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ABSTRACT

Biochemical and genetic approaches have identified the molecular mechanisms
of many genetic reactions, particularly in bacteria. Now a comparably detailed
understanding is needed of how groupings of genes and related protein reactions
interact to orchestrate cellular functions over the cell cycle, to implement pre-
programmed cellular development, or to dynamically change a cell’s processes
and structures in response to environmental signals. Simulations using realistic,
molecular-level models of genetic mechanisms and of signal transduction net-
works are needed to analyze dynamic behavior of multigene systems, to predict
behavior of mutant circuits, and to identify the design principles applicable to
design of genetic regulatory circuits. When the underlying design rules for regu-
latory circuits are understood, it will be far easier to recognize common circuit
motifs, to identify functions of individual proteins in regulation, and to redesign
circuits for altered functions.
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INTRODUCTION

Biochemical and genetic approaches have identified the molecular mechanisms
of many genetic reactions in cells; progress is most advanced for prokaryotic
genetics. The Genome Project and advances in experimental techniques will
lead to full knowledge of DNA sequences, identification of most genes, and
even temporal gene expression patterns for many organisms. A comparably
detailed understanding is needed of how groupings of genes and related protein
reactions interact to orchestrate cellular functions over the cell cycle, to imple-
ment preprogrammed cellular development, or to dynamically change a cell’s
processes and structures in response to environmental signals. This review
addresses the use of simulation models to analyze the dynamical behavior of
cellular regulatory networks. Bacterial systems are emphasized since molecular
mechanisms of gene expression and regulation are better characterized today
in bacteria than in higher organisms. As a result, molecular-level modeling of
genetic regulatory networks is also most advanced for bacterial regulation.

Simulations are needed (a) to identify design principles for the biochem-
ically based logic, (b) to understand the dynamical response of both normal
and mutant cells to environmental and internal signals, (c) to predict quanti-
tative effects of mutations on regulatory outcomes, and (d ) to verify consistency
and completeness of hypothesized reaction systems. This level of realism
requires modeling approximations that have a rationale traceable to physical
and chemical mechanisms. Several of the molecular-level simulation models
described in a later section treat regulation of systems of coupled intracellular
reactions, but either do not involve genetics or have over-simplified models of
genetic mechanisms. The challenge now is to develop simulation techniques
applicable to cellular processes where genetic regulation is centrally important,
such as developmental differentiation, facultative infection processes, and cell
cycle control.

Essential features of genetic regulatory systems, as understood today, were
recognized 35 years ago. In a prescient report of a 1961 Cold Spring Harbor
conference on cellular regulatory mechanisms (68) the importance of regula-
tory feedback was emphasized, regulatory nets were characterized as “circuits,”
and regulatory breakdown was postulated as the central initiating event in ma-
lignancy, along with numerous other “modern” ideas about cellular regulation.
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The operon model of Monod, Jacob, and their coworkers (45–47) stimulated
numerous authors to address the integration of genetic regulation into models
of enzymatic regulation. In a 1968 review, Rosen (79) summarized the essen-
tial methods and approximations that came to be widely used in simulations of
genetic regulatory networks: a focus on transcription control, neglect of post-
transcriptional control mechanisms, and characterization of protein production
as a continuous process modulated by the level of activation or repression of
the corresponding operon’s operator region.

Genetic regulation is at times characterized using metaphors drawn from the
fields of computing and digital electronic circuit design. There is validity to
this comparison, but the “hardware” (or “wetware”) of cellular logic, chemical
reactions in the cytoplasm, is profoundly different from electronic hardware.
The next section summarizes organization of genetic regulation in bacterial
cells from a regulatory circuit architecture perspective and in comparison with
electronic logic.

GENETIC REGULATORY CIRCUITS:
ORGANIZATION AND FUNCTION

Bacterial genetic circuits exhibit hierarchical organization: regulons control
groups of operons that control gene groupings (32, 69). Global regulons coor-
dinate regulation of operons in multiple metabolic pathways. For example, the
σ 32heat shock regulator protein (105), a representative sigma factor, is required
for RNAP binding at the promoters of a wide spectrum of genes involved in
responses to stress. Other global regulators act through control of DNA spatial
configuration; integration host factor protein (IHF) is a representative example
(23, 31). These global regulators enable the bacterial cell to effect a rapid and
coordinated response to threats or opportunities presented by their environment
(e.g. heat, cold, presence or absence of essential nutrients, high or low pH) by
reconfiguring their biochemical machinery. There are assumptions, explicit or
implicit, in every simulation analysis regarding the effects of global regulators.
The most common assumption, usually implicit, is that global regulation can be
neglected, meaning, in effect, that during the simulation period either the status
of global regulators is assumed to be unchanging or the systems changed by
global regulators are assumed to be decoupled from the processes under study.
Explicit treatment of global regulation will be necessary when we progress to
the point of modeling complex cell decision points. For example, regulation
of the initiation of sporulation inBacillus subtilisinvolves two sigma factors,
σA andσH, that compete for binding to core RNA polymerase at promoters of
critical genes (42).

The biochemical logic in genetic regulatory circuits provides real-time re-
gulatory control, implements a branching decision logic, and executes stored
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programs that guide cellular differentiation extending over many cell gener-
ations. In higher organisms, the regulatory algorithms may control sequen-
tial execution of developmental processes over many years of the organism’s
life. The mechanisms that implement bacterial genetic logic functions may
be entirely within a single cell, may span many cells (43), or may function
across cell generations (7, 50). Genetic circuits may cross species boundaries
as in symbiotic relations between bacteria and higher organisms (25, 58, 62).
More sinister, perhaps, are the bacterial mechanisms that co-opt the inter-
nal logic of target cells to facilitate penetration or evade defensive responses
(21, 22, 34).

At any moment, cellular functions are both implemented by and controlled by
the network of chemical reactions involving the collection of molecular species
in the cell. In a growing cell, the molecular composition is continuously chang-
ing as the cell cycle progresses and the instantaneous regulatory control function
also changes continuously. In these networks of interconnected reactions, one
regulatory protein can control genes that produce other regulators, that in turn
control still other genes so that complex branching networks of interactions are
formed. Multireagent reactions or genetic mechanisms controlled by multiple
input signals are key elements for performing sensor or control-logic functions
in these networks.

REGULATORY FEEDBACK Feedback, where the output signal of a network
element directly or indirectly influences the value of its input signals, is per-
vasive in regulatory networks. Autoregulatory feedback loops, where a gene
product acts on its gene-expression mechanisms, can lock controlling protein
signals on, in turn locking other signals either on or off. In a 1991 inven-
tory of 107σ 70 promoters then known inEscherichia coli(10), the promoters
were organized into 31 regulons, each jointly controlled by one or more regu-
latory proteins. Twenty-one (68%) of the 31 regulon-controlling proteins are
autoregulating, i.e. they repress their own synthesis. Four (13%) of the 31 are
autoactivating, that is, they activate their own synthesis.

The complement of distinct molecules in the cell and the state of the DNA
(e.g. methylated or not) defines the regulatory logic that establishes how the cell
functions at that instant. This logic determines when the cell makes new proteins
from DNA-encoded instructions and when existing proteins are destroyed. Spe-
cialized enzymes under regulatory control can remove DNA segments, move
segments from one site to another, reverse a segment’s orientation, or insert for-
eign segments (14). These DNA changes can lead to temporary or permanent
radical changes in the cell morphology, its active metabolic pathways, and im-
portantly, its responses to environmental signals so that future cellular responses
to signals differ from current responses. Thus, the cell’s stored instructions (the
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genetic material) can be dynamically changed according to previously stored
instructions.

Mechanisms that sense conditions inside and outside the cell are integrated
into the regulatory logic so that the cell can adapt to the needs of the moment.
Receptors on the cell surface can respond to specific chemical species and affect
the regulatory logic by molecular signaling using signal transduction cascades
(17). Other signals may affect reactions in the cascade to change the level or
character of the signal and thus act as modulating functions (5, 20, 35). In this
way, environmental influences originating both within and outside of the organ-
ism can evoke complex regulatory responses. The interconnected networks of
protein reactions that connect sensors to response mechanisms are, in a sense,
the “nervous system” of unicellular organisms (5). Bray has reviewed inter-
connected biochemical elements that can form information processing circuits
and has assessed their similarity to neural networks (5).

