
Ecological Applications, 16(2), 2006, pp. 829–837
� 2006 by the Ecological Society of America

ESTIMATING THE ABUNDANCE OF MOUSE POPULATIONS OF KNOWN
SIZE: PROMISES AND PITFALLS OF NEW METHODS

PAUL B. CONN,1,4 ANTHONY D. ARTHUR,2 LARISSA L. BAILEY,3 AND GRANT R. SINGLETON
2

1Department of Fishery and Wildlife Biology, Colorado State University, Wagar Hall, Fort Collins, Colorado 80523 USA
2CSIRO Sustainable Ecosystems, GPO Box 284, Canberra ACT 2601 Australia

3USGS Cooperative Fish and Wildlife Research Unit, North Carolina State University and Patuxent Wildlife Research Center, 12100
Beech Forest Road, Laurel, Maryland 20708-4017 USA

Abstract. Knowledge of animal abundance is fundamental to many ecological studies.
Frequently, researchers cannot determine true abundance, and so must estimate it using a
method such as mark–recapture or distance sampling. Recent advances in abundance
estimation allow one to model heterogeneity with individual covariates or mixture distributions
and to derive multimodel abundance estimators that explicitly address uncertainty about which
model parameterization best represents truth. Further, it is possible to borrow information on
detection probability across several populations when data are sparse. While promising, these
methods have not been evaluated using mark–recapture data from populations of known
abundance, and thus far have largely been overlooked by ecologists. In this paper, we explored
the utility of newly developed mark–recapture methods for estimating the abundance of 12
captive populations of wild house mice (Mus musculus). We found that mark–recapture
methods employing individual covariates yielded satisfactory abundance estimates for most
populations. In contrast, model sets with heterogeneity formulations consisting solely of
mixture distributions did not perform well for several of the populations. We show through
simulation that a higher number of trapping occasions would have been necessary to achieve
good estimator performance in this case. Finally, we show that simultaneous analysis of data
from low abundance populations can yield viable abundance estimates.

Key words: abundance estimation; Huggins-Alho model; MARK; mark–recapture; model averaging;
Mus musculus; Pledger model.

INTRODUCTION

Knowledge of abundance is fundamental to the study

of ecology. For instance, ecologists may use time series

of abundance to parameterize predator–prey models, to

examine species–habitat relationships, or to evaluate the

effects of experimental treatments on populations. In an

applied context, wildlife managers often use abundance

estimates for determining harvest quotas, for deciding

management options for pest populations, and for

formulating conservation plans. Reliable methods for

estimating abundance are thus critical for the success of

a diverse array of ecological applications, and should

include both design-based and model-based consider-

ations.

One common approach for estimating abundance is

mark–recapture. In these studies, capture data from

uniquely marked individuals over two or more trapping

occasions provides the information necessary to estimate

a probability of detection, p, and an abundance

parameter, N. Often, ecologists are confronted with

the additional challenge of diagnosing and modeling

heterogeneity, behavioral response, and time effects on

the probability of capture (Otis et al. 1978). If not

properly addressed, these sources of variation can

seriously compromise abundance estimates. Since the

late 1970s, many biologists have used program CAP-

TURE (Otis et al. 1978, White et al. 1982, Rexstad and

Burnham 1991) to help in making inferences about

detection probability and to calculate abundance

estimates (White 2005).

A number of studies have examined the performance

of individual closed capture models, such as those

available in CAPTURE, either through simulation (e.g.,

Otis et al. 1978, Menkens and Anderson 1988, McKel-

vey and Pearson 2001, Conn et al. 2004) or by

comparing mark–recapture abundance estimates to

‘‘known’’ population sizes (e.g., Edwards and Eberhardt

1967, Carothers 1973, Manning et al. 1995, Davis et al.

2003, Parmenter et al. 2003). An additional focus in

several of these studies was to evaluate the reliability of

indexes of abundance such as number of unique

individuals captured (Mtþ1). Conn et al. (2004) and

White (2005) showed that unanticipated variation in

detection probability can cause biases in inferences made

from indexes, particularly when detection probabilities

vary systematically with treatment, site condition, or

any other feature being compared. In order to use

indexes, one must make the assumption that detection
probability does not vary in a systematic way. However,
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the data typically gathered for indexes are often

insufficient to address variation in detection probabil-

ities, and thus cannot reliably assess the performance of

the index.

