. L. Knapp. 2001. Florida citrus pest management guide: Flower and orchid thrips. Univ. Florida, Inst. Food Agric. Sci., FL Coop. Extension Serv. <u>http://edis.ifas.ufl.edu/</u>

Cho, N. G. 1995. Letter from Nam-Gil Cho, Director, International Quarantine Cooperation Division, Korean National Plant Quarantine Service to Ray Miyamoto, APHIS Attache, United States Embassy, Seoul, Korea (on file with USDA, APHIS, PPQ, subject: modification of the workplan for Korean Mandarin Workplan to allow importation into citrus producing States).

Cho, K., Kang, S. H. and G. S. Lee. 2000. Spatial distribution and sampling plans for *Thrips palmi* (Thysanoptera: Thripidae) infesting fall potato in Korea. J. Econ. Entomol. 93: 503-510. CIE. 1978. *Euproctis similis* (Fuessly) Distribution maps of pests, Series A, Map 388, Commonwealth Inst. Entomol.

CIE. 1980. *Sogatella furcifera* (Horvath) Distribution Maps of Pests, Series A, Map 200, Commonwealth Inst. Entomol.

CIE. 1982. *Ceroplastes floridens* (Comstock) Distribution Maps of Pests, Series A, Map 440, Commonwealth Inst. Entomol.

CIE. 1984. *Macrosiphum euphorbiae* (Thomas) Distribution Maps of Pests, Series A, Map 44, Commonwealth Inst. Entomol.

Civerolo, E. L. 1981. Citrus bacterial canker disease: An overview. Proc. Int'l Soc. Citriculture I: 390-394.

Civerolo, E. L. 1995. Personal communication, subject: citrus canker movement on citrus fruit.

Civerolo, E. L. 2002. Personal communication, notes on file with Gary Cave. Subject: levels of citrus canker bacteria associated with asymptomatic fruit.

Clausen, C. P. 1931. Insects injurious to agriculture in Japan, Circ. No. 168, USDA.

CMI. 1974. Descriptions of pathogenic fungi and bacteria No. 410. *Corticium rolfsii*. Commonwealth Agric. Bureaux, United Kingdom.

CMI. 1985. Distribution maps of plant diseases No. 273. *Ascochyta pisi*. Commonwealth Agric. Bureaux, United Kingdom.

CMI. 1986. Distribution maps of plant diseases. No. 125. *Elsinoë fawcetti*. Commonwealth Agric. Bureaux, United Kingdom.

CMI. 1987. Distribution maps of plant diseases. No. 306. *Rosellinia necatrix*. Commonwealth Agric. Bureaux, United Kingdom.

CMI. 1990. Distribution maps of plant diseases. No. 53, 6ed. *Guignardia citricarpa* Commonwealth Mycol. Inst. United Kingdom.

CMI. 1992. Distribution maps of plant diseases. No. 311. *Corticium rolfsii*. Commonwealth Agric. Bureaux, United Kingdom.

CPC. 2001. Crop Protection Compendium Database. CAB International., United Kingdom.

Deckle, G. W. 1976. Black parlatoria scale, *Parlatoria ziziphi* (Lucas) (Homoptera: Diaspididae). Entomology Circ., Divis. Plant Industry, Dept. Agric. Consumer Serv., FL 171: 2.

Denmark, H. A. 1962. *Aculus pelekassi* Keifer, another citrus mite in Florida. Proc. Florida State Hort. Soc. 75: 25-27.

Dixon, W. N., Thomas, M. C., Schubert, T. S. and R. P. Esser. 1995. List of Organisms recorded in Florida as Pests of Citrus (*Citrus* sp.). Unpublished letter, 10 Oct. 1995, on file

USDA, APHIS, PPQ.

Duffy, E. J. 1968. Monograph of the immature stages of oriental timber beetles (Cerambycidae). Publ. No. 667. British Museum Natural History, United Kingdom.

Ebeling, W. 1959. Subtropical Fruit Pests. Divis. Agric. Sci., Univ. Calif.

EPPO. 1996. Plant quarantine retrieval system, ver. 3.3. European Plant Protection Organization, France.

EPPO. 1997. Quarantine pests for Europe, 2ed. CAB International., United Kingdom.

