
I. INTRODUCTION
Iterative reconstruction techniques for reconstruction of

Positron Emission Tomography (PET) data are usually too time
consuming on most single processor machines that are afford-
able. This is especially true for the HRRT (High Resolution
Research Tomograph) which demands sinogram dimension of
unsurpassed size (presently one 3D data set consists of 2209 si-
nograms with 256 radial elements and 288 views), [1].

One strategy to drastically improve reconstruction time is
the use of Fourier Rebinning (FORE), [4]: the 3D scan is trans-
formed into the format of a 2D scan with 207 sinograms (in
case of the HRRT) preserving the information of the 3D data.
Thus the reconstruction problem is reduced to reconstructing
independent 2D slices and offers a very convenient approach to
cluster computing.

In a previous work we used this approach to scale down the
reconstruction time with implementations utilizing RPC or
Syngo1 communication facilities on a Windows NT network of
commodity PCs and with the first version of our dedicated re-
construction cluster (seven four-processor-systems, Intel PIII
@ 700 MHz, 1 GB RAM, switched fast ethernet), [6].

These previous results have encouraged us to upgrade our
dedicated cluster to Myrinet networking equipment [8] as we
could identify fast ethernet bandwidth as the limiting factor
(less so for special purpose network topologies with multiple
fast ethernet cards per node). We think that we now have a
good basis to tackle a more complex reconstruction method for
cluster adaption: OSEM3D in the implementation of C. Michel
[9]. This reconstruction method has produced the best results
for the HRRT data so far and is more suitable for an adequate
treatment of the sinogram gaps that result from the detector ge-
ometry of the HRRT.

We are also in the process of developing a complementary
suite of tools to integrate cluster reconstruction for HRRT and
ECAT7 data into our clinical routine.

II. MATERIAL AND METHODS

A. Previous work based on RPC and Syngo
The BeeHive package was mainly developed to utilize idle

Windows NT user work stations for distributed computing of
FORE-preprocessed sinograms, [5]. It consists of three compo-

nents: (a) the �busy bees� (slaves) which are installed (auto-
matically) on all NT machines, (b) the �BeeKeeper� compo-
nent that is responsible for adding new bees to the beehive, and
(c) the �QueenBee� (master) which distributes work among the
�bees� and collects results. The idea is roughly this: have a sin-
gle scheduling thread on the master maintain a list of jobs and a
list of workers (a single thread to keep the algorithm simple
and to avoid network bottlenecks/deadlocks). Distribute the
jobs in a round-robin way, use redundancy where possible and
allow for runtime reconfigurations of the slaves, have one sin-
gle binary (90 KB) that is easy to maintain (network update,
single click de/installation). As the original reconstruction
problem by virtue of FORE-preprocessing is rendered
�embarrassingly parallel�, we did not see the need to rely on
the usual message passing libraries (MPI, PVM, s. section B).

As described above, by using FORE the 3D-data sets are
transformed (�rebinned�) to independent 2D-data sets that can
be reconstructed by any fast 2D reconstruction method, e.g.
OSEM. Currently, we are using Cologne-HOSP, [3], that is
based on Schmidlin�s HOSP algorithm, [2], and has been port-

1 Syngo by Siemens AG is “a common language for software applications in
the field of medical technology“ (www.syngo.com).

HeinzelCluster: accelerated reconstruction
for FORE and OSEM3D

St.Vollmar1, C. Michel2, J.T. Treffert3, D. Newport3,
C. Knöss1, K.Wienhard1 and W.-D. Heiss1

1Max-Planck-Institut für neurologische Forschung, Gleueler Str.50,
50931 Köln, Email: vollmar@pet.mpin-koeln.mpg.de

2PET Laboratory, Catholic University of Louvain, Louvain-la-Neuve, Belgium
3CTI Inc., Knoxville, TN, USA

100

1000

0 5 10 15 20 25 30

Syngo
RPC
Myrinet

R
ec

o
n

st
ru

ct
io

n
 T

im
e

(s
) f

o
r

2
0

7
 s

lic
es

CPUs (Bees)

37.7 min

1.66 min

Figure 1: Influence of cluster size on reconstruction time for 207 sli-
ces (approx. 70 ML-EM iterations each), lin-log-plot, on our dedica-
ted reconstruction cluster. Reconstruction time drops from 38 min in
this example to well under 2 min for a full (FORE preprocessed)
HRRT data set.

ed to Solaris Sparc, IRIX, Linux x86, PowerMac and Windows
NT.