Comparisons of index and mark–recapture estimator

performance have often been made with respect to a

limited number of individual estimators, and have not

taken into account recent developments in mark–

recapture methodology that allow researchers to per-

form model selection and averaging, and to combine

data to achieve more efficient estimators. These develop-

ments allow models where capture probability can be

modeled across multiple groups as a function of

individual covariates (Huggins 1989, 1991, Alho 1990)

or mixture distributions (Pledger 2000), and for a

modeling framework that explicitly acknowledges un-

certainty about which mark–recapture estimator best

represents truth (Stanley and Burnham 1998, Burnham

and Anderson 2002). Ecologists can readily implement

these developments in program MARK (White and

Burnham 1999), which allows users to formulate a

diverse array of potential estimators with design

matrices (cf. Lebreton et al. 1992).

While these methodological advances are compelling,

ecologists have tended to avoid MARK for abundance

estimation, in part because of its recent development,

and in part because of the lack of published literature on

estimator performance (G. C. White, personal commu-

nication). In this paper, we analyzed trapping data from

12 populations of wild house mice (Mus musculus) of

known abundance using program MARK. Davis et al.

(2003) employed similar data to estimate population size

for a number of default estimators, but did not examine

model-averaged estimators or approaches that model

capture probability as a function of individual covar-

iates. We provide a short description of field trapping

methods, and review the modeling framework and the

models we used for analysis. In describing our analysis,

we explore several common nuances that ecologists are

likely to encounter when modeling abundance with

covariates, with multiple sparse data sets, and when trap

saturation occurs. Finally, we present estimates of

abundance, compare these to true population sizes,

and discuss the reliability of each modeling approach.

METHODS

Field trapping

Laboratory-reared house mice were released into six
153 15 m enclosures during each of two fertility control
experiments (see Davis et al. 2003 for details). Food and
water were provided in each enclosure, and initial
population sizes of ;20 individuals were allowed to
grow. Trapping was conducted during four primary
trapping sessions over an 18-wk period for the first
experiment, and for seven primary trapping sessions
over a 34-wk period for the second experiment. During
each primary session, trapping was conducted for four

consecutive nights on a 63 6 trapping grid, consisting of
36 baited Longworth live-capture traps (Longworth
Scientific, Abingdon, UK) per enclosure. Researchers
tagged new individuals with individually numbered
Hauptner brass ear tags (Sieper, Sydney, Australia)
and recorded sex, weight, length, and reproductive
status. After each experiment, true abundance was
measured by completely removing animals from each
enclosure, by live trapping animals until none were
caught on two consecutive nights, and then by snap
trapping for an additional week to ensure that none
remained in the enclosure. The total time for removal
varied from 8 to 23 days, with the vast majority of
individuals caught within the first week of trapping.
Most founders were still alive after the 18- and 34-wk
experiments, indicating a high weekly survival rate. Thus
we anticipated a minimal negative bias in our true
abundance values. Very small mice (,55 mm) generally
did not appear in traps until complete removal; thus, we
needed to make some assumptions about which mice
were part of the catchable population during the final
trapping session. We established a threshold cutoff value
for length of 55 mm for unmarked mice, but recognized
that growth of mice between the final trapping session
and removal might result in recruitment of mice into the
catchable population. To address this problem, we fitted
a growth model to data from both experiments (Fig. 1),
and applied an estimated growth rate of 0.75 mm/d for
55-mm mice to back calculate which mice would have
had lengths .55 mm during the final trapping session.
Since some mortality did occur throughout the course of
the study, we only compiled capture histories for the first
and last primary trapping session, to conform to the
assumption of population closure and to permit
comparison between mark–recapture estimators and
true abundances. These adjustments caused our data
to differ from that of Davis et al. (2003), who only
considered mice with body length .70 mm.

Analyses

We performed three analyses on each final trapping

session data set using program MARK. First, we

conducted an analysis that simultaneously employed

mixture models (Pledger 2000) and individual covariates

(length, weight, sex, reproductive status) to model

heterogeneity in the data, using a Huggins-Alho type

model (Huggins 1989, 1991, Alho 1990).We refer to these

as ‘‘Pledger-Huggins-Alho’’ analyses throughout the

paper. Second, we conducted an analysis using the full

likelihood models of Pledger (2000). In this approach,

heterogeneity is modeled only in terms of mixture

distributions. We refer to these as ‘‘Pledger’’ analyses.