FAO. 1990. Occurrence of palm thrips, *Thrips palmi* Karny, in Saint Lucia and further spread in the Caribbean. FAO Plant Protec. Bull. 38(2): 114.

Farr, D. F. Bills, G. F., Chamuris, G. P. and A. Y. Rossman. 1989. Fungi on Plants and Plant Products in the United States. American Phytopathol. Soc., MN.

Floridata. 2000. Plant Profile: Citrus reticulata. www.floridata.com.

Gadh, P. 2002. Letter from Paul Gadh, Import/Interstate Services (Asia), USDA, APHIS, PPQ to Gary Cave, Team Leader, USDA, APHIS, PPQ, CPHST-PERAL (on file with the USDA, APHIS, PPQ, subject: answers to PRA questions).

Gallegos, D. P. and E. J. Bonano. 1993. Consideration of uncertainty in the performance assessment of radioactive waste disposal from an international regulatory perspective. Reliab. Eng. System Safety 42: 111-123.

Gill, R. J. 1988. Scale Insects of California. Soft Scales (part 1). Dept. Food Agric., CA.

Goto, M., Toyoshima, A. and S. Tanaka. 1978. Studies on saprophytic survival of *Xanthomonas citri* (Hasse) Dowson. III. Inoculum density of the bacterium surviving in saprophytic form. Annual Phytopathol. Soc. Japan 44: 197-201.

Gottwald, T. R. 2001. Letter from Tim R. Gottwald, Research Leader, USDA, ARS, USHRL to Eileen Sutker, Ecologist, USDA, APHIS, PPQ, CPHST-PERAL (on file with the USDA, APHIS, PPQ, subject: supporting the proposed ELISA testing method for citrus canker detection).

Gottwald, T. R., Hughes, G.; Graham, J. H., Sun, X. and T. Riley. 2001. Citrus canker epidemic in Florida: Scientific basis of regulatory eradication policy for an invasive species. Phytopathology 91: 30-34.

Gottwald, T. R., Graham, J. H. and T. S. Schubert. 1997. Epidemiological analysis of the spread of citrus canker in urban Miami, Florida, and the synergistic interaction with the Asian citrus leaf miner. Fruits 52: 371-378.

Gottwald, T. R., Graham, J. H. and D. S. Egel. 1992. Analysis of foci of Asiatic citrus canker in a Florida citrus orchard. Plant Disease 76: 389-396.

Graham, J. H. and T. G. Gottwald. 1991. Research perspectives on eradication of citrus bacterial diseases in Florida. Plant Disease 75: 1193-1200.

Graham, J. H., McGuire, R. G. and J. W. Miller. 1987. Survival of *Xanthomonas campestris* pv. *citri* in citrus plant debris and soil in Florida and Argentina. Plant Disease 71: 1094-1098.

Gunn, C. R. and C. Ritchie. 1982. Report of the Technical Committee to Evaluate Noxious Weeds; Exotic Weeds for Federal Noxious Weed Act (unpublished).

Hamon, A. B. and M. L. Williams. 1984. Arthropods of Florida and Neighboring Land Areas, vol. 11. Soft Scale Insects of Florida (Homoptera: Coccoidea: Coccidae). Divis. Plant Industry, Dept. Agric. Consumer Serv., FL.

Hartung, J. 2001. Letter from John Hartung, USDA, ARS, Fruit Laboratory, Plant Sciences Institute, to Edwin Imai, USDA, APHIS, PPQ (on file with the USDA, APHIS, PPQ, subject: supporting Korean proposal to export citrus fruit using ELISA testing provided that a 48 hour incubation period is used instead of the proposed 24 hour period).

Henry, T. J. and R. C. Froeschner. 1988. Catalog of the Heteroptera or True Bugs of Canada and the Continental United States. E. J. Brill, Pub.

Hill, D. S. 1983. Agricultural Insect Pests of the Tropics and Their Control. Cambridge Univ. Press, United Kingdom.

Holm, L., Doll, J., Holm, E., Pancho, J. and J. Herberger. 1997. World weeds. Natural Histories and Distribution. John Wiley and Sons, NY.

Holm, L. G., Pancho, J. V., Herberger, J. P. and D. L. Plucknett. 1979. Geographical Atlas of World Weeds. John Wiley and Sons, NY.