One disadvantage of the original RPC version is the polling
approach of the scheduler which can create a lot of network
overhead: each Bee is queried periodically for status informa-
tion which can be a serious handicap when the cluster is inho-
mogeneous (too much time spent on slow machines). Syngo
offers a powerful set of tools based on the ACE framework,
[10], for implementing a pushing mechanism instead: the
scheduler is notified about the status of a reconstruction bee
automatically (proxy-return objects). Using Syngo also facili-
tates integration into the HRRT software environment (data-
base access, reconstruction queues, visualization tools) as this
is also based on the Syngo framework. Machines that only run
a Syngo hosted reconstruction engine (backend) do not need a
full Syngo distribution, a very small and easily maintainable
subset suffices that does not create any overhead if not running.

We found that the simple RPC-based approach works fine
for small homogeneous clusters (8 machines, speedup approx.
a factor of 7) and that the more refined Syngo approach still
gives good performance for homogeneous clusters of more
than twice that size, s. Figure 1 and Table 1.

B. HeinzelCluster, BeeHive over Myrinet GM
The HeinzelCluster consists of seven SGI 1450 nodes, [15]:

each has four Intel PIII Xeon processors @ 700 MHz, 1 MB
L2-Cache, 1 GB RAM; all networked with full duplex fast
ethernet on a Bay Stack 28115 switch; Myrinet M2M-PCI 64
A-2 cards and a Myrinet M2M SW16 switch and currently run-
ning Window NT. We decided against using Gigabit Ethernet
as an alternative to Myrinet because this technology is limited
to about 35 MB/s sustained data transfer by the IP stack han-

dling, [11]. Myrinet is not much more expensive and gives
much better performance: with our own Myrinet GM-based
software (s.b.) we can transfer blocks of 52 MB size with a sus-
tained rate of 130 MB/s and still expect more with the new
generation �Myrinet 2000� hardware.

However, superior performance requires using special im-
plementations of the message passing standard MPIch, [8], or
adapting existing applications to GM, [12], a Myrinet propri-
etary message passing driver that is available for all major plat-
forms.

We favor GM over standard message passing interfaces
such as MPI and PVM (parallel virtual machine) because (apart
from one scatter-gather function) we think that GM offers all
the MPI functionality we need (s. C)�and on a standard NT
system it just requires installing a single driver (like another
regular ethernet card). As is pointed out in [13], MPI and PVM
implementations handle network problems and hardware mal-
functions usually quite ungracefully: GM is more robust and
can resend lost packets automatically.

We have developed a little API that just requires linking
one library and using one initialization sequence in order to
send GM messages to any node of the cluster. The result is a
Myrinet-GM based version of BeeHive that is fast, slim and
conceptually very simple: on the QueenBee (master) and on
each Bee (slave), i.e. on each of the seven cluster nodes, one
GM event loop is running in its own thread and continuously
polling for messages from other nodes (latency is known to be
extremely good). Surprisingly, this creates very little overhead
and allows for straight-forward event handling by implement-
ing hooks that start appropriate worker threads, e.g. we send a
message string that starts with a predefined identifyer (arbitrary
integer): �4711��receive sinogram of known dimensions (rest
of message) and start reconstruction thread.

As can be seen from Fig. 2, with Myrinet-based BeeHive
we visibly reduce idle time between �number crunching� peri-
ods.