Finally, we performed a simultaneous analysis of data

from several enclosures, allowing multiple data sets to

inform the estimation of capture probability (MacKenzie

et al. 2005, White 2005). We also performed this type of

‘‘simultaneous’’ analysis on capture histories compiled

from the first trapping session in order to examine
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estimator performance in a low abundance setting. In

each case, we describe models with DAICc , 2.0 as ‘‘top

models,’’ in the sense that these models are highly

supported by the data (Burnham and Anderson 2002).

Pledger-Huggins-Alho analysis.—Under this ap-

proach, we modeled capture probabilities for trapping

occasion i and animal j, pij, as a function of different

combinations of individual covariates, mixture param-

eters, and time and behavioral effects. For instance, as

one possibility we considered an additive model for

detection probability that included a behavioral effect

and a heterogeneity formulation involving both a length

covariate and a mixture parameter (i.e., assuming two

mixture groups). We assumed that the capture proba-

bility of the first mixture could be expressed as

logit ( pij) ¼ b0 þ b1Iij þ b2lj

with

logit ( pij) ¼ b0 þ b1Iij þ b2lj þ b3

for the second mixture. Here, Iij¼ 1 if animal j has been

caught prior to time i and 0 otherwise, lj represents length
for animal j, and b3 designates a mixture effect.

Symbolically, we could express this model as (bþ hþ l )

as in Lebreton et al. (1992), to denote behavior (b), length

(l ), and extra heterogeneity induced by a mixture

distribution (h). Once we formulated and fitted individ-

ual models for detection probability, we compute derived

abundance estimators for each model as N̂ ¼
P

j 1=p�j ,
where p�j is defined as the probability that individual j is

caught at least once during the session:

p�j ¼ 1�
Y

i

ð1� pijÞ:

For this analysis, we fitted a total of 57 a priori models

to each house mouse data set, allowing the presence or

absence of different factors that we thought might

influence detection probability. Time, trapping response,

and several types of heterogeneity were assumed to be

additive effects when present. We allowed models to

include effects for weight or length, but not both at the

same time. We included fully interactive models for

weight and sex when reproductive status (pregnancy)

was not also included because we anticipated pregnancy

would complicate the relationship between weight and

capture probability. We only allowed mixture parame-

ters on models with less than three other effects so as to

limit the chance of over-parameterized models.

After we fitted all models to the data, we examined the

standard errors of estimates as well as parameter counts

from a singular value decomposition in program

MARK (Cooch and White 2005) to determine which

models were over-parameterized, and removed these

models from analysis. As Pollock (2002) noted, even

when all parameters are estimable, the Huggins-Alho

model may produce unstable estimates when capture

probabilities for some animals are estimated to be close

to zero. This problem occurred in several of our data

sets, and we dealt with it in two ways. First, we reran all

of our models in a post hoc analysis using discrete

categories for weight and length, as suggested by

Converse (2005). We used values of length ,72 mm to

designate juveniles, and .72 mm to designate adults

(Singleton 1989). These assignments were made inde-

pendent of sex. Second, we deleted all models with

estimated standard errors on abundance .600. We

selected this value post hoc, because several top models

had standard errors in the 200–500 range, and we felt

uncomfortable removing these models from analysis.

Next, we conducted model averaging on the derived

abundance parameters (Burnham and Anderson 2004)

in program MARK. Model averaging produces a final

abundance estimate conditional on the results from all

fitted models. Abundance estimates from highly parsi-

FIG. 1. Estimated length-dependent growth rate over a 20-day period for captiveMus musculus. The average daily growth rate
for 55-mm mice is ;0.75 mm/d. Negative values reflect measurement error.

April 2006 831PRACTICAL ABUNDANCE ESTIMATION



monious models (in terms of low DAICc) contribute

heavily to the final abundance estimate. The standard

error of the model-averaged estimate is a function of the
standard error from each model as well as the degree of

congruence between model-specific abundance esti-

mates. Thus if several highly supported models yield

abundances that differ greatly, the standard error of the
model-averaged estimate will be high to reflect un-

certainty about which model best represents truth

(Burnham and Anderson 2002).