Holm, L. G., Plucknett D. L., Pancho., J. V. and J. P. Herberger. 1977. The World's Worst Weeds. Univ. Hawaii Press, HI.

Hong, S. Y, Kim, W.G. and Y. H. Lee. 1991. Fungi associated with storage disease of citrus fruits. Research Reports Rural Development Admin., Crop Protection 33: 12-17.

IIE. 1987. Distribution Maps of Pests, No. 490, *Agrotis segetum*. CAB International, United Kingdom.

IIE. 1996. Distribution Maps of Pests, No. 31, *Panonychus ulmi*. CAB International, United Kingdom.

INKTO #19. 1957. Insects Not Known To Occur in the United States or of Limited Distribution: Yellow Peach Moth (*Dichocrocis punctiferalis*). Coop. Economic Insect Report, USDA, ARS 7: 18-19.

INKTO #25. 1957. Insects Not Known To Occur in the United States or of Limited Rev. 02 December, 2006 Distribution: Turnip Moth (*Agrotis segetum*). Coop. Economic Insect Report, USDA, ARS 7: 16-17.

INKTO #65. 1958. Insects Not Known To Occur in the United States or of Limited Distribution: Citrus Leaf Miner (*Phyllocnistis citrella*). Coop. Economic Insect Report, USDA, ARS 8: 35-36.

INKTO #149. 1962. Insects Not Known To Occur in the United States or of Limited Distribution: Black-veined White Butterfly (*Aporia crataegi*). Coop. Economic Insect Report, USDA, ARS 12: 1280-1282.

IPPC. 2004a. ISPM # 05: Glossary of phytosanitary terms . FAO, Rome.

IPPC. 2004b. ISPM # 11: Pest risk analysis for quarantine pests including analysis of environmental risks and living modified organisms. FAO, Rome.

Irwin, S. 1998. APHIS-PPQ Officer Preclearance Trip Report (on file with the USDA, APHIS, PPQ subject: effective use of a tarp to control pest entry into a shipment of harvested fruit).

Ishikawa, S. S. 1997. APHIS-PPQ Officer Preclearance Trip Report (on file with the USDA, APHIS, PPQ subjects: effective packing house practices for pest control, and rejection of a lot [H-11] based on finding of citrus canker).

Jeppson, L. R., Keifer, H. H. and E. W. Baker. 1975. Mites Injurious to Economic Plants. Univ. Calif. Press, CA.

Johnston, A. and C. Booth (eds). 1983. Plant Pathologist's Pocketbook, 2ed. CAB International, United Kingdom.

Kajita, H., Hirose, Y., Takagi, M., Okajima, S. and B. Napompeth. 1996. Host plants and abundance of *Thrips palmi* Karny (Thysanoptera: Thripidae), an important pest of vegetables in Southeast Asia. Appl. Entomol. Zool. 31 (1): 87-94.

Kaplan, S. 1992. 'Expert information'versus 'expert opinions.' Another approach to the problem of elicting/combining/using expert knowledge in PRA. Reliab. Eng. System Safety 35: 61-72.

Kawai, A. 1990. Life Cycle and Population Dynamics of *Thrips palmi* Karny. Japan Agric. Research Quarterly 23: 282-288. Knorr, L. C. 1973. Citrus Diseases and Disorders. Univ. Florida, FL.

Kosztarab, M. and F. Kozar. 1988. Scale Insects of Central Europe. Dr W. Junk Publishers.

Koziumi, M. 1972. Studies on the symptoms of citrus canker formed on Satsuma mandarin fruit and existence of causal bacteria in the affected tissues, ser. B. Bull. Hort. Res. Sta., Japan, 12: 229-244.

Kranz, J.; Schmutterer, H. and W. Koch. 1977. Diseases, Pests and Weeds in Tropical Crops. John Wiley and Sons.

Layland, J. K., Upton, M. and H. H. Brown. 1994. Monitoring and Identification of *Thrips palmi* Karny (Thysanoptera: Thripidae). J. Australian Entomol. Soc. 33: 169-173.

Lee, R. E. and D. L. Denlinger (eds). 1991. Insects at Low Temperature. Chapman and Hall.

Lee, C.; Kim, S. and D. Kim. 1992. Observation of insect pests on the citron trees in southern region of Korea. Korean J. Entomol. 22(3): 223-226.