CELLULAR REGULATORY APPARATUS The cellular regulatory apparatus in-
cludes both short- and long-term memory mechanisms. The current com-
plement of proteins in the cell and their physical deployment depends on the
cell’s history, and thus is a memory. Long-term memory mechanisms are imple-
mented by more-or-less permanent changes in the state of the cell (for example,
the metabolic enzyme systems that are activated, the global regulators that are
active, the complement of surface structures, or major morphological transfor-
mations as in sporulation) or in the DNA sequence. In phage lambda and other
temperate phage, the integration of the phage DNA into the host chromosome
changes the control logic of the phage circuitry. Thus, for example, the state of
being eitherintegratedor not integratedinto the host DNA acts as a memory
element (61). In higher organisms, successive cellular state changes during
organ differentiation are largely irreversible. The self-sustaining, continuous
expression of the homeotic genes throughout development and into adulthood
is thought to be the long-term memory mechanism recording the differentiated
state of each cell as established early in embryonic development (54).

Genetic regulatory networks progress asynchronously through successive
reactions, so that biological “time” is based more on the degree of progress
along reaction pathways than on clock time. The stochastic pattern of signal
protein production (discussed below) may only cause uncertainty in timing of
regulatory events, not uncertainty in outcome. (We use the term “stochastic” in
this paper in the technical sense of “arising from a random process.”) Within
broad limits the duration of many cellular functions may be less important to
proper cellular function than the proper sequencing of events. For example,
cells halt at various checkpoints until conditions (for example, restoration of
essential nutrients, completion of precursor cellular events) for further progress
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Table 1 Points of similarity between genetic logic and electronic digital logic
in computer chips

Electronic logic Genetic logic

Signals Electron concentrations Protein concentrations
Distribution Point→ point (by wires Point→ point

or by electrically encoded (movement by
addresses) diffusion or active

transport by encoded
reaction specificity)

Organization Hierarchical Hierarchical
Logic type Digital, clocked Analog unclocked

sequential logic (can approximate
asynchronous
sequential logic)

Noise Inherent noise due to Inherent noise due to
discrete electron events discrete chemical
and environmental effects reaction events and

environmental effects
Signal/noise ratio Signal/noise ratio Signal/noise ratio low in

high in most circuits most circuits
Switching speed Fast (>106 sec−1) Slow (<10−2 sec−1)

are satisfied (10, 38, 49, 100). In this case, the indeterminism relates to whether
the cell will progress or not along a developmental path at any instant, rather
than on the choice of alternate pathways. So, the regulatory decision command
sequence is: “HALT until CONDITIONSare met, thenPROCEED,” where “CONDI-
TIONS” are sensed environmental or cellular signals. The result is dispersion
across the cell population in the rate of progression along prescribed pathways
rather than dispersion in outcome. However, at developmental switching points
(discussed below) stochastic gene expression can lead to random partitioning
of the cell population into subpopulations developing on alternative pathways.

Genetic networks have many attributes commonly associated with comput-
ing. Table 1 shows points of similarity between genetic logic and the electronic
digital logic in chips in today’s desktop computers.

Figure 1ashows the simplest of genetic circuits, a regulatory cascade capable
of initiating events in sequence as illustrated in Figure 1b. Figure 1c shows a
sampling of the control features that are used in cells to create complex control
logic structures. The capability to create combinatorial controls with feedback
when coupled with memory mechanisms provides every element needed to
create a type of asynchronous sequential logic (61). Biological regulatory
circuits can have multiparameter combinational control functions at key nodes
(for example, promoters controlled by several effectors), reaction cascades
that function as “subroutines,” the ability to respond conditionally to external
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Figure 1 (a) A genetic cascade, the simplest genetic circuit. The increasing concentration of
signal protein A from transcripts initiated at promoter PA, turns on the downstream promoter PB,
leading to production of signal B, which similarly activates production of signal C. Signal specificity
depends on the addressing created by stereochemically based binding specificity of A, B, and C to the
corresponding binding sites in the different promoters. (b) The resulting succession of concentration
peaks for signals A, B, and C. Decay of the protein signals after the promoters are switched off
results from proteolytic degradation of the proteins and also in growing cells from continuous
dilution of signal concentration as the cell size increases. (c) A small sampling of the numerous
additional regulatory mechanisms used in cells to control creation, timing, and decay of protein
signals. Posttranscriptional regulatory mechanisms are essential features of regulatory networks
andmustbe included in any analysis of the regulatory logic. Small autoregulatory feedback loops
are widely used in cells to maintain signals within a concentration range. Switching circuits that
control developmental path choices commonly include positive or reinforcing feedback to enhance
the commitment to the selected path and negative or repressing feedback to assure that promoters
on alternative paths are turned off.
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signals, and the ability to read from stored instructions (the DNA). However,
the detailed implementation and the manner of processing of information is
radically different from the digital information processing paradigm in modern
computers. Forcing cellular regulation into the digital information processing
paradigm has not been notably productive.

Cellular regulatory circuits implement a complex adaptive control system.
A particularly confounding aspect of these cellular control systems is the lack
of clear distinction between the mechanisms comprising thecontrolling sig-
nals and logic, and thecontrolledprocess or function. In ordinary engineering
control systems, this distinction is usually more apparent. Consider control of
traffic lights at an intersection. Buried wires sense cars in turn lanes; a box at the
side of the road contains the control logic; and the signal lights over the inter-
section are the controlled function. In cellular regulation, control reactions and
controlled functions are composed of intermingled molecules bumping together,
reacting, and forming more-or-less stable assemblages so that identification of
roles is more complex.

The genetic regulatory mechanisms of primary concern to this review and the
coupled protein reaction-based regulatory networks [reviewed in (5)] together
implement thecontrol systemthat enables cells to adapt to their environment.
The two systems act with different response speeds: protein reactions govern
responses in the range of about 10−4 to 102 seconds, while genetic mechanisms
govern responses in the range of about 102 to 108 seconds. Additional adaptive
capability is provided by (a) mutation and selection-driven evolution of the
regulatory circuit design and (b) acquisition of new functions through horizontal
exchange of mobile genetic elements by bacterial conjugation, transformation,
and transduction (8, 22).

SIMULATIONS OF CELLULAR REGULATION

Most molecular-level simulations to date have focused on coupled protein re-
actions with limited treatment of genetic reactions. Where genetics has been
included, only control of transcript initiation has usually been considered. Now,
however, as details of genetic mechanisms are accumulating rapidly, extension
of models to include genetic regulation should be practical. In the following
sections we identify several systems where prospects for such extensions are
promising.

Metabolic Regulation
Although regulation of the reactions forming the core of intermediary metabo-
lism has been intensively studied, determining how metabolism is regulated has
been difficult because there are many complex feedback mechanisms within the
pathways. Stress, changes in the environment, or changes in nutrient availability
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can all instigate mode changes leading to a revised complement of metabolic
enzymes in the cell. Modeling of metabolic control is commonly done by
characterizing the coupled chemical reactions with systems of ordinary dif-
ferential equations based on chemical kinetics. Except in the simplest cases,
the resulting equations must be solved numerically; representative software
packages supporting metabolic analysis are described in (18, 64, 80).

The principal questions that modeling of metabolic regulation has addressed
are: (a) How does the cell respond to presence, absence, or changes in nutri-
ent levels? (b) How does the cell change pathways to increase (or decrease)
production of selected products?

