
Magnification of conic mirror reflectometers

Keith A. Snail and Leonard M. Hanssen

Conic mirror reflectometers are used to measure the diffuse reflectance and total integrated scatter of
surfaces. In spite of the long history of using conic mirrors for these purposes, the maximum magnifi-
cation of the three primary types of conic mirror ~hemisphere, hemiellipsoid, and dual paraboloid! had not
been compared quantitatively. To our knowledge, an exact magnification formula has not been pub-
lished for any of the three primary conic mirrors. The maximum magnification is needed for proper
sizing of detectors and radiation sources used with reflectometers. Exact analytical expressions for the
maximum magnification of a Coblentz hemisphere, a hemiellipsoid, and a dual-paraboloid mirror system
are derived and compared.

OCIS codes: 120.5820, 120.4570, 220.2740, 120.5700, 120.3150, 080.2740.
1. Introduction

Accurate measurements of the spectral reflectance
of diffusing surfaces are important to many scien-
tific and engineering disciplines. Before 1980,
conic mirror reflectometers based on hemispheri-
cal,1,2 dual-paraboloidal,3 and hemiellipsoidal4–8

mirrors were the most commonly used instruments
for measuring the diffuse reflectance of solid opaque
samples in the mid- to far-infrared wavelength
range ~2–60 mm!. Coblentz hemispheres9 have
also been frequently used to measure the total in-
tegrated scatter10 of specular surfaces. Following
the advent of more Lambertian, high-reflectance
roughened gold coatings11–13 in the 1970’s and 1980’s,
diffuse reflectance measurements in the mid-infrared
wavelength range ~2–14 mm! are increasingly being
performed with integrating spheres. The develop-
ment of infrared integrating spheres has been accel-
erated by the extensive body of work on visible
integrating spheres from the first half of this century.
In contrast, conic mirror devices were rarely used in
the visible because of the constraints imposed by op-
tical scatter. As a consequence, the literature on
conic mirror reflectometers is limited and incomplete
compared with that on integrating spheres.

A recent joint project between the Naval Research
Laboratory and the National Institute of Standards
and Technology was aimed at improving the instru-
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mentation used to measure diffuse reflectance in the
infrared to facilitate the development of infrared dif-
fuse reflectance standards. As a result of that effort,
a more comprehensive understanding of the mea-
surement errors associated with conic mirror reflec-
tometers was developed.14 For diffuse reflectometers
operated in the directional-hemispherical mode and
for typical total integrated scatter instruments, one
needs to know the maximum magnification in order
to size the detector to collect all the scattered light
from the sample. For conic mirror reflectometers
operated in the hemispherical-directional mode, one
needs to know the maximum magnification to deter-
mine the minimum radiation source size required to
ensure uniform Lambertian illumination of the sam-
ple. In this paper exact analytical expressions for
the maximum magnification are derived for a circular
source for a Coblentz hemisphere ~derived by Snail!,
a hemiellipsoid ~derived by Snail!, and a dual-
paraboloidal system ~derived by Hanssen!. These
new formulas are compared with one another, with
ray-trace results, and with the well-known approxi-
mate expression for the maximum magnification of a
hemiellipsoidal mirror.

2. Terminology

The two most common measurement geometries used
for performing diffuse reflectance measurements are
the directional-hemispherical ~uy2p! and the
hemispherical-directional ~2pyu! geometries. In
this notation the first term in parentheses refers to
the geometry of illumination, whereas the second
term refers to the geometry of light collection. The
directional-hemispherical reflectance is the fraction
of flux incident within a small solid angle about the
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direction u that is reflected into the hemisphere above
the surface and is denoted by the letter r. By the
Helmholtz reciprocity principle,15,16 a measurement
in the ~2pyu! geometry will yield the same reflectance
value as in the ~uy2p! geometry. In practice, actual
measurement geometries only approximate the ideal
geometry because of the presence of ports and other
factors. The directional-hemispherical reflectance
is composed of a diffuse ~rd! and a specular or regular
~rr! component. A complete list of symbols with def-
initions can be found in Appendix A.