Li-zhong, H. 2000. List of Chinese Insects, vol. 1. Zhongshan Univ. Press, China.

Mabberly, D. J. 1998. Plant Book, 2ed. Cambridge Univ. Press, NY.

Martin, J. L. and R. F. L. Mau. 1992. Crop Knowledge Master: *Thrips palmi* (Karny). Univ. Hawaii Extension Entomol. UH-CTAHR Integrated Pest Mgmt. Program <u>http://www.extento.hawaii.edu</u>.

McKenzie, H. L. 1967. Mealybugs of California: with Taxonomy, Biology, and Control of North American Species (Homoptera: Coccoidea: Pseudococcidae). Univ. Calif. Press, CA.

McOnie, K. C. 1964. Latent occurrence in citrus and other hosts of a *Guignardia* easily confused with *G. citricarpa*, the citrus black spot pathogen. Phytopathology 54: 40-43.

McOnie, K. C. 1967. Personal communication to E. C. Calavan.

Metcalf, R. L. and R. A. Metcalf. 1993. Destructive and Useful Insects: Their Habits and Control, 5ed. McGraw-Hill, Inc., NY.

Miller, D. R. 1985. Letter from Douglass R. Miller, Research Leader, Systematic Entomology Laboratory, USDA, ARS to Charles E. Miller, Staff Specialist, Biological Assessment Support Staff, USDA ,APHIS (on file with the USDA, APHIS, PPQ, subject of the attached report: Pest risk assessment of armored scales on certain fruit).

Morgan, M. G. and M. Henrion. 1990. Uncertainty. Cambridge Univ. Press, United Kingdom.

Nagalingam, B. 1981. Occurrence of two polyphagous lepidopterous pests on sweet orange (*Citrus sinensis* (L.) Osbeck) in Andhra Pradesh. Science and Culture 47: 11, 408-409. Nakahara, S. 1982. Checklist of the Armored Scales (Homoptera: Diaspididae) of the Conterminous United States. USDA, APHIS, PPQ.

Nakahara, L. M. 1984. New State Record: *Thrips palmi* Karny. Hawaii Pest Report, Hawaii Dept. Agr. 4(1): 1-5.

NASS. 1997. Census of agriculture. USDA National Agricultural Statistics Service. <u>http://nass.usda.gov/census/census97/atlas97/map295</u>.

NASS. 2005. Citrus Fruits, 2005 Summary, Fr Nt 3-1 (05). USDA National Agricultural Rev. 02 December, 2006 Statistics Service.

Navajas, M., Gutierrez, J., Williams, M. and T. Gotoh. 2001. Synonymy between two spider mite species, *Tetranychus kanzawai* and *T. hydrangeae* (Acari: Tetranychidae), shown by ribosomal ITS2 sequences and cross-breeding experiments. Bull. Entomol. Research 91: 117-123.

NPQS. 1998. Data Sheet Korean Citrus Pests. National Plant Quarantine Serv., Korea.

NRCS. 2001. National PLANTS database. Natural Resources Conserv. Serv. USDA <u>http://plants.usda.gov/plants/plantmenu</u>

Obata, T.; Tsuboi, F. and S. Wakimoto. 1969. Studies on the detection of *Xanthomonas citri* by phage technique and the surface sterilization of Unshu orange for export to the United States. Res. Bull. Plant Protec. Japan 7: 26-37.

Okamura, J. K. and R. M. Davis. 1987. Latent and saprophytic fungal infections of grapefruit in south Texas. Texas J. Agric. Natural Res. 1: 19-20.

Onions, A. H. S. 1966. Descriptions of Pathogenic Fungi and Bacteria: *Aspergillus niger*, No. 94. Commonwealth Mycol. Instit., United Kingdom.

Paull, R. E. and J. W. Armstrong (eds). 1994. Insect Pests and Fresh Horticultural Products: Treatments and Responses. CAB International, UK.

Park, B. W. 2001. Letter from Byung-Won Park, Director, International Quarantine Cooperation Division, NPQS to Alan Green, Assistant Deputy Administrator, USDA, APHIS, PPQ (on file with USDA, APHIS, PPQ subject: proposing citrus canker detection by ELISA instead of a bacteriophage testing and attaching: Jin, *et al.* New Detection Method of *Xanthomonas axonopodis* pv. *citri* on citrus fruits [unpublished paper demonstrating efficacy of both bacteriophage testing methodology and ELISA testing).