C. OSEM3D acceleration
Porting the original Alpha version of OSEM3D (mostly

ANSI C) to Windows NT was a straight-forward task. Our
strategy to reduce reconstruction time (1 iteration for current
HRRT data sets using the direct port on one Intel Pentium
III@700 MHz takes about 11 h) consists of three steps: (a) par-
allelization for one node with four processors (shared memo-
ry), (b) higher level parallelization for the seven nodes to in-

0

20

40

60

80

100

0 20 40 60 80 100 120

0

20

40

60

80

100

0 20 40 60 80 100 120

time [s]

Lo
ad

 C
P

U
 #

1
..4

 [%
]

Lo
ad

 C
P

U
 #

1
..4

 [%
]

time [s]

Figure 2: (a) CPU usage of one SGI 1450 node (four processors) of
the HeinzelCluster during Syngo-based reconstruction of FORE-pre-
processed data. This reconstruction involves 26 CPUs on seven nodes.
(b) Same reconstruction job with Myrinet-GM-based implementation
of BeeHive: observe the difference in idle time between productive
intervals.

(a)

(b)

CPUs (Bees) Speedup Syngo Speedup Myrinet

8 7.36 7.72
12 9.86 11.25
16 12.55 14.98
20 16.16 17.81
24 17.40 21.34
26 19.67 23.32

Table 1: Comparison of speedup BeeHive Syngo
vs BeeHive Myrinet.

volve a reasonable number of CPUs (probably all) in the
OSEM3D reconstruction, (c) platform specific optimizations.

We chose to work on (a) first, because a profile run clearly
shows that more than 80% of the total wall time is spent inside
the routines for forward and backprojection (which is the case
for many iterative algorithms).

Thus we adapted the forward and back projection routines
for multi-threaded execution with a wrapper routine (outer
loop) leaving most of the original (unoptimized) engine un-
touched. This was an easy choice (and something Fortran com-

pilers do by default on high perfomance platforms, [13]), e.g.
the back projection algorithm is voxel driven so every thread
takes over the voxels of 207/threads planes.

In case of the SGI 1450 running 4 threads, approx. 75% of
the 229 min total time have been spent in either the forward or
back projection routine, i.e. have been executed in parallel
(which is acceptable for modifying only two routines and leav-
ing almost everything else �as is�). The speedup of about 3 cor-
relates nicely to the number of processors (4) and the time
spent in parallel mode.

Apart from details in the thread synchronization (POSIX vs
NT/2000), this approach should work for all multi-processor
systems.

Approach (b) tackles parallelization with a much coarser
granularity and is similar for the calculation of the �Normfac�
data (precomputed factors needed only once for all iterations)
and the main iteration loop. We propose to run the innermost
loop (over the segments) of the pseudocode listing in Figure 3
in parallel. It follows that the theoretical speedup can not ex-
ceed the number of segments, which is 15 for the current con-
figuration of the HRRT. After completion of the isegment-
loop, the cimage volumes of all nodes must be collected and
added (52 MB per cluster node) and for parallel execution of
the next segment all nodes have to be synchronized by updat-
ing their local image buffer (another 52 MB per cluster node).

Finally, we believe that with (c) there is a significant poten-
tial for platform specific tuning we should investigate. Howev-
er, we want to perform these optimizations last in order to stay
as close to the original code as long as possible. Here the most
relevant optimizations will be directly linked to the challenge
of using the Pentium III�s advanced (and often neglected) fea-
tures more efficiently. First tests with the new Intel 5.0 compil-
er plugin for the Microsoft Visual 6 C++ compiler have been
encouraging. In specific, we have successfully vectorized por-
tions of code using compiler intrinsics (rather than Assembler
code). With the Streaming SIMD extensions (SSE) of the PIII

that can give a speedup of up to 4 on single precision float op-
erations. Furthermore, the PIII processor is rather dependent on
proper alignment of operands for many of its more efficient op-
erations (the Alpha processor is much more lenient, admitted-
ly). All these changes will also be beneficial to potential Linux
applications (on the Intel platform) of the code.

