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Computational Atlases: the core 
concept of CCB

Computational Atlases: the core 
concept of CCB

• An atlas is an alignment of data 
maps from different domains.  It 
enables querying of relations from 
multiple domains to construct “the 
big picture”

• Integrates huge amounts of 
disconnected information to discover 
the patterns that represent their 
internal logic.



Atlases key for turning raw data into Discovery!
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Bioinformatics Needs Atlases Too

• Many separate types of data (DNA, 
protein, expression, genetics, etc).

• Atlases that map different types of 
data together have great value.



Queryable Bioinformatics Atlases:
a new scale of discovery

• Visualization and browsing is not 
enough: discovery from “small” data.

• Important to mine patterns from the 
big picture: discovery from BIG data.

• Not easy to query current databases 
in a fully integrated way.

• CCB Bioinformatics focuses on this 
problem.



CCB Bioinformatics Atlases

Research
• Alternative splicing
• Comparative 

genomics
• Atlases of evolution
• HIV drug 

resistance 
evolution

Tools
• Pygr Graph DB
• NLMSA align’t DB
• BLASTgres
• ASAP DB
• 3D Phylogeny
• snpindex
• HIV selection DB



Pygr: A Graph Database Model for 
Queryable Bioinformatics Atlases

• Relational databases (SQL) have a 
rigid tabular structure that is often a 
poor fit to complex biology data.

• Graph databases provide a simpler, 
more general model: objects (nodes)
connected by relations (edges).

• Database is a graph; query is a 
graph; result is a graph.



Alternative Splicing Example: SQL
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In SQL, a simple exon-skip query requires a 6-way JOIN (groan!)

SELECT * FROM exons t1, exons t2, exons t3, splices t4, splices t5, 
splices t6 WHERE t1.cluster_id=t4.cluster_id AND 
t1.gen_end=t4.gen_start AND t4.cluster_id=t2.cluster_id AND 
t4.gen_end=t2.gen_start AND t2.cluster_id=t5.cluster_id AND 
t2.gen_end=t5.gen_start AND t5.cluster_id=t3.cluster_id AND  
t5.gen_end=t3.gen_start AND t1.cluster_id=t6.cluster_id AND 
t1.gen_end=t6.gen_start AND t6.cluster_id=t3.cluster_id AND 
t6.gen_end=t3.gen_start;



Alternative Splicing Example: Pygr
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In Pygr, the query graph is just:

{1: {2:None, 3:None}, 2: {3:None}}

(None means no special edge information)

Simpler because the data really is a graph; SQL 
schema is just a (not very good) representation of that



Hypergraphs are a General Model for 
Bioinformatics

Sequence Annotation:

A T T G C A T T G A

Nodes: sequence letters, annotations
Edges: links between sequence and annotations

SNP: 
G/A Active Site…



Hypergraphs are a General Model for 
Bioinformatics

Ontology:
enzyme

protease phosphatase

Nodes: terms
Edges: IS-A, HAS-A relations



Pygr works with any data in existing 
relational databases

Database Tables:

Nodes: rows
Edges: foreign-key relations

1
Exons

1
Splices

2 2
3 3
4 4



Hypergraphs are a General Model for 
Bioinformatics

Sequence Alignment:

A T T G C A T T G A

A T T G A T T G A

Nodes: sequence letters
Edges: alignment between letters



Graph Database Indexing enables 
“impossible” queries

Graph Database Indexing enables 
“impossible” queries

• Since all data types are just graphs, a 
query can traverse different types trivially 
(hard / impractical in SQL).

• Edge indexing accelerates complex 
relation queries compared with SQL:

– SQL: >1 hour for exon skip query
– Pygr: 15 sec. for exon skip query
– SQL: 30 sec. per genome alignment query
– Pygr: 0.2 msec per genome alignment query



Example Pygr Applications

• Analysis of Alternative Splicing
• Analysis of protein domain 

interaction networks (D. Eisenberg, 
UCLA)

• Pygr: http://www.ccb.ucla.edu
• Python module documentation 

http://www.bioinformatics.ucla.edu/pygr

http://www.ccb.ucla.edu


Atlases of Alternative Splicing

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

• Alternative Splicing Annotation Project 
(ASAP) integrates genomes, mRNAs, 
ESTs, protein isoforms.

• http://www.bioinformatics.ucla.edu/ASAP



Automatic clustering of genes and samples by 
alternative splicing

TIFF (LZW) decompressor
d d t thi i tCorrelation coefficient +1 0                     -1

Clustered both by samples, and by genes.  The clustering revealed 
groupings of tissue specific alternative spliced genes. For example, a 
brain-specific alternative splicing group is shown at the far right 
(boxed). This software has also revealed tumor-specific splicing 
markers.