The linear magnification of conic mirror reflecto-
meters is usually defined as the derivative of an im-
age coordinate with respect to the analogous object
coordinate.17 This definition can lead to erroneous
results for finite-sized objects because of the presence
of aberrations. A more appropriate definition is
based on the edge ray principle of nonimaging optics.
This approach uses one or two extremal rays that are
launched from the edge~s! of the object. Two edge
rays are required for the hemisphere, whereas the
dual-paraboloid requires only one because of its azi-
muthal symmetry about the sample normal. He-
miellipsoid reflectometers can be designed with
azimuthal symmetry about the sample normal.4 In
that case, one edge ray is needed, whereas for designs
with the sample normal orthogonal to the major axis,
two edge rays are needed. Rays that intersect the
edge of the conic mirror will typically determine the
maximum magnification of the reflectometer. One
exception to this rule is the dual-paraboloid case in
which the base planes of the paraboloids are not co-
planar. This case is not analyzed in this paper.

3. Magnification Formulas

The arrangement of a typical hemispheroidal mirror
reflectometer is shown in Fig. 1. For a ~uy2p! geom-
etry reflectometer, the detector is located at one ~ef-
fective! focus and the source is located externally,
whereas in the ~2pyu! geometry the source is at a
focus and the detector is external. The optics ~not
shown in the figure! used to illuminate ~uy2p geom-
etry! or view ~2pyu geometry! the sample can be sus-
pended either inside the conic mirror or outside a port
in the conic mirror. The semimajor axis length is

Fig. 1. Geometry of a typical hemispheroidal mirror reflectome-
ter.
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denoted a, the semiminor axis length b, the focal
distance c, and the eccentricity ε ~5cya!. For a
hemispherical mirror, a 5 b 5 R, where R is the
radius of the hemisphere. The sample is assumed to
be centered at Y 5 c for the hemiellipsoid and at the
position Y 5 c9 ~not shown! for the hemisphere. A
quantity ε9 ~5c9yR! analogous to the eccentricity will
be defined for the hemisphere. Because of aberra-
tions in the image, a circular detector’s center should
optimally be placed at a position Y , 2c for the
hemiellipsoid and Y , 2c9 for the hemisphere.17

The image size on the detector ~uy2p geometry!
depends on the scattering properties of the sample.
For Lambertian samples, the magnification will be a
maximum. The magnification will be characterized
in terms of a longitudinal value along the y axis ~My!
and a transverse value along the x axis ~Mx!.
Knowledge of the maximum linear magnification of a
hemispheroidal or a dual-paraboloidal mirror is re-
quired for sizing a reflectometer’s detector ~uy2p ge-
ometry! to collect all the reflected radiation or for
sizing the radiation source ~2pyu geometry! to illumi-
nate the sample uniformly.18 When an analytical
solution is not available, the maximum magnification
of a conic mirror reflectometer can be determined by
ray tracing. In many cases the tracing of extremal
rays from the two points defined by the intersection of
a circular beam spot on the sample with the major
axis of the reflectometer will suffice to determine the
maximum linear magnification. One would like to
use a conic mirror with the smallest magnification
possible to minimize the source size ~2pyu! or the
detector size ~uy2p geometry! and hence the detector
noise. For most reflectometers the detector noise
will scale19 as =AD, where AD is the detector area.

A. Hemisphere

The maximum linear magnification of a hemispheri-
cal mirror along the axis containing the detector–
source and sample is given approximately17 by

My,HS >
1

~1 2 2ε9!2 . (1)

However, because of spherical aberration, relation
~1! significantly underestimates the true magnifica-
tion for ε9 . 2rsyR, where rs is equal to the viewed
radius ~2pyu geometry! or to the beam spot radius
~uy2p geometry! on the sample. From a ray-trace
analysis it was determined that for rsyR 5 0.05 and
ε9 5 0.2 the actual magnification is 38% greater than
that predicted by relation ~1!. For ε9 5 0.1 the actual
magnification is 8% greater than the value predicted
by relation ~1!. An alternative expression that takes
spherical aberration into account is derived in Ap-
pendix B. The exact longitudinal magnification of a
hemispherical mirror is given by

My,HS 5

2ε92

d9
2 ~2d9 2 1!