Pledger full likelihood analysis.—In order to contrast
estimator performance from models with individual

covariates to those without, we conducted an analysis of

final trapping session data using the full likelihood

approach of Pledger (2000). Since this approach includes
abundance as a parameter in the likelihood function, it

is more efficient than Huggins-Alho estimators if

covariates are unavailable (White 2002). Pledger’s

models incorporate heterogeneity in the form of a
mixture distribution on the probability of capture, but

individual covariates cannot be included. We considered

a total of eight additive models, which combined

hypotheses of behavioral response to trapping, a time
effect, and heterogeneity in the form of two mixtures.

Once we had fitted these models to the data, we removed

those that were over-parameterized, as well as those with
estimated standard errors on abundance .600. We

employed model averaging (Burnham and Anderson

2002) to derive final abundance estimates.

Poor estimator performance from the Pledger ap-

proach in several of the pens made us question whether
four trapping occasions per trapping session were

sufficient to adequately model heterogeneity using

mixtures. We thus conducted a small post hoc simu-
lation study to address this question. As a simple but

reasonable biological scenario, we assumed that capture

probability was solely a function of length (Fig. 2B),

where

logit ðpjÞ ¼ �1:22þ 0:66 3 lengthj: ð1Þ

This relationship was estimated by the top model in

the Pledger-Huggins-Alho analysis of Experiment 2, Pen
3. We then fitted a normal distribution to length data

from all individuals captured in Pen 3 at the end of

Experiment 2 (232 individuals). Next, we used the

simulation capability in MARK to simulate capture
histories for the 232 individuals, assuming that lengths

were normally distributed and that captures were

independent Bernoulli trials with success probability

determined according to Eq. 1. In total we generated
1000 data sets for each level of 4, 6, 8, or 10 occasions

per trapping session. After the eight models in the full-

likelihood model set were fitted to these simulated data

sets in MARK, we imported abundance estimates and
associated statistics into SAS/IML (SAS 2004) to

conduct model averaging. We applied the same esti-

mability and standard error criterion as in the other
analyses, and estimated percent relative bias, standard

error, and mean squared error (MSE) for each number of

trapping occasions.

Simultaneous analysis.—We next conducted a MARK

analysis that simultaneously estimated capture proba-

bilities across all pens in Experiment 1. By combining

likelihoods for all pens, we anticipated a reduction in the

estimability issues typically associated with sparse data

(White 2005). We used all 57 models considered in the

Pledger-Huggins-Alho model set, but also included an

extra set of 57 models that included an additive pen

effect on the probability of capture. Each model was

fitted simultaneously to the capture data from Experi-

ment 1, allowing us to select models that were

parsimonious across all pens. Since we considered

covariates in this analysis, we used the Pledger-

Huggins-Alho abundance estimator. An analysis of data

from the first trapping session allowed us to examine the

utility of applying this approach to low abundance

populations, where abundance may be too small to

successfully apply mark–recapture methods to single

populations. In contrast, simultaneous analysis of the

final trapping session permitted comparison to single

pen analyses. In this case, we expected an increase in

precision if there were similar capture dynamics between

pens. For analysis of data from the first trapping session,

we deleted all models with standard errors .40 (twice

the true population size), as well as those with a lower

number of estimated parameters than expected. In

practice, we would not know true population size, and

so the standard error cut off would instead be based on

empirical data. For the last trapping session, we applied

previously defined estimability and standard error

criterion for inclusion of models in the final model set.

We did not attempt to simultaneously analyze data from

Experiment 2 because of time constraints.

RESULTS

Pledger-Huggins-Alho analysis

Estimated abundance from single pen Pledger-Hug-

gins-Alho analyses generally tracked true abundance,

although higher population sizes were consistently

underestimated (Table 1). Continuous covariate models

sometimes estimated capture probabilities close to zero

for individuals with small length or weight covariates, or

for one group of a mixture distribution (Fig. 2A). In

these cases, abundance estimators were unstable, with

unrealistically high abundance values and large standard

errors. Removing models with estimated standard errors

.600 was not always sufficient to prevent model-

averaged estimates with high standard errors or

estimates differing substantially from true abundances.