Metabolic engineering of cells to increase the yield of an industrially impor-
tant product such as lysine or ethanol could have large economic returns. This
prospect has stimulated modeling studies and experiments seeking to maximize
yield of desirable molecules. Experiment has shown that simple overexpres-
sion of a rate-limiting enzyme rarely increases yield of the final product due to
the stabilizing effects of feedback and nonlinear dynamics in metabolic con-
trol circuits. These complex control mechanisms apparently evolved to main-
tain optimal flux distributions in the pathways for balanced cellular growth
(88). Metabolic control analysis (MCA) (40, 48) techniques show that the
biosynthetic flux is usually insensitive to perturbations in any single enzyme;
rather, flux control is distributed among many enzymes (101). Thus, expres-
sion of many enzymes must be changed to effect a significant change in flux.
MCA studies use linear and polynomial models to predict which enzymes to
change (40, 48, 81, 85, 86). Detailed enzymological models have been used
to analyze pancreatic glycolysis (1, 2), red blood-cell metabolism (55), and
glycolytic/gluconeogenic switching (3). Linear and polynomial models are
commonly used for deriving local dynamical models to predict changes in flux
within a pathway that reflect changes in experimental conditions. Complex
enzymological models are used to analyze endogenous cellular control and
regulatory circuits that effect large mode changes, such as switching from gly-
colysis to gluconeogenesis. In these analyses, the kinetics of reactions involved
in gene expression are generally assumed to be “enzyme-like” (52, 102) and
regulation of transcript elongation or translation is neglected. However, for
many pathways these additional genetic mechanisms cannot be neglected. Ex-
tension of metabolic modeling methods to include more realistic genetic regu-
latory mechanisms is a current challenge to the field.

Integrating Environmental Signals into Regulatory Circuits
In the bacterial chemotactic response, attractant or repellent molecules bind
to specialized receptors on the cell surface and initiate a phosphorylation cas-
cade that controls the rotary flagellar “motor.” The first comprehensive model
of the phospho relay–based chemotaxis signaling network (6), constructed
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from known reactions and kinetics, reproduced the observed patterns of runs,
tumbles, and pauses, matched responses to pulses of chemotactic agents, and
matched behavioral changes in chemotactic mutants with altered enzyme ac-
tivities. With addition of several hypothetical reactions, the model explained
both the wild-type strain and over 30 mutants. Later models added adapta-
tion (4, 39, 87). These simulation studies made essential contributions to un-
derstanding of the chemotactic response system. The controlled element in
chemotaxis is the flagellar motor rather than gene expression, so modeling
of genetic mechanisms has not been important in this system. However, other
similar sensor-response pathways are widely used in bacteria to control gene ex-
pression. Bacteria use the histidyl-aspartyl phosphorelay (the “two-component
system”) as their predominant mode of signal transduction in regulation of
adaptive responses to the environment (17). [In theE. coli genome, at least
62 open reading frames have been identified as putative members of the two-
component signal transducers (67).] Two-component signal transducers have
also been identified in diverse eukaryotic species including plants, fungi, yeast,
and slime molds (104).

Cell Cycle Models
The central questions in cell cycle regulation are: (a) “What is the cycle of cou-
pled reactions that drives cellular progression through DNA replication and cell
division?” and (b) “How is genetic regulation coupled to this cycle so that genes
active in cell replication, division, creation of cell structures, and other events
are expressed at appropriate times?” The large size of theXenopus laevisoocyte
and the discovery that cytoplasmic extracts from the oocyte cycle periodically,
closely replicating timing of cleavages of intact eggs, facilitated identification
of cytoplasmic reactions controlling the early embryonic cell cycle. Modeling
studies were undertaken to demonstrate that the known biochemical reactions
alone could support oscillations of the correct frequency and with the appro-
priate chemical concentrations. Hyver & Le Guyader (44) were among the
first to propose a rough molecularly based dynamical (differential equation)
model for the system that included activation of p34cdc2, cyclin/p34cdc2 inter-
actions, and cyclin degradation. The only genetic component of this model
was the implicit steady production of cyclin through the cell cycle. The model
demonstrated the sufficiency of the coupled cytoplasmic reactions for explain-
ing cell cycle oscillations and was used to discriminate between competing
hypotheses regarding activation of p34cdc2by cyclin into an active mitosis pro-
moting factor. Later models were more elaborate (29, 70, 73, 97, 98), with the
Tyson model (98) providing the most detailed early embryonic cell cycle model.
Obeyesekere et al extended the model of M-phase control in embryogenesis
to the full cell-cycle in human somatic cells (72). Swanson et al used the
Tyson model to analyze calcium control of embryonic cell-division (90). The
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mechanisms for coordinate control of cell-cycle regulated genetic mechanisms
are only partially identified and have not been integrated into the eukaryotic
cell-cycle models yet.

Recent discoveries that progression through the bacterial cell cycle and com-
munication between cellular compartments are mediated by two-component
signal transduction systems and signaling pathways involving transcription fac-
tor activation by proteolytic processing are reviewed in (82). The coupled reac-
tions controlling cell cycle progression in prokaryotes have not been identified.
However, the recent discovery that a member of a phospho relay system that
regulates several key cell cycle regulatory proteins inCaulobacter crescentus
is controlled by both phosphorylation and temporally and spatially regulated
proteolysis, suggests that paradigms of cell cycle control have been conserved
among prokaryotes and eukaryotes (12, 76). Many of the genetic cascades con-
trolling chromosome replication, cell division, and synthesis of cell structures
are well characterized (11, 13, 28, 78) so that an integrated simulation model of
bacterial cell cycle regulation may be possible soon.

Developmental Switches
Virtually all bacteria contain genes for many alternative physiological states.
The specific metabolic and morphological features expressed are determined
by the cell’s history and its current environment. The mechanisms for ini-
tiating switching between states are composed of transducers on the cell’s
surface that detect external signals, internal status signals, internal signaling
pathways, and the regulatory switching circuitry that turns promoters on or off
in response to the signals. The genetic and biochemical details of these in-
tegrated switch-sensor subsystems are being identified at an accelerating rate.
Two bacterial systems where molecular mechanisms are relatively well identi-
fied are sporulation inBacillus subtilisand the lysis-lysogeny switch in phage
lambda. Also, in many bacterial pathogens, environmental signals control
developmental switches essential to progress of infections (89). Examples
include: BvgA/BvgS inBordetella pertussis, ToxR/toxS inVibrio cholerae,
Salmonellasurvival within macrophages, and outer membrane porin regulation
in SalmonellaandE. coli (22). Integrated simulation models of the molecular
mechanisms of environmental sensing, signal transduction, and gene expression
that govern global regulation in bacteria are needed now to explain dynamics
of these switching mechanisms.

The cell-density-dependent gene expression found in some bacteria is another
promising area where simulation models of the regulatory system are needed to
explain dynamics of population behavior. The regulatory architecture in many
of these “quorum-sensing” systems involves secretion of a pheromone that is
detectable by a surface-bound receptor [reviewed in (33, 51)]. Typically, the
receptor acts through a two-component response regulator that mediates gene
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expression to produce an altered phenotype at differing pheromone concen-
trations. High cell densities lead to high pheromone concentrations, so this
mechanism provides an indicator of local cell concentration. Examples of such
quorum-sensing mechanisms as components of genetic switches include the
initiation of genetic competence inBacillus subtilisandStreptococcus pneu-
moniae, initiation of sporulation inBacillus subtilis, the virulence response
in Staphylococcus aureus, and social motility inMyxococcus. The regula-
tory mechanism controlling aggregation ofDictyostelium discoideum, which
also involves quorum sensing, has been extensively analyzed and simulated
(30, 53, 56, 57).

The regulation of theλ phage development immediately after infection pro-
vides a paradigmatic model of a switch controlling developmental commitment.
Bacteriophageλ phage genes, regulatory mechanisms, and related protein
reactions have been intensively studied for forty years. Within five minutes
after infection, anE. coli cell becomes committed to one of two fates: lysis,
where the phage reproduce rapidly and soon lyse the host to release 60–100 new
phage particles, or lysogeny, where theλ DNA is integrated into the host chro-
mosome, the cell is immunized against further infection, and many generations
may pass before induction of the phage continues the infection. The molecular
basis of the regulatory mechanisms controlling the lysis or lysogeny decision
are generally known (15, 16, 24, 41, 61, 75). As a result,λ phage regulation has
been an attractive model system for studying integrated behavior of multi-gene
regulatory subsystems. The central questions in phageλ dynamics are: (a)
How does the regulatory logic that selects the lytic or lysogenic pathway work?
and (b) How does the regulatory logic after commitment implement the genetic
program leading to lysis or lysogeny?