~2d9 2 1!2 2 4ε92 , (2)



where d9 5 ~rsyR!. Note that as d9 goes to zero, My,HS
goes to infinity, as expected. If the sample is fully
illuminated, then ε9 5 d9 corresponds to the sample
and the detector just touching at y 5 0. Under this
condition, Eq. ~2! reduces to 1y~1 2 4ε9!. For ~2pyu!
geometry instruments the ratio of the source radius
to the viewed sample radius should be equal to or
greater than the maximum magnification to ensure
uniform illumination over the viewed area on the
sample. In this case the sample will be overillumi-
nated.

The maximum linear magnification along the x
axis, Mx, in Fig. 1 is equal to the square root of My for
both the hemisphere and the hemiellipsoid.17

Hence, when one is using a monochromator with a
spheroidal mirror, one can minimize the detector
~uy2p geometry! or the source ~2pyu geometry! area
by aligning the image of the monochromator’s slit on
the sample so the long axis is perpendicular to the
spheroidal mirror axis containing the sample and the
detector or source.

B. Hemiellipsoid

Brandenberg17 has shown that the maximum linear
magnification along the semimajor axis of a hemiel-
lipsoidal mirror is approximately equal to

My,HE > S1 1 ε
1 2 εD

2

. (3)

Ray-tracing analyses20,21 indicate that, for a circular
source, relation ~3! sets a lower bound for the linear
magnification, with an error of less than 0.7% for ε ,
0.3 and rsya 5 0.02. For rsya 5 0.04, the error is less
than 2% for ε , 0.25. Relation ~3! can be written as
a power series in ε ~My,HE 5 1 1 4ε 1 8ε2 1 12ε3 1
. . .!. The maximum magnification of a hemisphere
@Eq. ~2!# can also be expanded in a power series when
d9 5 ε9 @in this case My,HS reduces to 1y~1 2 4ε!#. The
resultant series ~My,HS 5 1 1 4ε9 1 16ε92 1 64ε93 1
. . .! differs from the hemiellipsoid result in the
second-order and higher terms.

It is also possible to derive an exact expression for
the maximum magnification of a hemiellipsoidal mir-
ror. Starting with Eq. ~17! of Ref. 17 and setting
X 5 0 and Y 5 a, one can obtain an expression for
My,HE 5 ~Y29 2 Y2!yY19 2 Y1!, where Y19 5 c 1 rs and
Y1 5 c 2 rs. This expression can be simplified to
yield the following result:

My,HE 5
~1 2 ε!2

~1 2 ε!2 2 S 2d

1 2 εD
, (4)

where d 5 rsya. For rs 5 0.05 and ε 5 0.1 the he-
miellipsoid magnification predicted by Eq. ~4! is ap-
proximately 1.5% higher than that predicted by
relation ~3!.

C. Dual Paraboloid

The cross section of a dual-paraboloidal mirror ref-
lectometer is shown in Fig. 2. We assume that the
axes of the two paraboloids are collinear and that the
detector or source and the sample are centered on the
axes. The paraboloids have focal lengths fs and fd,
and the separation between the sample and the de-
tector or source is equal to Lp.

For a dual-paraboloidal mirror reflectometer the
exact maximum magnification factor is derived in
Appendix C. When the focal lengths of the two pa-
rabolas are equal, f 5 fs 5 fd, and the separation
distance is Lp 5 0, the magnification can be deter-
mined from an edge ray analysis as u approaches 90°.
If we define a quantity ε0 5 rsy2f, then the maximum
linear magnification of a dual-paraboloidal mirror as
derived in Appendix C is given by

My,DP 5
1

~1 2 2ε0!
. (5)

This equation was confirmed for a specific geome-
try by use of a ray-tracing code, ASAP.21 We
can compare this result directly with the hemispher-
ical and hemiellipsoidal factors by expansion:
My,DP 5 1 1 2ε0 1 4ε02 1 8ε03 1 . . . . Note that if
we were to redefine ε0 as rsy4f, then My,DP 5 My,HS
~d9 5 ε9! and all three mirror types could have their
magnification described ~to first order in ε! as My '
1 1 4ε. However, we prefer the earlier definition of
ε0, as discussed further in Section 4. Because of the
circular symmetry of the dual-paraboloidal geometry,
the magnification of a circular beam spot centered
on a diffuse sample can be characterized by a single
value, Mx,DP 5 My,DP.