Although average percent relative bias was close to zero,

a nominal 95% confidence interval procedure actually

produced coverage of 83% (10 out of 12 pens). With the

exception of Pen 3 in Experiment 1, length or weight

always appeared in top models, sometimes accompanied

by extra heterogeneity from a mixture distribution (see
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Appendix). Sex and behavioral effects were often

present in top models as well, as was pregnancy for

several of the pens. The ability to detect an effect of

pregnancy was likely related to the sample size of

pregnant females in the marked sample, which varied

from pen to pen.

When we reran the Pledger-Huggins-Alho analysis

with a two-category length covariate, fewer models

produced standard errors .600. In addition, fewer

models with large standard errors contributed to model-

averaged abundance estimates. Although absolute per-

cent relative bias was larger, the standard errors of

estimates were smaller, resulting in a smaller overall

mean squared error (Table 1). Abundance estimator

confidence interval coverage for the 12 pens was 75%,

with a negative percent relative bias. The binary length

covariate often appeared in top models, with models

including mixture-based heterogeneity also receiving

high support (see Appendix). We detected similar sex,

behavior, and pregnancy effects as with the continuous

analysis.

Pledger full likelihood analysis

In the Pledger full likelihood analysis, few models had

large enough standard errors (.600) to meet our

protocol for deletion. However, a number of pens had

models with a standard error of abundance .200 when

the capture probability for one portion of a hetero-

geneity mixture was estimated close to zero, contributing

to large standard errors on final abundance estimators

(Table 1). Confidence interval coverage for the 12 pens

was 75%, with a negative percent relative bias. Hetero-

geneity was the most consistently present effect in top

models, indicating strong support for heterogeneous

detection probabilities (see Appendix).

For several of the pens, abundance estimates differed

substantially from true population sizes (Table 1). Our

simulation results indicated that the Pledger model set

may perform poorly with four trapping occasions.

Estimated expected standard error on abundance for

four trapping occasions was approximately one-third of

absolute abundance (Table 2). Thus it would not be

abnormal to find a point estimate for abundance that

FIG. 2. (A) The estimated relationship between capture probability and individual covariates as obtained from the top-ranked
model from the Pledger-Huggins-Alho analysis of Experiment 1, Pen 5. According to this relationship, individuals with length ,60
mm have capture probabilities approaching zero, which leads to a large standard error on the abundance estimator. The top model
included a two-point finite mixture (i.e., a high and a low group) to describe individual heterogeneity in capture probability. (B) The
estimated relationship between length and capture probability, as determined by the top-ranked model in the Pledger-Huggins-
Alho analysis of Experiment 2, Pen 3. In this case, individuals with length ,60 mm have small detection probabilities but are
theoretically still detectable. Thus the estimated standard error for abundance is lower.
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was half of its true value. Standard errors decreased

substantially when increasing the number of trapping
occasions (Table 2). Estimated percent relative bias for
each estimator was also slightly negative (Table 2), but

approached zero with increasing trapping occasions if
only models with heterogeneity were considered.

Simultaneous analysis

When we fitted Pledger-Huggins-Alho models simul-
taneously to data from the first trapping session in

Experiment 1, the model-averaged abundance estimator
had a slightly lower percent relative bias, and had a
slightly larger mean squared error (MSE) than the count

statistic Mtþ1 (Table 3). However, none of the top
models had a pen effect on detection probability

(Appendix), providing evidence that detection proba-
bilities did not vary systematically between pens (insofar

as we were able to detect with small sample sizes). In

contrast, when we analyzed data from the last trapping

session in Experiment 1, the top model without a pen

effect had DAICc¼ 24.6, providing strong evidence that

capture probabilities differed between pens (Burnham

and Anderson 2002). Thus, Mtþ1 could be ruled out as a

viable abundance index for making absolute compar-

isons of population size between pens for these data

(Skalski and Robson 1992). Detection probabilities for

TABLE 1. Comparison of true abundance (N ) with model-averaged estimates of abundance (N̂ ) from four analyses.