PIN 309. PPQ Pest Information Network Database. USDA, APHIS, PPQ.

PNKTO #14. 1982. Pests Not Known To Occur in the United States or of Limited Distribution: Orange Spiny Whitefly (*Aleurocanthus spiniferus*). USDA, APHIS, PPQ.

PNKTO #24. 1982. Pests Not Known To Occur in the United States or of Limited Distribution: Rice Cutworm (*Spodoptera litura*). USDA, APHIS, PPQ.

PNKTO #27. 1983. Pests Not Known To Occur in the United States or of Limited Distribution: Citrus Canker (*Xanthomonas campestris* pv. *citri*). USDA, APHIS, PPQ.

PNKTO #44. 1984. Pests Not Known To Occur in the United States or of Limited Distribution: Black Parlatoria Scale (*Parlatoria ziziphi*). USDA, APHIS, PPQ.

PNKTO #45. 1984. Pests Not Known To Occur in the United States or of Limited Distribution: Rev. 02 December, 2006 Arrowhead Scale (Unaspis yanonensis). USDA, APHIS, PPQ.

PNKTO #75. 1986. Pests Not Known To Occur in the United States or of Limited Distribution: Silver Y Moth (*Autographa gamma*). USDA, APHIS, PPQ.

Poole, R. W. 1989. Lepidopterorum Catalogus, Fascicle 118, Noctuidae (part 2). E. J. Brill/Flora Fauna Publications, NY.

PPQ. 2000. Guidelines for Pathway-Initiated Pest Risk Assessments, version 5.01. USDA, APHIS, PPQ.

Redlin, S. 2002. Letter from Scott Redlin to Eileen Sutker (on file with the USDA, APHIS, PPQ, subject: observation of bacterial canker in 1992 at a vending stand).

Reed, C. 1998. Letter from Craig Reed, Administrator, Animal and Plant Health Inspection Service to Dan Glickman, Secretary of Agriculture (on file with the USDA, APHIS, PPQ).

Reed, C. F. 1977. Economically Important Foreign Weeds, Agric. Handbk No. 498.

Reuther, W., Calavan, E. C. and G. E. Carman. (eds). 1978. Citrus Industry, vol. IV. Univ. Calif., CA.

Robinson, D. 2002. Personal communication, (subject: inability of large snails to remain associated with citrus fruit during hand-packing procedures).

Roman, J. 2000. PPQ Officer Site Visit Trip Report (on file with the USDA, APHIS, PPQ subject: good compliance with program procedures observed).

Rosen, D. 1990. Armored Scale Insects Their Biology, Natural Enemies and Control, vol. A. Elsevier, Netherlands.

Santacroce, N. 1993. Korean Technical Packet-Preclearance inspection guide for the detection and quarantine action for important pests (part II: Citrus). USDA, APHIS, PPQ. Schubert, T. S., Rizvi, S. A., Sun, X., Gottwald, T. R., Graham, J. H. and W. N. Dixon. 2001. Meeting the Challenge of Eradicating Citrus Canker in Florida-Again. Plant Disease 85: 340-356.

Schubert, T. S., Miller, J. W., Dixon, W. N., Gottwald, T. R., Graham, J. R., Hebb, L. H. and S. R. Poe. 1998. Bacterial Citrus Canker and the Commercial Movement of Fresh Citrus Fruit: Assessment of the risks of fresh citrus fruit movement relative to the spread of bacterial citrus canker (*Xanthomonas axonopodis* pv. *citri*). Report prepared for the Citrus Canker Risk Assessment Groups for Manatee County, Collier County and Miami/Dade and Broward Counties, Dept. Agric. Consumer Serv., FL.

Schwartz, J. N. 2002. Letter from James N. Schwartz to Jeffrey J. Grode (on file with USDA, APHIS, PPQ, subject: diversion of a shipment of Unshu oranges from the State of Washington to San Francisco, California).

Seizo, K. K. 1966. List of Important Diseases and Pests of Economic Plants in Japan. Nihon Tokushu Noyaku, Japan.

