Femoral Component Installation Monitoring

Deena Abou-Trabi – University of Houston

Mike Guthrie – University of Wisconsin

Hunter Moore – Virginia Tech

Dr. Phillip Cornwell - Rose-Hulman

Dr. Michael Meneghini – St. Vincent Center for Joint Replacement, Indianapolis, IN

Dr. Aaron Rosenberg – Rush University Medical Center, Chicago, IL

This presentation provides a method of detection for a fully seated prosthesis within a femur

Background Information

Test Setup and Experimentation

Experimental Analysis

More than 172,000 people undergo total hip arthroplasty each year in the U.S.

Medical Conditions Requiring Surgery

Osteo-Arthritis

Bone Fractures

Rheumatoid Arthritis

Serious Consequences Occur from Not Having Surgery

Deep Vein Thrombosis

Pulmonary Embolism

The actual procedures involved in hip arthroplasty can be summarized in five steps

Hip Socket

Femoral Head

Femur

Osteoarthritis

Minimally invasive techniques have both positive and negative aspects

The surgeon impacts the prosthesis in a similar manner to our testing

A test structure was constructed for the sawbones

The bolts and C-clamps were used to provide repeatability

The foam around and under the sawbone was used to simulate a human leg

Seating measurements were taken after each impact

A digital caliper was used to measure the distance the prosthesis had been seated

The first two seating measurements were free-free and non-impacted seated

The first test run at each measurement was an impact test

The impact was implemented using an instrumented hammer and a surgical punch

The response was measured using three accelerometers

The second test run at each measurement was a PZT actuation test

A Dactron system was used to actuate the PZT at 15 V and then collect data from the three accelerometers

The final test run at each measurement was an impedance analysis

A Gaussian White excitation was used for excitation

300 averages were taken in order to extrapolate the most important data

The peaks of the y-direction FRF shift upward and become shorter with insertion of the prosthesis

The peak magnitude in the 9-11 kHz band converges very quickly with insertion

The anti-resonant frequency converges more slowly than the peak in the 9-11 kHz band

The peaks of the real part of the impedance data become shorter and wider with insertion

The norm of the impedance looks good for bones 2, 4, and 5, but is erratic for bones 1 and 3

The sum of the acceleration in the axial direction divided by the sum of the force was the only useful metric based upon the impact time histories

Los Alamos

LADSS

To assess the merit of each metric, it is helpful to adopt a definition of seating

Frequency of Anti-Resonance

LADSS

Sum of Acceleration / Sum of Force

LADSS

The acceleration divided by force metric seems to predict seating of the prosthesis best

		Def'n of	Number of Hits to Convergence				
		Converg- ence	Bone 1	Bone 2	Bone 3	Bone 4	Bone 5
Prosthesis		within 0.5 mm	8	4	4	6	6
M E T R I C	Anti- resonance	change less than 0.5 %	8	6	9	6	7
	Max Value in 9-11kHz Band	change less than 5.0 %	5	4	4	3	4
	Norm of Impedance	change less than 5.0 %	Never	6	13	4	8
	Sum(Accel)/ Sum(Force)	change less than 10.0 %	9	6	4	7	6

There are many exciting opportunities for future work

Replicate human characteristics more closely

Model actual surgical conditions

New seating detection techniques

The final results of this project show promise

We would like to acknowledge...

Engineering Sciences and Applications Division at Los Alamos National Laboratory

The Mathworks, Inc. (MATLAB Software)

Vibrant Technology Inc. (MEScope Software)

Mentors and others who helped advise us along the way