Continuous H-A Discrete H-A Simultaneous Pledger

Experiment Pen N Mtþ1 N̂ bSE(N̂ ) N̂ bSE(N̂ ) N̂ bSE(N̂ ) N̂ bSE(N̂ )

1 1 69 38 46 8 46 8 53 8 50 26
1 2 244 92 159 34 198 43 368 130 216� 276
1 3 108 46 124� 43 126 43 122 38 72 16
1 4 89 49 88� 26 74� 19 86 15 68 20
1 5 136 58 267�� 257 131� 33 144 39 230� 367
1 6 195 80 159 58 139 49 254 82 125 59
2 1 287 91 191 59 217 106 . . . . . . 202� 155
2 2 233 88 166� 52 197 62 . . . . . . 214� 227
2 3 291 95 219�� 145 167 49 . . . . . . 145 27
2 4 179 74 143 90 119 19 . . . . . . 160� 238
2 5 226 98 208 65 203 55 . . . . . . 195 72
2 6 399 107 294�� 193 254�� 191 . . . . . . 166� 32

% bias (SE) �59 (8) �9 (37) �21 (16) 12 (26) �19 (32)
MSE 21 612 17 329 9837 . . . 37 995
Coverage . . . 10/12 9/12 6/6 9/12
r2 0.935 0.745 0.913 0.994 0.565

Notes: The analyses are Pledger-Huggins-Alho with continuous covariates (Continuous H-A), Pledger-Huggins-Alho with a
binary length covariate (Discrete H-A), Pedger-Huggins-Alho with data jointly analyzed from multiple enclosures (Simultaneous),
and Pledger models (Pledger). Also reported is the number of unique individuals captured (Mtþ1), average percent relative bias
(% bias), mean square error (MSE), 95% confidence interval coverage (Coverage), and Spearman rank correlation coefficient (r2). We
did not attempt to simultaneously analyze data from Experiment 2.

� One or more models had bSE(N̂ ) . 600, and were thus deleted from analysis.
� Models with SE . 200 accumulated between 0.10 and 0.92 of the model weight, contributing to the model-averaged estimate.

TABLE 2. Estimated percentage relative bias (b% bias ), ex-
pected standard error (E[bSE(N̂ )]), and mean square errorcMSE associated with model-averaged abundance estimators
for different numbers of trapping occasions.

Trapping occasions b% bias E[bSE(N̂ )] cMSE

4 �0.079 79.01 17 274
6 �0.074 35.98 4096
8 �0.077 13.68 736
10 �0.070 6.45 311

Notes: In all cases, encounter history files were simulated by
assuming that capture probability was a function of length, and
abundance was estimated by performing model averaging on a
model set that included Pledger (2000) mixture models for
heterogeneity. We analyzed 1000 simulated data sets for each
number of trapping occasions.

TABLE 3. Comparison of true abundance (N) with model-
averaged estimates of abundance (N̂) from the Pledger-
Huggins-Alho analysis of Experiment 1 first trapping session
data.

Pen N Mtþ1 N̂ bSE(N̂ )

1 20 14 17 5
2 20 13 16 5
3 20 14 16 4
4 20� 16 19 5
5 20� 13 16 7
6 20 14 17 7

% bias (SE) �31 (50) �18 (58)
MSE 39 41
Coverage . . . 6/6

Notes: Data were jointly analyzed across multiple pens.
Also reported is minimum number known alive (Mtþ1), average
percent relative bias (% bias), mean square error (MSE), and 95%
confidence interval coverage (Coverage). Spearman rank
correlation coefficient (r2) could not be computed due to
uniformity in N. We did not attempt to jointly analyze data
from Experiment 2.

� True abundance for Pens 4 and 5 could not be determined
definitively, but was between 18 and 20. Thus we did not use
these pens in % bias or MSE calculations.
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the first trapping session averaged to 0.56 when

covariate effects were not considered, while detection

probabilities for the last trapping session ranged from

0.29 to 0.63 (mean 0.39) depending on the pen, and were

negatively correlated with true abundance (r2 ¼�0.84).
The top model fitted to the data from the last trapping

session indicated length, behavior, and pen effects on

capture probability, with extra heterogeneity induced by

a mixture distribution. This model acquired 92% of the

model weight, thus contributing heavily to the model-

averaged abundance estimate (Appendix). Estimates of

several detection probabilities were near zero, producing

abundance estimates substantially larger than for other

models, with standard errors on abundance two to four

times as large (Table 1).