Sekiguchi, K. 1974. Morphology, biology, and control of the yellow peach moth *Dichocrocis punctiferalis* Guenee (Lepidoptera: Pyraustidae). Ibaraki-Ken Hortic. Exper. Station, Japan 86-88.

Shiraki, T. 1952. Catalogue of Injurious Insect in Japan (Exclusive of Animal Parasites). General Headquarters, Supreme Commander for Allied Powers, Japan 7(71).

Stall, R. E., Miller, J. W., Marco, G. M. and B. I. C. deEchenique. 1980. Population dynamics of *Xanthomonas citri* causing cancrosis of citrus in Argentina. Proc. Florida Hort. Soc. 93: 10-14.

Steel, R.G.D. and J.H. Torrie. 1980. Principles and procedures of statistics. McGraw Hill Book Co. NY. 633 pages.

Stehr, F. W. 1991. Immature Insects, vol. 2. Kendall/Hunt Publishing Company.

Stevens, R. B. 1960. Cultural practices in disease control. *In*: Horsfall, J. G. and A. Dimond (eds). Plant pathology, an advanced treatise 3: 367-429 Academic Press, NY.

Stoetzel, M. B. 1994. Aphids (Homoptera: Aphididae) of Potential Importance on Citrus in the United States with Illustrated Keys to Species. Proc. Entomol. Soc. Wash. 96(1): 74-90.

Suggs, E. 1997. APHIS, PPQ Officer Preclearance Trip Report (on file with the USDA, APHIS, PPQ, subjects: effective packing house practices for pest control).

Sutton, B. C. and J. C. Waterston. 1966. Descriptions of Pathogenic Fungi and Bacteria, no. 85. *Guignardia citricarpa*. Commonwealth Mycol. Instit., United Kingdom.

Syoziro, A.; Tamotsu, I. and Y. Keizo (eds). 1965. Iconographia Insectorum Japonicum, vol. III. Colore Naturali Edita, Japan.

Thaw, J. 1997. Letter from John Thaw to Dennis Hannapel (on file with the USDA, APHIS, PPQ, subject: Korean citrus pests needing further data, information on pest status of Korean mandarin oranges).

Timmer, L. W., Zitko, S. E and T. R. Gottwald. 1996. Population dynamics of *Xanthomonas campestris* pv. *citri* on symptomatic and asymptomatic citrus leaves under various environmental conditions. Proc. Internat. Soc. Citriculture. 1: 448-451.

Timmer, L. W., Garnsey, S. M. and J. H. Graham. 2000. Compendium of Citrus Diseases, 2ed. APS Press, American Phytopathol. Soc., MN.

Tollett, D. 1999. PPQ Officer Site Visit Trip Report (on file with the USDA, APHIS, PPQ Rev. 02 December, 2006 subject: pesticide residue testing led to rejection of fruit).

Tsai, J. H., Yue, B., Webb, S., Funderburk, J. E. and H. T. Hsu. 1995. Effects of host plant and temperature on growth and reproduction of *Thrips palmi* (Thysanoptera: Thripidae). Environ. Entomol. 24(6): 1598-1603.

USDA. 1985. Citrus Bacterial Canker Disease. USDA, APHIS, PPQ and Dept. Agric. Consumer Serv., FL and Coop. Extension Serv., FL.

USDA. 1993. Country Packet for Korea. International Services, APHIS, USDA.

USDA. 1990. Plant Hardiness Zone Map. USDA Misc. Publ. No. 1475, USDA, ARS.

USDA. 1997. Korean Mandarin Work Plan. USDA, APHIS, PPQ.

Van der Plank, J. E. 1963. Plant Diseases: Epidemics and Control. Academic Press, NY.

Vierbergen, G. 1995. International movement, detection, and quarantine of thysanoptera pests, ser. A, Life Science. Netherlands Plant Protec. Serv. 276: 119-132.

Wunderlin, R. P. and B. Hansen. 2001. Atlas of Florida Vascular Plants online database, Univ. Southern Florida Instit. Systematic Botany, <u>http://www.plantatlas.usf.edu</u>.

WSSA. 1989. Composite List of Weeds. Weed Science Soc. America.

Yoon, J. K. and D. K. Lee. 1974. Survey of fruit-piercing moths in Korea (1) species of the fruit-piercing moths and their damage. Korean J. Plant Protec. 13(4): 217-225.