Atlases of Alternative Splicing

• Genome-wide atlas: 90,000 AS 
events detected for human

• Atlases for 15 animal species
• Tissue-specific AS atlases from 

EST, microarray data (Blencowe, U. 
Toronto), especially brain tissues.

• Next: connecting to brain maps via 
Allen Brain Atlas (expression arrays)



Queryable Atlases of Genome 
Evolution: NLMSA

• Comparative genomics (genome 
evolution & conservation) is rapidly 
becoming important tool for studies 
of gene regulation, function, disease. 
Need: query evolution as a database



Defining fundamental objects in genome-
wide sequence analysis

• Chromosome
• Genes
• Exons
• CDSs
• Regulatory 

elements
• Repetitive 

areas

All of these can be represented as abstract intervals in 1D!



Alignment Query is the key operation in 
genome-wide sequence analysis

What does the “interval” I’m interested in align to?



Comparative Genomics Analysis of Alt. 
Splicing (17 genomes)

chickenfugu

UC Santa Cruz
Multigenome

Alignment

zebrafishchimp

mousedog

humanrat ASAPNLMSA map



Genome Alignment Atlas Tools

• Pygr: query alignment as a graph
• NLMSA: highly scalable index for 

multigenome alignment & annotation
• Desktop PC can query terabyte scale 

multigenome alignments as easily as 
traditional single gene alignment.

• 0.2 msec/query (vs. 30 sec, MySQL)
• Included in Pygr software distribution.



Example: Genome-wide Exon Creation 
rates, measured in 17 animal genomes

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

High rates of exon 
creation specifically 
for alternatively 
spliced exons.

High rates of exon 
creation specifically 
for alternatively 
spliced exons.



New Tools for Atlases of Evolution

• BLASTgres: incorporate BLAST 
homology query directly in Postgres 
database (w/ Hsiao & Parker, UCLA)

• SNPindex: highly scalable graph 
database index for mutation 
covariation analysis (SNPs are 
nodes, edges are covariation 
relations).



Atlases From Brains to Evolution: AIDS

AIDS dementiaAIDS dementia HIV evolutionHIV evolution

Can we map how HIV evolves?Can we map how HIV evolves?

Model as a 
snpindex 
graph 
database.

Model as a 
snpindex 
graph 
database.



Drug Resistance Evolution: We React 
to them, They React to Us… Stalemate

• E.g. a virus attacks us, so we develop a 
drug, so the virus evolves drug resistance 
mutations…

• Each step is a reaction to the enemy’s 
current state, based on limited, local 
information, without considering how the 
enemy will respond to our actions in the 
future.

What if we had a global atlas of HIV’s 
possible evolutionary responses?



Selection Pressure Mapping: Build an 
Atlas of HIV Evolution

• Selection pressure measures whether an amino acid 
mutation is selected for (Ka/Ks>1) or against
(Ka/Ks<1) by evolution, vs. synonymous mutations.  

• Dataset: sequencing of 50,000 HIV clinical samples 
by Specialty Labs. Inc. 30-fold higher density of 
polymorphism information than human sequences.

• Goal: construct a selection pressure map of how HIV 
is evolving, where the virus is “going”, to evade our 
drugs.



0

5

10

15

20

25

30

35

40

45

50

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

Codon Position

K
a/

K
s

Positive selection mapping automatically discovers causes of drug resistance!

HIV Protease Positive SelectionHIV Protease Positive Selection



Positive Selection Mapping Identifies 
Drug Resistance Mutations

• Correctly identified 19 of 22 known 
drug resistance mutation positions.

• Compared with multi-year research 
process (clinical, biochemical, 
genetics) that was previously 
required, this analysis is completely 
automatic; works directly on output 
from sequencing machines.



Build a Reaction Rate Diagram of HIV’s 
Global Evolution

• A network diagram of the rates of 
transition between all possible 
genotypes. Ka/Ks is proportional to 
rate of increase of a mutation.

• Shows the speeds of all possible 
paths of evolution the viral 
population will follow, under the 
pressure of current drug treatments.



Conditional Ka/Ks Reveals Complete 
Mutation Network
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We can generalize Ka/Ks to 
measure the selection pressure 
for a mutation Y conditioned on 
the presence of a previous 
mutation X.  We define this as 
the conditional Ka/Ks:

Each edge represents one conditional Ka/Ks value.



Fast Mutation Paths of HIV Protease



Different Paths to the Same Genotype 
can Differ in Speed

Chen & Lee, Biol. Dir. (2006)

WT 11.69

34.50

0.52 5.37

90

10 10/90

WT 0.39

72.90

0.12 21.17

30

88 30/88

90 and 30 are mutations known to directly cause drug resistance; 
10, and 88 are secondary mutations that stabilize the mutant protein.

Our analysis distinguishes them: faster path first introduces the drug 
resistance mutation, then the stabilizing mutation.