D. BeeQ, Vinci and clinical routine
In previous versions of BeeHive we used the BeeKeeper

component for automatic network enabled update of the Bee
service. With BeeQ we have extended the original concept:
BeeQ is running as a service (similar to a Unix daemon) on ev-
ery node of the HeinzelCluster and can run any program local-
ly that does not require a graphical user interface. Communica-
tions have been realized with named pipes (but could easily be
changed to TCP/IP sockets). BeeQ redirects stdin and stdout to
log files and/or reports output directly (much in the fashion of
telnet). It maintains a dynamic list of all processes it controls
and allows to suspend and kill them. It has a built-in ftp client;
processes information which jobs should run concurrently and
which not and in what sequence; it can communicate with oth-
er instances of BeeQ on the cluster for load balancing. We in-
tend to use BeeQ for monitoring a �heart beat� function and if
necessary restart essential services.

In addition to the obvious need for a reconstruction cluster
with HRRT data sets, we intend to use the HeinzelCluster also
for reconstruction of especially demanding data sets from our
ECAT HR and ECAT EXACT scanners (e.g. multi-frame,
multi-bed studies). Data transfer from the Sun workstations
running CTI�s ECAT 7 software has been realized via ftp and
gives a performace of 9.5 MB/s. For routine handling, it is nec-
essary to incorporate the cluster reconstruction option into the
console�s user interface. This can be realized with a CAPP
module that sends commands to the cluster via rsh to a redirec-
tor module that forwards stdin to BeeQ.

We currently can communicate with instances of BeeQ
through a terminal-like tool that runs on the Windows platform
from anywhere in the network (utilizing the network protocols
TCP/IP or NetBUI), a subset of its functionality will be avail-
able as an IDL module (call external).

Reconstructions of HRRT data usually produce image vol-
umes exceeding 50 MB: there is a new challenge to visualize
these image volumes and the even more demanding sinograms

execution time
[min]

PC PIII
600 Mhz

SGI 1450
1 Thread

SGI 1450
4 Threads

Compaq
Alpha EV67

Normfac 259 212 73 76
1 Iteration 569 453 156 132

Total 828 665 229 208

Table 2: Multi-threaded implementation vs direct port. �Normfac�
refers to a file of precomputed factors, s.b.

for (iter) {

 for (isubset) {

 zero (cimage)

 for (isegment) {

 forward3D (image, &estimate)

 corrections (trues, norm, atten,

 &estimate)

 backproj3D (estimate, &cimage)

 }

 image = image * cimage

 }

}

Figure 3: Pseudocode for OSEM3D (non-parallel) main loop.
image and cimage are image volumes, trues, norm and atten
hold the appropriate projection data for segment isegment.

(> 300 MB, short integer format) efficiently. With Vinci, we
have developed an application for Windows NT/2000 (C++
with MFC) that is entirely true color based and takes advantage
of some features every modern PC graphic board offers. We
have incorporated the reslicing engine that drives the MPITool,
[16], which has been the institute�s workhorse for visualization
so far. Vinci also supports the ECAT7 data format and can be
integrated into the Syngo frontend on the HRRT console; it
only requires moderate hardware resources (memory require-
ments depend on how many image volumes you want to look
at simultaneously) and was designed to run well on midrange
laptop systems. In addition, we use parts of its true color en-
gine for online visualization of reconstruction results.

III. RESULTS
With BeeHive over Myrinet and HRRT data we are quite

close to the theoretical maximum speedup of the cluster while
having the benefits of a simple scheduling approach. However,
there is still some work ahead to speedup the preprocessing
steps: we have started work on running FORE on more than
one CPU. This is even more important for the more computa-
tionally demanding FORE-J, [17], and FORE-X, [18], flavours
which we hope to evaluate for HRRT data in a collaboration
with M. Defrise and X. Liu of the Department of Nuclear Med-
icine, Free University Brussels, Belgium.

With approach (a) of our strategy to accelerate OSEM3D
one cluster node already performs in the range of an Alpha
EV67. It remains to be seen how much more acceleration ap-
proaches (b) and (c) will provide.