Thomas et al (95) defined a qualitativeλ lysis-lysogeny decision model in
1976 using a Boolean model of promoter regulation that predicted a subse-
quently constructed mutant phenotype and exhibited the necessary bistable
behavior. In 1985 Shea & Ackers (83) modeled the statistical mechanics of
the overlapping operator regions of the PR and PRM promoters [theλ “switch”
(75)] and predicted the dynamics of maintenance of lysogeny and phage in-
duction, as well as expected effects on lysogeny maintenance of changes in
repressor cooperativity in binding to the operator region. (See discussion of the
Shea–Ackers promoter control model in the next section.)

Building on the work of the Ackers group, both Reinitz & Vaisnys (77) and
Chung & Stephanopoulos (9) modeled the lambda lysis-lysogeny circuit to
analyze the bistability of the switch. Reinitz & Vaisnys defined a differential
equation model of the production of CI and Cro based on the Shea-Ackers
PR/PRM promoter model. Though degradation and dilution of the proteins were
included phenomenologically in the model, the actions of CII, CIII and the Hfl
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proteolytic system as well as the mechanisms of elongation control were ignored
due to lack of information about these subsystems and because inclusion of these
mechanisms would have made analysis of the circuit too difficult. Reinitz &
Vaisnys concluded that the resulting model of the switch, even with the best
measured promoter kinetics, was not sufficient to explain the bistability of the
reaction mechanism. Rather, they suggested either the promoter kinetics were
incomplete or other neglected mechanisms in the pathway caused the bistability.
Chung & Stephanopoulos (9) analyzed induction from the lysogenic state, a
state in which the only phage protein expressed is the repressor, CI, by defining
a simple differential equation model for dynamics of CI concentration. The
model includes promoter control, CI monomer and dimer production kinetics,
and decay kinetics. In the same paper, Chung & Stephanopoulos show that a
similar feedback circuit is found in the lactose operon.

In 1995 McAdams & Shapiro (61) defined the first model of theλ circuit
that followed the qualitative dynamics of the phage from infection through
the decision to outcome. They concluded that detailed simulation of genetic
mechanisms determining the temporal pattern of protein production and of
the coupled protein reactions would be necessary to model regulatory circuits
quantitatively. While investigating how to simulate molecular level regula-
tory mechanisms quantitatively, McAdams & Arkin analyzed dynamics of a
representative single genetically-coupled link, that is, a one promoter-gene
complex whose protein product regulates another promoter (60). In that study,
an integrated molecular level model of the effector-operator reactions in the
promoter control region, including the closed- to open-complex isomerization
reaction and the message-translation control reactions, was developed. Ow-
ing to the low intracellular concentrations of the reacting species and the slow
reaction rates in these reactions, they concluded that conventional methods of
modeling coupled chemical reactions are frequently invalid for modeling the
time profile of regulatory protein production. Rather, McAdams & Arkin sug-
gest it is necessary to explicitly include consideration of the randomness in
protein production that is inevitable in chemical systems where the reacting
species are at low concentrations and reaction rates are slow as is typically
the case for genetic regulatory proteins (36, 60). Determining the implica-
tions of this observation regarding stochastic regulatory gene expression mech-
anisms for the dynamics of developmental switches is a current challenge to the
field.

MODELING ISSUES

This section discusses several modeling issues central to simulation of genetic
regulatory circuits: (a) promoter control models, (b) stochastic processes in
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regulatory kinetics, (c) modeling macromolecular complexes, and (d ) uncer-
tainty in intracellular environment and reaction rates.

Promoter Control Models
The notion that promoter regulation can be modeled using a Boolean threshold
logic paradigm is attractive in that it enables algebraic analysis of regulatory
networks and rapid simulation algorithms. In a representative example of this
approach, Thomas and coworkers analyzed the behavior of different feedback
configurations in hypothetical small genetic networks (92–94, 96). Effector
concentration is modeled by a differential equation of the form

ẋi = ki Fi (x1, x2, . . . , xn)− kdi xi ,

where thexi’s are concentrations of theith protein species,̇xi is the time deriva-
tive of xi, ki is the rate of protein production when the gene typei is “on,” and
kdi is the degradation rate constant for protein typei. TheFi are step-functions,
similar to the limiting form of a Hill function at high levels of cooperativity,
assumed to equal 0 or 1 depending on the concentration of thexi relative to
threshold values determined by the kinetics of the promoter sites. The possi-
ble “states” of the system are identified with the distinct value ranges of the
xi. Using this formulation, a form of logical analysis is defined that provides
qualitative insights into the dynamics to be expected from small genetic circuits
with different combinations of positive and negative feedback loops (96). The
approach is also applied to analysis of phage lambda immunity control (92).
Tchuraev and co-workers use a similar Boolean threshold approximation to
promoter control to simulate behavior of genetically controlled systems in an
approach they call a “generalized threshold model” (74, 91).

The Boolean threshold approximation to promoter control is also applied to
modeling of large networks in so-called Boolean Network models. Assump-
tions in the Boolean Network approach are summarized in (84): (a) the state
of each gene or other network element can be characterized as eitheron (one)
or off (zero), (b) the combinational control of gene expression can be reduced
to a “wiring diagram” of the network, (c) the computation of the interactions
indicated by the wiring diagram can be approximated by Boolean combina-
tional logic rules, and (d) all elements (to first approximation) update theiron
oroff states synchronously. A Discrete Dynamics Lab (DDL) software package
(103) is available that computes the behavior of hypothetical networks. Propo-
nents suggest that the Boolean Network models provide insight into behavior,
evolution, and self-organizing capabilities of large-scale genetic networks and
that this paradigm offers an approach to reverse engineering data describing



       

P1: PSA/plb P2: ARS/RPK/ARY QC: RPK/AGR T1: RPK

March 27, 1998 9:29 Annual Reviews AR056-08

GENETIC CIRCUIT SIMULATION 213

temporal patterns of gene expression to extract the logical structure of the un-
derlying physical gene regulatory network.

The Boolean characterization of genetic activation and repression is fre-
quently a poor approximation of promoter control functions. For example, the
PRM promoter activation function plotted in Figure 2 is distinctly non-Boolean.
Furthermore, there are numerous control mechanisms outside of promoter acti-
vation control that are equally or more important in regulatory logic. Examples
include actively controlled termination sites, the many types of posttranscrip-
tional regulation, and protein-mediated controls (proteolysis, phosphorylation,
methylation).

Shea & Ackers (83) define a physically-based promoter control model for
the common operator region of the divergent PR and PRM promoters that are
central elements of phage lambda’s so-called “switch.” This switch is imple-
mented by the intricate biochemistry of the operator region, which includes
three closely situated operator sites where homodimers of two phage-encoded
molecules, Cro and CI, bind competitively and in sequence, but in opposite
order (59, 65, 66, 75). The respective RNA polymerase (RNAP) footprints of
promoters PR and PRM overlap the operator sites. In this well-studied system,

Figure 2 The phageλPRM promoter is controlled by the concentration of both Cro and CI dimers;
the promoter activation level in open complexes per second (OC/s), is plotted in the upward or
z-direction versus the log of the molar dimer concentrations plotted in the x–y plane. The temporal
pattern of PRM promoter activation immediately after phage infection of anE. coli cell depends on
the way the concentrations of the controlling effector grows.Arrows illustrate the “path” of PRM
activation for a lysogenic outcome (a) and a lytic outcome (b). Each cell starts from the (1 nM Cro2,
1 nM CI2) point marked withSat the right rear ofa andb. (In anE. coli cell, one molecule/cell
is roughly equivalent to a 1 nM concentration.) In the lysogenic case,a, the system eventually
enters a region of positive autoregulation locking repressor production on, while in the lytic case,
b, repressor production from PRM is never activated.
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the 40 possible occupancy configurations (states) of the various binding sites
by Cro2, CI2, or RNAP are known, as well as transcript-initiation rates for those
configurations that are transcriptionally active. Also, the binding free energies
for each site and each species binding at the site were measured along with
incremental contributions from cooperative binding. Shea & Ackers assumed
that the operator binding sites are in near equilibrium with the free concen-
tration of Cro2, CI2, and RNAP. Knowing the total binding energy of each
state, the fractional occupancy is calculated using the partition function. Then,
the transcriptional activity of each promoter is calculated by summing the tran-
script initiation rates of each transcriptionally active state multiplied by the
fraction of time that the system spends in that state. As the concentration of
repressor molecules increases, the probability of occupancy of transcriptionally
active sites decreases, and that of transcriptionally inactive states increases so
that the rate of transcript initiation is repressed. Figure 2 shows the activa-
tion surface of the PRM promoter as a function of Cro2 and CI2 concentrations
calculated using the Shea–Ackers scheme. An advantage of the activation sur-
face representation is that the progression of regulatory decisions implemented
by changing concentrations of signal proteins can be visualized as a path on
the activation surfaces of the controlling promoters. The differing paths in
phageλ-infected cells that commit to lysogeny versus those that become lytic
is illustrated schematically in Figure 2.