Zhang, B. C. 1994. Index of Economically Important Lepidoptera. CAB International, United Kingdom.

Appendix A. Pest Interceptions on *Citrus* spp. from the Republic of Korea as reported in the PPQ Pest Interception Database from 1985 to 2001.

PEST	HOST	WHERE	TOTAL
Acarina	Citrus reticulata	Permit cargo	1
Aleurolobus marlatti	Citrus sp. (Leaf)	Baggage	1
Ascochyta citri	Citrus sinensis (Fruit)	Baggage	1
Aulacaspis tubercularis	Citrus aurantifolia (Fruit)	Baggage	1
Bradybaenidae sp.	Citrus reticulata	Permit cargo	1
Chrysomphalus pinnulifer	Citrus reticulata	Stores	1
Cladosporium sp.	Citrus sp. (Fruit)	Baggage	2
Coccidae, species of	Citrus sp.	Baggage	1
Colletotrichum sp.	Citrus sp.	Baggage	1
Diaspididae, species of	Citrus sinensis (Fruit)	Baggage	1
Diaspididae, species of	Citrus reticulata (Fruit)	Baggage	1
Diaspididae, species of	Citrus sp. (Fruit)	Stores	3
Elsinoë australis	Citrus reticulata. (Fruit)	Baggage	1
Elsinoë australis	Citrus sp. (Fruit)	Baggage	1
Elsinoë sp.	Citrus reticulata (Fruit)	Baggage	1
Elsinoë sp.	Citrus sp. (Fruit)	Baggage	1
Guignardia citricarpa	Citrus limon (Fruit)	Stores	1
Guignardia citricarpa	Citrus paradisi (Fruit)	Stores	1
Guignardia citricarpa	Citrus reticulata (Fruit)	Baggage	5
Guignardia citricarpa	Citrus sinensis (Dried Fruit)	Baggage	2
Guignardia citricarpa	Citrus sinensis (Fruit)	Baggage	6
Guignardia citricarpa	Citrus sinensis (Fruit)	Stores	4
Guignardia citricarpa	Citrus sp. (Dried Fruit)	Baggage	2
Guignardia citricarpa	Citrus sp. (Dried Fruit)	Mail	1
Guignardia citricarpa	Citrus sp. (Fruit)	Baggage	29
Guignardia citricarpa	Citrus sp. (Fruit)	Quarters	1
Guignardia citricarpa	Citrus sp. (Leaf)	Baggage	3
Guignardia citricarpa	Citrus sp. (Seed)	Mail	1
Insecta, species of	Citrus aurantifolia	Permit cargo	1
Insecta, species of	Citrus reticulata	Permit cargo	1
Longitarsus sp.	Citrus reticulata	Permit cargo	1
Microsphaeropsis sp.	Citrus sp. (Leaf)	Baggage	1
Nezara antennata	Citrus reticulata (Fruit)	Permit cargo	1
Parlatoria citri	Citrus amblycarpa	Baggage	1
Parlatoria ziziphi	Citrus aurantifolia (Fruit)	Baggage	2
Parlatoria ziziphi	Citrus aurantifolia (Leaf)	Baggage	1
Parlatoria ziziphi	Citrus limon (Fruit)	Baggage	2
Parlatoria ziziphi	Citrus paradisi (Fruit)	Baggage	2
Parlatoria ziziphi	Citrus reticulata	Baggage	1