NB: speed of a multistep path is generally controlled by its slowest
step.



Reproducible Results in Independent 
Datasets

Specialty Stanford-Treated Stanford-Untreated

WT 0.23

2.35

0.21 1.97

90

10 10/90

WT 11.69

34.50

0.52 5.37

90

10 10/90

WT 10.81

13.32

0.88 4.66

90

10 10/90

Highly reproducible in independent studies of 
different patients.  They indicate real patterns of 
drug-associated selection pressure within the 
HIV population in the wild.



Conditional Ka/Ks: Specialty vs. Treated
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For codons with 
sufficient counts 
(NXa>400), the results 
match the Specialty 
results surprisingly 
well.



Danger: Fast Paths to Multi-Drug 
Resistance

• Multiple resistance: the combination of 
three mutations (at codons 82 (V82A/T/S), 
84 (I84V), and 90 (L90M)) is resistant to 
most available protease inhibitors

• Rapid evolution of this triple mutant is a 
serious threat to individual treatment and to 
control of the global AIDS epidemic.

• Our map shows where the fast paths to this 
combination are. Don’t want to go there!



WT
842.12

49.30 825.16

90 7412.42 9.0416.28 71 847.2615.26

90

82

Reveals Accelerated Paths to  
Multi-Drug Resistance

The path that includes mutation at codons 74 and 71 is 3 times 
faster than the direct path, and 7 times faster in its first step:

Use the order in which drugs are given (which in turn 
can select for one mutation over another) to pick a 
slower path!



Kinetic Traps that Slow Evolution

Kinetic Trap:
Many accelerated 
paths to mutations 
at 41, but no  fast 

paths to drug 
resistant mutations 

from there



Tools for Separating Selection from 
Linkage using Synonymous Mutations

• Synonymous mutations should not 
be under selection, so they should 
give a direct readout of pure linkage.

• So, compare pairwise correlations of 
amino acid mutations (A) and 
synonymous mutations (S): 

• AA, AS, SS



AA Covariation in HIV is due to 
Selection, not background LD (AS, SS)

AA Covariation in HIV is due to 
Selection, not background LD (AS, SS)

SS

AA

AS

Specialty DatasetSpecialty Dataset



Reproducible Result in Independent 
Stanford-Treated Dataset

SS

AA

AS

Stanford-Treated DatasetStanford-Treated Dataset



Evidence of AA Selection Pressure 
Vanishes in absence of drug treatment

Stanford-Untreated DatasetStanford-Untreated Dataset



A New Level of Strategic Intelligence

• A global picture of how HIV will respond in 
the future to our drug treatments.

• Ka/Ks velocities tell us where HIV 
population is going, detectable even while 
mutations still rare.

• Moreover, since these selection pressures 
are due to our actions (drugs), they are 
manipulable.

• Even slowing DR evolution two-fold could 
make a big difference for control of the 
epidemic. 



HIV Positive Selection DatabaseHIV Positive Selection Database

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

http://www.bioinformatics.ucla.edu/HIVhttp://www.bioinformatics.ucla.edu/HIV

•Atlases of HIV drug resistance evolution from Specialty dataset.

•Analysis tools (snpindex).
•Atlases of HIV drug resistance evolution from Specialty dataset.

•Analysis tools (snpindex).
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Hypergraphs are a General Model for 
Bioinformatics

Database Schema: (Entity-Relationship diagram)

Nodes: tables
Edges: entity-relationships (e.g. one-to-one, etc.)



Hypergraphs are a General Model for 
Bioinformatics

Dependency Graph: (e.g. make-rules)

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Nodes: data types
Edges: make-rules



Selection Pressure is like an 
Evolutionary Velocity

For wildtype, synonymous mutant, and amino acid mutant allele 
frequencies fo=1, fs=0, fa=0 initially, equal amino acid and synonymous 
mutation frequency λ, and reproduction rates ro, ra, after one unit of time

fo → ro fo 1− 2λ( );   fs → roλfo;   fa → raλfo

Assuming λ<<1, Ka/Ks and the normalized ∆fa will be:
Ka

Ks

= fa

fs

= ra

ro

;   ∆fa = fa

fo + f s + fa

≈ λ ra

ro

= λ Ka

Ks

So initially the rate of change of the amino acid mutant allele frequency 
dfa/dt is proportional to the selection pressure Ka/Ks.  



Multiple Independent Datasets
• Specialty: 50,634 samples representing a 

mix of treated and untreated patient samples 
from the U.S. 

• Treated: 1,797 samples collected by Stanford 
University from patients with specific drug 
treatments 

• Untreated: 2,628 samples collected by 
Stanford University specifically from untreated 
patients 

• Africa: 399 African HIV-1 subtype C samples 
downloaded from Los Alamos HIV Sequence 
Database 
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