Cellular regulatory logic is inherently a logic based on continuously variable
parameters, that is, it is an “analog” logic. Accordingly, it seems inevitable
that the most useful heuristic for simulating promoter control will prove to
be the one that best approximates the n-dimensional promoter activation sur-
face rather than one that forces a nonphysical discrete logic approximation.
Whenever a Boolean approximation is valid, the analysis and modeling of
system behavior can be simplified. However, validity of the Boolean approxi-
mation has to be examined critically for each regulatory subelement in a system.
Hybrid models with behavior of some elements characterized as Boolean and
other elements treated with detailed kinetics may prove to be the most efficient
compromise.

Stochastic Processes in Regulatory Kinetics
Numerous studies have analyzed cellular regulation using ordinary differen-
tial equations (ODE) to model the macroscopic kinetics of coupled chemical
reactions. Analytical or numerical methods are used to solve the equations.
Examples include models addressing (a) bacterial chemotaxis control (6, 39);
(b) the oocyte cell cycle (71, 90); (c) T7 phage infection (19); (d ) conditions
for lambda lysogen induction (9); and (e) the phageλ lysis-lysogeny decision
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(77). In defining the differential equations for these models, there is an implicit
assumption of continuously varying chemical concentration and deterministic
dynamics. For a chemical system to be compatible with these assumptions the
number of molecules of each type must be large compared to thermal fluctua-
tions in concentration, and for each type of reaction in the system, the number
of reactions per unit time must be large in each observation interval. In vivo
genetic reactions usually violate the assumptions of determinism and continuity
underlying conventional kinetics because they occur at low concentrations, are
isolated spatially, and have slow reaction rates.

McQuarrie (63) analyzes the kinetics of chemical systems with small num-
bers of participating molecules; the behavior of such “small” chemical sys-
tems, predicted using a more exact stochastic formulation, is shown to dif-
fer from the prediction using conventional deterministic kinetics. Analytical
solution to stochastic reaction equations is only practical for simple reac-
tions. However, numerical solutions can be computed for complex systems
of coupled stochastic reactions using the Monte Carlo algorithm described by
Gillespie (26). The Gillespie algorithm produces a stochastic realization of
the temporal behavior of the system by calculating the probabilistic outcome
of each discrete chemical event and resulting changes in the number of each
molecular species. If the physical model and its assumptions are valid, and
parameter estimates are sound, then this stochastic simulation algorithm pro-
duces a more realistic and complete description of the time-dependent be-
havior of stochastic reaction systems than a deterministic kinetic calculation
(26, 27).

The Gillespie stochastic simulation algorithm is based on application of the
chemical master equation. The master equation is a stochastic differential
difference equation describing the time evolution of the probability densities
for the concentrations of the chemical species comprising the reaction system
(26, 27, 99). States of the system are characterized by a “state vector.” Each
component of the state vector represents the number of molecules of a partic-
ular molecular species in the chemical system at a given time. Every feasible
chemical reaction represents a transition between states and the probability of
that transition is determined by the probability of the corresponding reaction.
The transition probabilities in these master equations are related to the conven-
tional macroscopic rate coefficients of the reactions that comprise the chemical
network.1

1The stochastic kinetic parameters in (26) are related to conventional deterministic kinetic
parameters: For reactions of the formX

k→ anything, kstoch = kdet; for reactions of the form
X + Y

k→ anything, kstoch = kdet/(Ag Vcell); for reactions of the formX + X
k→ anything,

kstoch= kdet/(2 Ag Vcell), whereAg is Avagodro’s number andVcell is the cell volume.
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In application of the Gillespie algorithm to simulation of bacterial regula-
tion, each simulation run represents a possible evolution of a single cell from a
starting condition for that case. Multiple runs are used to develop a statistical
characterization of the outcomes expected for a cell population. Statistical sam-
pling theory is used to determine how many simulation runs must be included to
achieve a target confidence level in the statistics of outcomes. The Shea–Ackers
promoter model can be adapted to the Gillespie simulation algorithm by cal-
culating the instantaneous probability of each distinct transcriptionally active
state of a promoter using the partition function, and then using this probability
in calculating the reaction probabilities for the transcript initiation reactions.

The predicted temporal pattern of regulatory protein production from a rep-
resentative activated bacterial promoter is described by McAdams & Arkin
(60) and is shown here in Figure 3. They define a detailed model of gene
expression mechanisms that includes an integrated molecular-level model of
the effector-operator reactions in the promoter control region, the closed- to
open-complex isomerization reaction, transcript elongation, and the reactions
controlling message translation.

The simulated homodimer concentration growth for three runs is shown in
Figure 3a; each run exhibits a substantially different pattern of dimer concen-
tration growth and is illustrative of the wide range of regulatory expression
patterns that can be expected in a homogenous cell population. Figure 3b
shows the mean and standard deviation of the expected number of dimers in
the cell at each time for gene dosage= 1, 2, and 4. The horizontal lines at
25 and 50 nM delineate a representative range over which switching is effected
by bacterial regulatory proteins. These simulations of the pattern of regulatory
protein production suggest that proteins are produced in short bursts of variable
numbers of proteins that occur at random intervals. As a result, the genetic
switching time in growing cells can have considerable uncertainty. Stronger
promoters, higher gene dosage (or equivalently in many cases, multiple promot-
ers per gene), and lower signal thresholds all act to reduce timing uncertainty
(60). These observations suggest that the validity of using conventional kinetic
analysis for in vivo regulatory functions must always be examined critically,
particularly for processes in cells that are regulated by low concentrations of
short-lived effector molecules.

If we accept McAdams & Arkin’s prediction that the temporal pattern of
regulatory protein production in individual cells can be quite different for each
cell in a population, then this “noise” phenomenon should affect the cellular
outcomes for competitively regulated switching mechanisms. As a simple
example, consider the situation shown schematically in Figure 4, where an
activating and a repressing protein expressed from two independent promoters
competitively regulate an operon transcribed from promoter PG.
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Figure 3 (a) Three simulation runs showing a different realization of the pattern of homodimer
production from a representative bacterial promoter in a single cell.Dashed lines, declining con-
centrations equivalent to 25 and 50 dimer molecules in the growing cell. Parameters: dimerization
equilibrium constant= 20 nM; protein half-life= 30 min. Initial cell volume= 1 × 10−15 l,
doubling in 45 min. (b) Mean and±1 σ results at gene dosages of 1, 2, and 4. At higher gene
dosages, protein P1 is being produced from more genes; the concentration rises more rapidly, and
the effective concentration range is reached quicker. Also, the dispersion in time to effectiveness
(i.e. the switching delay) is lower for faster-growing signals [from Figure 3 in (60)].