Two other properties of the dual-paraboloidal de-
sign are worth mentioning. First, if fd is greater
than fs, the maximum incidence angle on the detector
is reduced and consequently the magnification in-
creases to conserve étendue. Second, the larger
range of incidence angles ~0–45°! on the dual-
parabolas compared with those on the hemisphere
and the hemiellipsoid may introduce a polarization-
related bias that is not discussed in this paper.

A comparison of the maximum magnification of the
three primary types of conic mirror reflectometers is
shown in Fig. 3, as calculated from Eqs. ~2!, ~4!, and
~5!. The magnifications of the hemiellipsoid and the
dual-paraboloid are significantly less than that of the

Fig. 2. Geometry of a typical dual-paraboloidal mirror reflecto-
meter.
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hemisphere for ε 5 ε9 5 ε0 . 0.1. For ε 5 ε9 , 0.08
the incremental advantage of using a hemiellipsoid
over a hemisphere is small. Realistically, one may
not be able to set ε 5 ε9 5 ε0 for comparison purposes.
For instance, if the largest physical dimensions of the
conic mirrors are set equal ~R 5 a 5 2fs! and if the
detector size is fixed, the beam spot size ~uy2p! on the
sample required to illuminate the detector fully will
be different for each conic mirror type. Hence one
may have ε0 , ε 5 ε9.

The magnifications of the hemisphere and the he-
miellipsoid mirrors are not shown in Fig. 3 for ε9 , d9
and ε , d because this type of magnification would
correspond to the detector ~uy2p geometry! or source
~2pyu geometry! occupying the same physical space
as the sample. Paschen22 placed a detector with a
diffuse surface at the center of a hemispherical mir-
ror to decrease its reflectance. With this configura-
tion ~ε9 5 0! the ratio of the beam spot radius to the
detector radius should be equal to ~1 2 2d! to reimage
all the nonabsorbed radiation onto the detector after
the first reflection from the hemispherical mirror.

4. Summary and Conclusions

Exact analytical formulas for the maximum magni-
fication of a Coblentz hemisphere, a hemiellipsoid,
and a dual-paraboloidal mirror system have been
presented. For low eccentricities ~ε, ε9 , 0.08! and
moderately sized beam spot diameters the maximum
magnifications of the hemisphere and the hemiellip-
soid differ by only a small amount. The maximum
magnification of a dual-paraboloidal system is signif-
icantly less than that of a hemisphere and moder-
ately less than that of a hemiellipsoid. An
important consideration is the definition of ε9 and ε0
for comparison purposes. We defined them such
that the open diameter for all three mirrors would be
the same. We believe that this is a reasonable ap-
proach.

For the purpose of selecting one conic mirror over

Fig. 3. Maximum linear magnification for hemispherical, hemiel-
lipsoidal, and dual-paraboloidal mirrors for the geometries dis-
cussed in the text and as calculated from Eqs. ~2!, ~4!, and ~5!. For
the hemisphere ~hemiellipsoid! the ratio of the beam spot radius to
the hemisphere radius ~hemiellipsoid semimajor axis length! was
set at 0.05.
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another, the signal-to-noise ratio is a more useful
figure of merit than the maximum magnification. In
comparing the signal-to-noise ratios of the three de-
signs, one must consider the changes in signal level
associated with the beam spot size variations as well
as the lower throughput of the dual-paraboloidal de-
sign that is due to self-shadowing by the sample and
the second reflection on the detector paraboloid.
Further evaluations of the maximum magnification
factor for dual paraboloids with different focal
lengths and separations are under way.