December, 2006

PEST	HOST	WHERE	TOTAL
Parlatoria ziziphi	Citrus reticulata (Fruit)	Baggage	4
Parlatoria ziziphi	Citrus reticulata (Fruit)	Quarters	2
Parlatoria ziziphi	Citrus sinensis (Fruit)	Baggage	3
Parlatoria ziziphi	Citrus sinensis (Leaf)	Baggage	1
Parlatoria ziziphi	Citrus sinensis	Baggage	1
Parlatoria ziziphi	Citrus sp. (Fruit)	Baggage	12
Parlatoria ziziphi	Citrus sp. (Fruit)	Stores	1
Parlatoria ziziphi	Citrus sp. (Leaf)	Baggage	20
Parlatoria ziziphi	Citrus sp.	Baggage	4
Phyllosticta citricarpa	Citrus aurantium	Baggage	1
Phyllosticta citricarpa	Citrus sp. (Dried Fruit)	Mail	1
Phyllosticta citricarpa	Citrus sp. (Fruit)	Baggage	14
Phyllosticta citricarpa	Citrus sp. (Fruit)	Mail	3
Phyllosticta citricarpa	Citrus reticulata (Fruit)	Baggage	2
Pseudaonidia trilobitiformis	Citrus paradisi (Fruit)	Baggage	1
Pseudococcidae, species of	Citrus reticulata	Permit cargo	1
Pseudococcidae, species of	Citrus sinensis (Fruit)	Baggage	1
Pseudococcidae, species of	Citrus sp. (Fruit)	Baggage	2
Pseudococcidae, species of	Citrus sp. (Fruit)	Cargo	1
Pseudococcidae, species of	Citrus sp.	Baggage	2
Pyraustinae, species of	Citrus sp. (Fruit)	Baggage	1
Tarsonemus sp.	Citrus reticulata (Fruit)	Permit cargo	2
Unaspis yanonensis	Citrus maxima (Fruit)	Baggage	1
Unaspis yanonensis	Citrus paradisi (Fruit)	Baggage	1
Unaspis yanonensis	Citrus reticulata (Fruit)	Baggage	6
Unaspis yanonensis	Citrus reticulata (Fruit)	Quarters	2
Unaspis yanonensis	Citrus reticulata	Baggage	1
Unaspis yanonensis	Citrus sinensis (Fruit)	Baggage	2
Unaspis yanonensis	Citrus sp. (Fruit)	Baggage	20
Unaspis yanonensis	Citrus sp.	Baggage	1
Utetheisa pulchella	Citrus sp. (Fruit)	Baggage	1
Xanthomonas axonopodis pv.citri	Citrus aurantiifolia (Fruit)	Baggage	1
Xanthomonas axonopodis pv.citri	Citrus aurantiifolia (Fruit)	Stores	2
Xanthomonas axonopodis pv.citri	Citrus hystrix (Fruit)	Baggage	1
Xanthomonas axonopodis pv.citri	Citrus hystrix	Baggage	1
Xanthomonas axonopodis pv.citri	Citrus limon (Fruit)	Baggage	5
Xanthomonas axonopodis pv.citri	Citrus limon (Fruit)	Mail	1
Xanthomonas axonopodis pv.citri	Citrus limon	Stores	1
Xanthomonas axonopodis pv.citri	Citrus paradisi (Fruit)	Baggage	1
Xanthomonas axonopodis pv.citri	Citrus reticulata (Dried Fruit)	Baggage	1
Xanthomonas axonopodis pv.citri	Citrus reticulata (Fruit)	Baggage	30
Xanthomonas axonopodis pv.citri	Citrus reticulata (Fruit)	Permit cargo	

Rev. 02

December, 2006

PEST	HOST	WHERE	TOTAL
			2
Xanthomonas axonopodis pv.citri	Citrus reticulata (Fruit)	Stores	2
Xanthomonas axonopodis pv.citri	Citrus sinensis (Dried Fruit)	Baggage	3
Xanthomonas axonopodis pv.citri	Citrus sinensis (Dried Fruit)	Cargo	1
Xanthomonas axonopodis pv.citri	Citrus sinensis (Fruit)	Baggage	6
Xanthomonas axonopodis pv.citri	Citrus sinensis	Baggage	2
Xanthomonas axonopodis pv.citri	Citrus sp. (Dried Fruit)	Baggage	6
Xanthomonas axonopodis pv.citri	Citrus sp. (Dried Fruit)	Mail	2
Xanthomonas axonopodis pv.citri	Citrus sp. (Fruit)	Baggage	47
Xanthomonas axonopodis pv.citri	Citrus sp. (Fruit)	Mail	6
Xanthomonas axonopodis pv.citri	Citrus sp. (Fruit)	Quarters	1
Xanthomonas axonopodis pv.citri	Citrus sp. (Leaf)	Baggage	25
Xanthomonas axonopodis pv.citri	Citrus sp.	Baggage	19
Xanthomonas axonopodis pv.citri	Citrus sp. (Fruit)	Stores	2
Xanthomonas axonopodis pv.citri	Citrus sp. (Leaf)	Baggage	2