Illustrative contours for PG activation are shown versus the activator and
repressor concentrations. The bold line is the 50% activation contour. Hypo-
thetical successive distributions for the activator and repressor concentrations
from the two independent operons are shown at times T1, T2, and T3. The
situation at T3 illustrates how activation of PG can vary widely from cell to cell
because of the statistical differences in activator and repressor production. In
developmental switches, such competitively regulated promoters are found as
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Figure 4 Illustration of differential promoter activation across a cell population resulting from
statistical variations in concentrations of competitive effectors. The activator and repressor operons
shown are assumed to be independent so that stochastic gene expression mechanisms in each
operon produce the respective protein types in a different pattern in each cell.Small circular
contour patterns, concentration distributions with increasing means at successive times T1, T2,
and T3 after activation of PA and PR at T0. Contours of the illustrative activation surface for PG
as a function of activator and repressor concentration are also shown.Bold line, 50% activation
contour for promoter PG. This simple example illustrates how normal dispersion of concentrations
of controlling proteins can result in differential activation of controlled operons in different cells.
Consequences for the cell will depend on the specific kinetic parameters for a particular case and,
importantly, on the larger regulatory circuit responding to proteins from the controlled operons.

elements of the regulatory circuitry that determines cell fate. Examples are
found in the phageλ and Bacillus subtiliscases cited above. In both these
organisms, the switching circuits partition the population into subpopulations
following different pathways, e.g. fractional commitment to lysogeny or sporu-
lation. Circuits based on bistable genetic regulatory mechanisms are also used
in many organisms to produce subpopulations of distinct phenotypes by ran-
dom inversion of DNA segments (14). Quantitative verification of the role of
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molecular-level fluctuations in regulation of these population-level outcomes
is a current challenge for experimentalists and modelers.

Modeling Macromolecular Complexes
Multiprotein complexes, such as polymerases, topoisomerases, and ribosomes,
are the processing machines that perform the DNA processing and manipula-
tion tasks that are central to execution of genetic regulatory logic. Realistic
modeling of the functions of these multiprotein genetic machines is a central
challenge in modeling behavior of genetic networks. These complexes, al-
though chemically based and acting to produce chemical changes, behave in
many ways more like macroscopic machines than conventional chemical reac-
tion mechanisms. For example, they have to be assembled to function; they
can create products from raw materials according to stored instructions (ribo-
somes and polymerases); they can make macroscopic changes in other cellular
objects (integrases and invertases); and many are processive. Heuristic models
that capture their dynamical behavior within regulatory networks will differ
from conventional chemical reaction models.

Uncertainty of Intracellular Reaction Parameters
The intracellular chemical environment is poorly characterized and probably
varies widely from cell to cell in populations and from moment to moment in
individual cells. The causes of these variations include the stochastic variations
in reaction rate parameters cited above and changes in cellular chemistry as the
cell cycle progresses. Except in the best-stirred media, individual cells in a
colony can experience wide differences in the local nutrient microenvironment
that can affect rates of synthetic reactions or even trigger global regulatory
changes within some cells. Furthermore, in growing cells there are significant
random components in cell division time, in daughter cell size, and in the par-
titioning of the molecular endowment between daughter cells. In spite of these
perturbations, cells function successfully and regulatory mechanisms have con-
sistent outcomes, suggesting that regulatory circuit designs and the molecular
details that determine kinetic parameters are under selective pressure for ro-
bust operation in the face of large variations in the intracellular environment.
Simulation studies of the signal transduction network in theE. colichemotactic
regulatory circuit suggest that that circuit’s performance is robust to changes in
many parameter values (4, 37). If regulatory circuit designs found in wild-type
organisms are indeed selected to have this type of robustness, then construction
of adequate simulation models of the circuits may only require rough values
for their kinetic parameters. When the “engineering” rules for design of robust
regulatory networks are defined, it will be possible to test the proposition that
robust performance is a significant source of evolutionary selection pressure.
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CHALLENGES AND OPPORTUNITIES

Molecular level models are needed to analyze dynamical behavior of multigene
systems, to predict behavior of mutant circuits, and to identify the engineering
design principles applicable to design of genetic regulatory circuits. In the
near term, the greatest opportunity will be in modeling of bacterial systems.
Additional and different mechanisms are present in eukaryotic networks. Key
distinctions in eukaryotes include: (a) more complex regulatory control regions
involving molecular mechanisms that are only beginning to be understood;
(b) posttranscriptional message processing; and (c) compartmentalization of
functions, such as separation of transcription and translation, by the nuclear
membrane.

Extensive details of many genetic mechanisms are now known in bacterial
systems and complete genome sequences are becoming available. Develop-
ment of simulation models of processes, such as quorum sensing, that involve
regulation within the signal transduction networks as well as in the genetic
networks will clarify the design principles of cellular regulatory circuits.

In such integrated simulations, the multiprotein complexes that implement
genetic regulatory functions (for example, the DNA and RNA polymerase com-
plexes and others that edit and reorganize DNA and RNA) will have to be
modeled with heuristic mechanical abstractions that capture their essential reg-
ulatory functions. Also, the impact of stochastic intracellular chemistry on
regulatory circuit behavior will have to be examined closely. When the under-
lying design rules for regulatory circuits are understood, it will be far easier to
recognize common circuit motifs, to identify functions of individual proteins
in regulation, and to redesign circuits for altered functions.

ACKNOWLEDGMENT

This work was supported by Office of Naval Research Grant N00014-96-1-
0564.

Visit the Annual Reviews home pageat
http://www.AnnualReviews.org.

Literature Cited

1. Achs MJ, Anderson JH, Garfinkel D.
1971. Gluconeogenesis in rat liver cy-
tosol, I.Comput. Biomed. Res.4:65–105

2. Achs MJ, Garfinkel D. 1977. Com-
puter simulation of energy metabolism in
anoxic perfused rat heart.Am. J. Physiol.
232:R164–74

3. Arkin AP, Ross J. 1994. Computational

functions in biochemical reaction net-
works.Biophys. J.67:560–78

4. Barkai N, Leibler S. 1997. Robustness
in simple biochemical networks.Nature
387:913–17

5. Bray D. 1995. Protein molecules as com-
putational elements in living cells.Nature
376:307–12



    

P1: PSA/plb P2: ARS/RPK/ARY QC: RPK/AGR T1: RPK

March 27, 1998 9:29 Annual Reviews AR056-08

GENETIC CIRCUIT SIMULATION 221

6. Bray D, Bourret RB, Simon MI. 1993.
Computer simulation of the phosphoryla-
tion cascade controlling bacterial chemo-
taxis.Mol. Biol. Cell4:469–82

7. Brun YV, Marczynski G, Shapiro L. 1994.
The expression of asymmetry during
Caulobacter cell differentiation. Annu.
Rev. Biochem.63:419–50

8. Cheetham BF, Katz ME. 1995. A role for
bacteriophages in the evolution and trans-
fer of bacterial virulence determinants.
Mol. Microbiol. 18:201–8

9. Chung JD, Stephanopoulos G. 1996. On
physiological multiplicity and popula-
tion heterogeneity of biological systems.
Chem. Eng. Sci.51:1509–21

10. Collado-Vides J, Magasanik B, Gralla JD.
1991. Control site location and transcrip-
tional regulation inEscherichia coli. Mi-
crob. Rev.55:371–94

11. Domian IJ, Quon KC, Shapiro L. 1996.
The control of temporal and spatial orga-
nization during theCaulobactercell cy-
cle.Curr. Opin. Genet. Dev.6:538–44

12. Domian IJ, Quon KC, Shapiro L. 1997.
Cell type-specific phosphorylation and
proteolysis of a transcriptional regulator
controls the G1-to-S transition in a bacte-
rial cell cycle.Cell 90:415–24

13. Donachie WD. 1993. The cell cycle
of Escherichia coli. Annu. Rev. Microb.
47:199–230

14. Dorman CJ. 1995. DNA topology and the
global control of bacterial gene expres-
sion: implications for the regulation of
virulence gene expression.Microbiology
(Reading)141:1271–80

15. Echols H. 1986. Multiple DNA-protein
interactions governing high-precision
DNA transactions.Science233:1050–56

16. Echols H, Guarneros G. 1983. Control of
integration and excision. InLambda II,
ed. R Hendrix, JW Roberts, FW Stahl, RA
Weisberg, pp. 75–92. Cold Spring Harbor,
NY: Cold Spring Harbor Lab. Press

17. Egger LA, Park H, Inouye M. 1997. Sig-
nal transduction via the histidyl-aspartyl
phosphorelay.Genes Cells2:167–84

18. Ehlde M, Zacchi G. 1995. Mist: a user-
friendly metabolic simulator.Comp. Ap-
plic. Biosci.11:201–7

19. Endy D, Kong D, Yin J. 1997. Intracellu-
lar kinetics of a growing virus: a genet-
ically structured simulation for bacterio-
phage T7.Biotech. Bioeng.In press