DISCUSSION

This study represents the first attempt at validating

several new types of mark–recapture abundance estima-

tors with real data. We considered model averaging

within a likelihood framework and the use of covariates

and mixture distributions to help model heterogeneity in

detection probabilities. All MARK analyses yielded

abundance estimators with percent relative bias statisti-

cally indistinguishable from zero at the a ¼ 0.10 level,

albeit with low precision. Approaches that accounted for

heterogeneity through individual covariates (i.e., with

Pledger-Huggins-Alho models) were particularly suc-

cessful, and estimation issues with small detection

probabilities were reduced by employing a binary

classification for length data that was based on an

age–length relationship.

In a similar data set, Davis et al. (2003) was able to

detect heterogeneity using a discriminant function in

program CAPTURE (Rexstad and Burnham 1991).

However, CAPTURE does not provide a unified

framework for multimodel selection and inference, as

MARK does through use of DAICc. If a researcher

detects heterogeneity using CAPTURE, they must then

decide which of a number of heterogeneity estimators to

use. Davis et al. (2003) reported satisfactory perfor-

mance when using one of Chao’s (1988) sample coverage

estimators to estimate abundance under heterogeneity.

However, it is unclear how their results can be

extrapolated to other research studies. A key problem

is that it is difficult to compare the performance of

different moment-based estimators such as the estima-

tors attributed to Chao (1988) when a specific study is

not replicated. In contrast, comparing the relative

parsimony of likelihood-based estimators is straightfor-

ward.

Model sets that solely used mixture distributions to

characterize heterogeneity produced unacceptable esti-

mates for several of the pens. This is likely a function of

the number of trapping occasions used in the study. Our

simulation results indicated that six or more trapping

occasions may be necessary to adequately model

heterogeneity using mixture distributions in a full

likelihood approach, at least with the range of capture

probabilities explored here. Link (2003) argued against

the use of mixture models for population abundance,

showing that abundance is a nonidentifiable parameter

when there is individual heterogeneity in capture

probabilities. Nevertheless, our simulation results in-

dicated that mixture models may perform reasonably

well when there are a large number of encounter

occasions (e.g., six or more). Indeed, intensive sampling

programs should often be employed when heterogeneity

is suspected no matter which estimation strategy is

employed. In addition to the increased power for

detecting differences between individual capture proba-

bilities, increasing sample effort is essential for adequate

performance of abundance estimators incorporating

heterogeneity (Chao 1989, Boulanger et al. 2004).

Simultaneous analysis of data from multiple popula-

tions may lead to abundance estimators with good

performance, provided that sources of variation in

capture probability are similar between populations.

This approach works by combining information on

detection probability across several populations, which

is sometimes necessary if populations are small or data

sparse. This approach worked well for multiple low

abundance populations (N ¼ 20), but was problematic

for some populations with higher densities. One

potential reason for this discrepancy is some sort of

density dependence in capture probabilities, such that

individuals in populations of different densities respond

differently to trapping. However, differences in size, sex,

or age structure between high density pens could have

produced bias as well. This effect might be eliminated by

increasing model complexity, specifically with regard to

interaction terms.

While modeling approaches using MARK often

produced acceptable estimates, we sometimes had to

employ relatively arbitrary judgments about which

models to retain for model averaging purposes in order

to obtain coherent abundance estimates. These judg-

ments were necessary because certain models estimated

capture probabilities close to zero for a segment of the

population in some pens, and abundance estimation is

notoriously unstable under these circumstances (Pollock

2002). Inspection of the data indicated that substantial

trap saturation occurred over the course of these

experiments, which may have been partially responsible

for these problems. Supporting this contention, capture

probabilities were negatively correlated with population

density (r2 ¼ �0.84), and the bias of our abundance

estimators was often larger for high abundance pens.

Four nights of trapping coupled with 36 traps per pen

permitted a maximum of 144 captures per pen in each

experiment. This relatively low number of traps per

individual likely exacerbated the heterogeneity in

probability of capture, resulting in a population segment

with capture probabilities close to zero (e.g., Fig. 2). The
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captive mouse populations used in these experiments

obtained higher densities than normally would be

expected in wild populations. Thus, we anticipate that

the approaches considered in this article will be even

more robust in ecologically relevant situations, partic-

ularly when populations do not fluctuate drastically over

the course of a study. In cases of trap saturation or when

behavioral responses, such as territoriality, limit the

availability of traps (cf. Davis et al. 2003), inferences

should be tempered and exploratory data analysis

should be performed to determine which portions of

the population are actually observable.