IV. CONCLUSION
HeinzelCluster with BeeHive over Myrinet is a suitable

platform for several reconstruction strategies, especially for
HRRT data. Future work with this platform might include list-
mode reconstruction with correction of motion artefacts.

V. ACKNOWLEDGMENTS
S.V. thanks M. Schmand, M. Lenox, J. Bao, P. Luk, M. Ca-

sey and R. Nutt for fruitful discussions and a most stimulating
environment during S.V.�s stay at CTI.

VI. REFERENCES
[1] K. Wienhard., M. Schmand, M.E. Casey, K. Baker, J.

Bao, L. Eriksson, W.F. Jones, C. Knoess, M. Lenox, M.
Lercher, P. Luk, C. Michel, J.H. Reed, N. Richerzhagen,
J. Treffert, S. Vollmar, J. Young, W.D. Heiss, R. Nutt,
�The ECAT HRRT: Performance and First Clinical Ap-
plication of the New High Resolution Research Tomo-
graph.,� IEEE MIC, Conference Record, 2000.

[2] P. Schmidlin, M.E. Bellemann, G. Brix, �Iterative recon-
struction of PET images using a high-overrelaxation sin-
gle-projection algorithm,� Phys. Med. Biol. 42: 569-582,
1997.

[3] S. Vollmar, W. Eschner, K. Wienhard, U. Pietrzyk, �Itera-
tive reconstruction of emission tomography data with a-

priori-information,� Conference proceedings of the 1998
IEEE nuclear science symposium and medical imaging
conference, Toronto 1998.

[4] M. Defrise, P.E. Kinahan, D.W. Townsend, M. Sibomana,
D.F. Newport, �Exact and Approximate Rebinning Algo-
rithms for 3-D PET Data,� IEEE Transactions on Medical
Imaging, Vol. 16, No. 2: 145-158, 1997.

[5] S. Vollmar, K. Wienhard, �BeeHive: Cluster-Computing
im NT-Netzwerk�, Conference Proceedings of the 16th
DV meeting of the Max-Planck-Society, Göttingen, No-
vember 1999.

[6] S. Vollmar, M. Lercher, C. Knöss, C. Michel, K. Wien-
hard, W.D. Heiss, �BeeHive: Cluster Reconstruction of
3-D PET Data in a Windows NT network using FORE�,
IEEE 2000, Lyon.

[7] Intel Corporation, Intel Architecture Optimization Refe-
rence Manual, Order Number: 730795-001.

[8] Myrinet networking hardware, http://www.myri.com.
[9] C. Michel, M. Schmand, X. Liu, M. Sibomana, S. Voll-

mar, C. Knöss, M. Lercher, C. Watson, D. Newport, M.
Casey, M. Defrise, K. Wienhard, W.D. Heiss, �Recon-
struction strategies for the HRRT�, IEEE 2000, Lyon.

[10] D. Schmidt, �The ADAPTIVE Communication Environ-
ment (ACE)�, http://www.cs.wustl.edu/~schmidt/
ACE.html.

[11] c�t, 16/99, p. 152, http://www.heise.de/ct
[12] Myricom, Inc., �The GM Message Passing System�, ht-

tp://www.myri.com/scs/GM/doc/gm.pdf
[13] K. Dowd, C. Severance, �High Performance Compu-

ting�, O�Reilly, 2nd edition 1998.
[14] LAM/MPI Org, University of Notre-Dame, �Top 10 rea-

sons to prefer MPI over PVM�, http://www.lam-mpi.org/
mpi/mpi_top10.php.

[15] SGI 1450 overview, http://www.sgi.com/servers/1450/
[16] U. Pietrzyk, A. Thiel, K. Herholz, W.D. Heiss, �A hybrid

image registration method employing interactive and au-
tomated techniques�, Neuroimage, 7:789, 1998.

[17] M. Defrise, X. Liu, �A fast rebinning algorithm for 3D
PET using John�s equation�, Inverse Problems 15 1047-
1065, 1999.

[18] X. Liu et al, �Exact Rebinning Methods for 3D PET�,
IEEE Trans Med Imag MI-18 657-664, 1999.