20. Errington J. 1993.Bacillus subtilissporu-
lation: regulation of gene expression and
control of morphogenesis.Microbiol. Rev.
57:1–33

21. Finlay BB, Cossart P. 1997. Exploita-
tion of mammalian host cell functions

by bacterial pathogens.Science276:718–
25

22. Finlay BB, Falkow S. 1997. Common
themes in microbial pathogenicity revis-
ited.Microbiol. Mol. Biol. Rev.61:136–69

23. Freundlich M, Ramani N, Mathew E,
Sirko A, Tsui P. 1992. The role of inte-
gration host factor in gene expression in
Escherichia coli.Mol. Microbiol.6:2557–
63

24. Friedman DI. 1992. Interaction between
bacteriophage lambda and itsEscherichia
coli host.Curr. Opin. Genet. Dev.2:727–
38

25. Galan JE, Bliska JB. 1996. Cross-talk be-
tween bacterial pathogens and their host
cells.Annu. Rev. Cell. Dev.12:221–55

26. Gillespie DT. 1977. Exact stochastic sim-
ulation of coupled chemical reactions.J.
Phys. Chem.81(25):2340–61

27. Gillespie DT. 1992. A rigorous derivation
of the chemical master equation.Physica
A 188:404–25

28. Gober JW, Marques MV. 1995. Regula-
tion of cellular differentiation inCaul-
obacter crescentus. Microb. Rev.59:31–
47

29. Goldbeter A. 1991. A minimal cascade
model for the mitotic oscillator involving
cyclin and cdc2 kinase.Proc. Natl. Acad.
Sci. USA88:9107–11

30. Goldbeter A. 1996.Biochemical Oscilla-
tions and Cellular Rhythms: The Molecu-
lar Bases of Periodic and Chaotic Behav-
ior. Cambridge: Cambridge Univ. Press

31. Goosen N, van de Putte P. 1995. The reg-
ulation of transcription initiation by inte-
gration host factor.Mol. Microbiol. 16:1–
7

32. Gottesman S. 1984. Bacterial regulation:
global regulatory networks.Annu. Rev.
Genet.18:415–41

33. Gray KM. 1997. Intercellular communi-
cation and group behavior in bacteria.
Trends Microbiol.5(5):184–88

34. Gross R. 1993. Signal transduction and
virulence regulation in human and an-
imal pathogens.FEMS Microbiol. Rev.
10:301–26

35. Grossman AD. 1995. Genetic networks
controlling the initiation of sporulation
and the development of genetic com-
petence inBacillus subtilis. Annu. Rev.
Genet.29:477–508

36. Guptasarma P. 1995. Does replication-
induced transcription regulate synthesis
of the myriad low copy number proteins
of Escherichia coli? BioEssays17:987–
97

37. Hartwell L. 1997. A robust view of bio-
chemical pathways.Nature387:855–56



    

P1: PSA/plb P2: ARS/RPK/ARY QC: RPK/AGR T1: RPK

March 27, 1998 9:29 Annual Reviews AR056-08

222 MCADAMS & ARKIN

38. Hartwell LH, Weinert TA. 1989. Check-
points: controls that ensure the order of
cell cycle events.Science246:629–34

39. Hauri DC, Ross J. 1995. A model of exci-
tation and adaptation in bacterial chemo-
taxis.Biophys. J.68:708–22

40. Heinrich R, Rapoport SM, Rapoport TA.
1977. Metabolic regulation and mathe-
matical models.Prog. Biophys. Mol. Biol.
32:1–82

41. Herskowitz I, Hagen D. 1980. The lysis-
lysogeny decision of phage lambda: ex-
plicit programming and responsiveness.
Annu. Rev. Genet.14:399–445

42. Hicks KA, Grossman AD. 1996. Altering
the level and regulation of the major sigma
subunit of RNA polymerase affects gene
expression and development inBacillus
subtilis. Mol. Microbiol. 20:201–12

43. Horvitz HR, Herskowitz I. 1992. Mech-
anisms of asymmetric cell division: two
b’s or not two b’s, that is the question.Cell
68:237–56

44. Hyver C, Guyader HL. 1990. MPF and
cyclin: Modeling of the cell cycle mini-
mum oscillator.BioSystems24:85–90

45. Jacob F, Monod J. 1962.Elements of reg-
ulatory circuits in bacteria. Presented at
Symp. Biol. Organiz. Cell. Supercell Lev.,
Varenna, Italy, pp. 1–24. New York: Aca-
demic

46. Jacob F, Monod J. 1962.Genetic repres-
sion, allosteric inhibition, and cellular
differentiation.Presented at Symp. Cy-
todifferent. Macromol. Synth., Asilomar,
California, pp. 30–64. New York: Aca-
demic

47. Jacob F, Monod J. 1962.On the regula-
tion of gene activity. Symp. Cell. Regul.
Mech., pp. 193–209. Cold Spring Harbor,
NY: Cold Spring Harbor Lab. Press

48. Kacser H, Burns JA. 1973.The control
of flux. Presented at Symp. Soc. Exper.
Biol. Rate Control Biol. Proc., pp. 65–
104. Cambridge: Cambridge Univ. Press

49. Kaufmann WK, Paules RS. 1996. DNA
damage and cell cycle checkpoints.
FASEB J.10:238–47

50. Kim SK, Kaiser D, Kuspa A. 1992. Con-
trol of cell density and pattern by inter-
cellular signaling in myxococcus devel-
opment.Annu. Rev. Microbiol.46:117–39

51. Kleerebezem M, Quadri LE, Kuipers
OP, de Vos WM. 1997. Quorum sens-
ing by peptide pheromones and two-
component signal-transduction systems
in Gram-positive bacteria.Mol. Microb.
24:895–904

52. Koster JG, Destree OHJ, Raat NJH, West-
erhoff HV. 1990. Histones inXenopus lae-
vis’ early development: The race against

time.Biomed. Biochim. Acta49:855–77
53. Lauzeral J, Halloy J, Goldbeter A. 1997.

Desynchronization of cells on the de-
velopmental path triggers the formation
of spiral waves of cAMP duringDic-
tyosteliumaggregation.Proc. Natl. Acad.
Sci. USA94:9153–58

54. Lawrence PA, Morata G. 1994. Home-
obox genes: Their function inDrosophila
segmentation and pattern formation.Cell
78:181–89

55. Lee I-D, Palsson BO. 1992. A Macintosh
software package for simulation of hu-
man red blood cell metabolism. Section
II: Systems and programs.Comput. Meth.
Prog. Biomed.38:195–226

56. Levine H, Aranson I, Tsimring L, Truong
TV. 1996. Positive genetic feedback gov-
erns camp spiral wave formation inDic-
tyostelium. Proc. Natl. Acad. Sci. USA
93:6382–86

57. Li Y, Goldbeter A. 1992. Pulsatile signal-
ing in intercellular communication: peri-
odic stimuli are more efficient than ran-
dom or chaotic signals in a model based
on receptor desensitization.Biophys J.
61:161–71

58. Long SR, Staskawicz BJ. 1993. Prokary-
otic plant parasites.Cell 73:921–35

59. Maurer R, Meyer B, Ptashne M. 1980.
Gene regulation at the right operator (OR)
bacteriophage lambda. I: OR3 and auto-
genous negative control by repressor.J.
Mol. Biol. 139:147–61

60. McAdams H, Arkin A. 1997. Stochas-
tic mechanisms in gene expression.Proc.
Natl. Acad. Sci. USA94:814–19

61. McAdams HH, Shapiro L. 1995. Circuit
simulation of genetic networks.Science
269:650–56

62. McFall-Ngai MJ, Ruby EG. 1991. Sym-
biont recognition and subsequent mor-
phogenesis as early events in an animal-
bacterial mutualism.Science254:1491–
94