Despite mark–recapture estimators performing sub-

optimally in some cases, we found a larger potential for

erroneous inference when one ignores capture probabil-

ities and looks only at Mtþ1 (Fig. 3). Despite having a

higher r2 than the estimation methods employed on data

from this experiment, one cannot properly make infer-

ences about the magnitude of abundance differences

between pens by looking at Mtþ1 alone. In the last

trapping session, true abundance differs substantially

between pens, butMtþ1 does not provide a clear picture of

these differences because it cannot account for the

negative relationship between detection probability and

abundance. In contrast, the Pledger-Huggins-Alho

(HAB) estimators tended to track true abundances. The

unusual degree of trap saturation found in this experi-

ment may have limited the performance of these

estimators at higher population sizes due to decreases in

capture probability and increases in heterogeneity, thus

reducing the ‘‘catchable’’ portion of the population

(White et al. 1982). Nevertheless, the HAB estimator

exhibited better performance in terms of mean squared

error (MSE). For our low abundance analysis, Mtþ1
performed better, with a lower MSE than the simultaneous

mark–recapture analysis. This may often be the case

whenMtþ1 approaches true abundance. The appropriate-

ness of using Mtþ1 as an index for the populations in

question was reflected in DAICc values of models

containing pen effects relative to those not containing

pen effects. In general, we might expect that if simulta-

neous analysis models with low DAICc frequently include

population effects, then Mtþ1 could be dismissed as a

potentially biased index. Conversely, Mtþ1 may be an

appropriate tool for inference if models with low DAICc

do not include population effects. In either case, we

suggest that ecologists use mark–recapture models to

explore the validity of assumptions required forMtþ1 as a

first step in any analysis.

In some situations, scientists and managers are more

interested in density than absolute abundances, especially

because there is often ambiguity regarding the sampled

area (the ‘‘effective trapping area’’). Furthermore, the

spatial arrangement of traps may actually induce

heterogeneous capture probabilities based on the prox-

imity of an animal to traps. Simply stated, an individual

is more likely to be caught during a study if one or more

traps are located well within its home range vs. traps

located near the edge of its home range (e.g., Boulanger et

al. 2004). A method that accommodates this trap-

induced spatial heterogeneity has recently been devel-

oped by Efford and colleagues (Pledger and Efford 1998,

Efford 2004). While spatial heterogeneity did not seem to

be an important consideration for our data because of the

small spatial scale of the enclosed populations, this

approach seems promising for populations in the wild,

and thus is worthy of more investigation.

We conclude by emphasizing that heterogeneity is

often the most important factor impeding reliable

abundance estimation. Researchers should thus pay

due attention to design-based sampling protocols that

help to reduce the degree of heterogeneity in capture

probabilities (cf. Otis et al. 1978, White et al. 1982,

Boulanger et al. 2004). We recommend that the

investigator (1) place multiple traps at each point on

the trapping grid to help reduce trap saturation in high

density populations, (2) record individual covariates

such as length, sex, and possibly weight to help model

heterogeneity, (3) space traps so that an animal is likely

to encounter more than one trap during the course of the

study, and (4) use as many trapping occasions as

possible without violating the population closure

assumption, especially when heterogeneity is antici-

pated. The last two suggestions require some knowledge

of the target population. For house mice in Australian

wheat fields, intensive studies of home range size

indicate that they have home ranges of ;0.04 ha (20 3

20 m) during the breeding season and they roam widely

during the on-breeding season (Krebs et al. 1995,

FIG. 3. True abundance (N), Mtþ1, and the binary length
Pledger-Huggins-Alho abundance estimator (HAB) when
mouse populations during final trapping sessions are arranged
in order of abundance. Vertical lines represent 6SE for the
HAB estimator.
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Chambers et al. 2000). These findings suggest 10 m

spacing between traps would adequately meet the third
recommendation. Similarly, literature on daily survival
can be used to guide selection of an appropriate number
of trapping occasions.
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APPENDIX

A summary of model selection and model averaging procedures for mouse abundance analysis (Ecological Archives A016-034-
A1).
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