63. McQuarrie DA, Jachimowski CJ, Russell
ME. 1964. Kinetics of small systems II.
J. Chem. Phys.40:2914–21

64. Mendes P. 1993. GEPASI: a software
package for modelling the dynamics,
steady states and control of biochemical
and other systems.Comp. Applic. Biosci.
9:563–71

65. Meyer BJ, Maurer R, Ptashne M. 1980.
Gene regulation at the right operator (OR)
of bacteriophage lambda. II: OR1, OR2,
and OR3: their roles in mediating the ef-
fects of repressor and cro.J. Mol. Biol.
139:163–94

66. Meyer BJ, Ptashne M. 1980. Gene regula-
tion at the right operator (OR) of bacterio-



     

P1: PSA/plb P2: ARS/RPK/ARY QC: RPK/AGR T1: RPK

March 27, 1998 9:29 Annual Reviews AR056-08

GENETIC CIRCUIT SIMULATION 223

phage lambda. III: Lambda repressor di-
rectly activates gene transcription.J. Mol.
Biol. 139:195–205

67. Mizuno T. 1997. Compilation of all genes
encoding two-component phosphotrans-
fer signal transducers in the genome of
Escherichia coli. DNA Res.4:161–8

68. Monod J, Jacob F. 1962.General conclu-
sions: teleonomic mechanisms in cellular
metabolism, growth, and differentiation.
Presented at Symp. Cell. Regul. Mech.,
June 4–12, 1961. Cold Spring Harbor,
NY: Cold Spring Harbor Lab. Press

69. Neidhardt FC, Savageau MA. 1996. Reg-
ulation beyond the operon. InEscherichia
coli and Salmonella typhimurium: Cellu-
lar and molecular biology, pp. 1310–24.
Washington, DC: Am. Soc. Microbiol.

70. Norel R, Agur Z. 1991. A model for the
adjustment of the mitotic clock by cy-
clin and MPF levels.Science251:1076–
78

71. Novak B, Tyson JJ. 1993. Numerical anal-
ysis of a comprehensive model of M-
phase control inXenopusoocyte extracts
and intact embryos.J. Cell Sci.106:1153–
68

72. Obeyesekere MN, Herbert JR, Zimmer-
man SO. 1995. A model of the G1 phase
of the cell cycle incorporating cyclin
E/cdk2 complex and retinoblastoma pro-
tein.Oncogene11:1199–205

73. Obeyesekere MN, Tucker SL, Zimmer-
man SO. 1992. Mathematical models
for the cellular concentrations of cyclin
and mpf.Biochem. Biophys. Res. Comm.
184:782–89

74. Prokudina EI, Valeev RY, Tchuraev RN.
1991. A new method for the analysis of the
dynamics of the molecular genetic control
systems. II: Application of the method of
generalized threshold models in the in-
vestigation of concrete genetic systems.
J. Theor. Biol.151:89–110

75. Ptashne M. 1992.A Genetic Switch:
Phageλ and Higher Organisms. Cam-
bridge, MA: Cell Press/Blackwell

76. Quon KC, Marczynski GT, Shapiro L.
1996. Cell cycle control by an essential
bacterial two-component signal transduc-
tion protein.Cell 84:83–93

77. Reinitz J, Vaisnys JR. 1990. Theoretical
and experimental analysis of the phage
lambda genetic switch implies missing
levels of cooperativity.J. Theor. Biol.
145:295–318

78. Roberts RC, Mohr CD, Shapiro L.
1996. Developmental programs in bacte-
ria. Curr. Top. Dev. Biol.34:207–57

79. Rosen R. 1968. Recent developments in
the theory of control and regulation of cel-

lular processes. InInternational Review of
Cytology,ed. GH Bourne, JF Danielli, pp.
25–88. New York: Academic

80. Sauro HM. 1993. SCAMP: A general-
purpose simulator and metabolic control
analysis program.Comp. Applic. Biosci.
9:441–50

81. Savageau MA. 1991. Biochemical sys-
tems theory: operational differences
among variant representations and their
significance.J. Theor. Biol.151:509–30

82. Shapiro L, Losick R. 1997. Protein local-
ization and cell fate in bacteria.Science
276:712–18

83. Shea MA, Ackers GK. 1985. The OR con-
trol system of bacteriophage lambda: A
physical-chemical model for gene regula-
tion. J. Mol. Biol.181:211–30

84. Somogyi R, Sniegoski CA. 1996. Mod-
eling the complexity of genetic networks:
Understanding multigenic and pleiotropic
regulation.Complexity1:45–63

85. Sorribas A, Savageau MA. 1989. A com-
parison of variant theories of intact bio-
chemical systems. I: Enzyme-enzyme in-
teractions and biochemical systems the-
ory. Math. Biosci.94:161–93

86. Sorribas A, Savageau MA. 1989. A com-
parison of variant theories of intact bio-
chemical systems. II: Flux-oriented and
metabolic control theories.Math. Biosci.
94:195–238

87. Spiro PA, Parkinson JS, Othmer HG.
1997. A model of excitation and adapta-
tion in bacterial chemotaxis.Proc. Natl.
Acad. Sci. USA94:7263–68

88. Stephanopoulos G, Vallino JJ. 1991. Net-
work rigidity and metabolic engineer-
ing in metabolite overproduction.Science
252:1675–81

89. Strauss EJ, Falkow S. 1997. Microbial
pathogenesis: genomics and beyond.Sci-
ence276:707–12

90. Swanson CA, Arkin A, Ross J. 1997. An
endogenous calcium oscillator may con-
trol early embryonic division.Proc. Natl.
Acad. Sci. USA94:1194–99

91. Tchuraev RN. 1991. A new method for the
analysis of the dynamics of the molecular
genetic control systems. I: Description of
the method of generalized threshold mod-
els.J. Theor. Biol.151:71–88

92. Thieffry D, Thomas R. 1995. Dynami-
cal behaviour of biological regulatory
networks. II: Immunity control in bac-
teriophage lambda.Bull. Math. Biol.57:
277–97

93. Thomas R. 1973. Boolean formalization
of genetic control circuits.J. Theor. Biol.
42:563–85

94. Thomas R. 1991. Regulatory networks



    

P1: PSA/plb P2: ARS/RPK/ARY QC: RPK/AGR T1: RPK

March 27, 1998 9:29 Annual Reviews AR056-08

224 MCADAMS & ARKIN

seen as asynchronous automata: a logical
description.J. Theor. Biol.153:1–23

95. Thomas R, Gathoye A-M, Lambert L.
1976. A complex control circuit: Regu-
lation of immunity in temperate bacterio-
phages.Eur. J. Biochem.71:211–27

96. Thomas R, Thieffry D, Kaufman M. 1995.
Dynamical behaviour of biological regu-
latory networks. I: Biological role of feed-
back loops and practical use of the con-
cept of the loop-characteristic state.Bull.
Math. Biol.57:247–76

97. Tyson JJ. 1991. Modeling the cell division
cycle: cdc2 and cyclin interactions.Proc.
Natl. Acad. Sci. USA88:7328–32

98. Tyson JJ, Novak B, Odell GM, Chen K,
Thron CD. 1996. Chemical kinetic the-
ory: Understanding cell-cycle regulation.
Trends Biochem. Sci.221:89–96

99. Van Kampen NG. 1992.Stochastic Pro-
cesses in Physics and Chemistry, p. 460.
Amsterdam: North-Holland

100. Wells WAE. 1996. The spindle-assembly
checkpoint: aiming for a perfect mito-
sis every time.Trends Cell Biol.6:228–
34

101. Westerhoff HV. 1995. Subtlety in con-
trol—metabolic pathway engineering.
Trends Biotech.13:242–44

102. Westerhoff HV, van Workum M. 1990.
Control of DNA structure and gene ex-
pression.Biomed. Biochim. Acta49:839–
53

103. Wuensche A, Lesser MJ. 1992. The global
dynamics of cellular automata. InSFI
Studies in the Sciences of Complexity.
Reading, MA: Addison-Wesley

104. Wurgler-Murphy SM, Saito H. 1997.
Two-component signal transducers and
MAPK cascades.Trends Biochem. Sci.
22:172–76

105. Yura T. 1996. Regulation and conserva-
tion of the heat-shock transcription factor
sigma32.Genes Cells1:277–84