Appendix A: Definitions of Symbols Used

a Hemiellipsoid semimajor axis length,
b Hemiellipsoid semiminor axis length,
c Hemiellipsoid focal distance,

c9 Hemisphere sample center position,
d Hemiellipsoid dimensionless parameter

~[rsyR!,
d9 Hemisphere dimensionless parameter ~[rsy

a!,
ε Hemiellipsoid eccentricity ~[cya!,

ε9 Hemisphere eccentricity ~[c9yR!,
ε0 Dual-paraboloid eccentricity ~[rsy2fs!,
f Focal length of paraboloid,

fd Focal length of detector paraboloid,
fs Focal length of sample paraboloid,

Lp Separation distance of dual paraboloids,
My,HS Maximum linear magnification of hemi-

sphere along the y axis,
My,HE Maximum linear magnification of hemiellip-

soid along the y axis,
My,DP Maximum linear magnification of dual pa-

raboloid,
r Directional hemispherical ~uy2p! reflectance,

composed of diffuse ~rd! and specular ~rr!
components,

rd Diffuse reflectance ~[r 2 rr!,
rr Specular or regular reflectance ~[r 2 rd!,
rs Beam spot radius ~uy2p! or viewed radius

~2pyu! on the sample,
rd Detector radius,
R Hemisphere radius,
u Polar angle.

Appendix B: Magnification of a Hemispherical Mirror

To determine the magnification of a hemispherical
mirror one must first express the coordinates of a
ray’s intersection with the image plane ~x3, y3! in
terms of both the ray’s starting coordinates in the
object plane ~x1, y1! and the ray’s intersection point
with the hemisphere ~x2, y2!. The hemispherical
mirror shown in Fig. 4 illustrates the relationship of
these coordinates.

According to Snell’s law, the unit vector at point
~x2, y2! that is pointing toward ~x3, y3! is given by

ŝ2 5 ŝ1 2 2~ŝ1 z n̂!n̂, (B1)

where n̂ is the unit vector normal to the hemisphere
at point ~x2, y2! and ŝ1 is the unit vector at point



~x1, y1! that is pointing toward ~x2, y2!. The vector
q3 is equal to the sum of vector q2 ~not shown! and
d23ŝ2, where d23 is the distance from ~x2, y2! to ~x3,
y3!. This equality yields the following three equa-
tions:

x3 5 x2 1 d23Fx2 2 x1

d12
1

2~ŝ1 z n̂!x2

R G , (B2)

y3 5 y2 1 d23Fy2 2 y1

d12
1

2~ŝ1 z n̂!y2

R G , (B3)

0 5 z2 1 d23F z2

d12
1

2~ŝ1 z n̂!z2

R G , (B4)

where d12 is the distance from ~x1, y1! to ~x2, y2! and
~ŝ1 z n̂! is equal to @~x2x1 1 y2y1! 2 R2#y~Rd12!. Solv-
ing Eq. ~B4! for d23 and substituting the result into
Eqs. ~B2! and ~B3! yields the following expressions:

x3 5
x1 R2

2~x2 x1 1 y2 y1! 2 R2 , (B5)

y3 5
y1 R2

2~x2 x1 1 y2 y1! 2 R2 . (B6)

For a circular beam spot on the sample, the maxi-
mum magnification of the image can be determined
from two rays that originate on the axis that bisects
the object and the image. If we choose that axis to be
the y axis in Fig. 4, then the image length on the y
axis is given by @y3~y1 5 2c9 2 rs, y2 5 2R! 2 y3~y1
5 2c9 1 rs, y2 5 R!#, where rs is the radius of the
beam spot. Dividing the image length by 2rs and
simplifying yield Eq. ~2!.

Appendix C: Maximum Linear Magnification of a
Dual-Paraboloidal Mirror

To determine the magnification of a dual-paraboloidal
mirror we proceed as in Appendix B to express the
coordinates of a ray’s intersection with the image plane
~x4, y4! in terms of both the ray’s starting coordinates
in the object plane ~x1, y1! and the ray’s intersection
points with the paraboloids ~x2, y2, z2! and ~x3, y3, z3!.
The dual-paraboloidal mirror shown in Fig. 5 illus-
trates the relationship of these coordinates.

Fig. 4. Geometrical arrangement of a typical hemispherical mir-
ror.
We begin with a ray leaving point ~x1, y1! with
direction vector ŝ1:

ŝ1 5 cos~a! x̂ 1 cos~b! ŷ 1 cos~g! ẑ, (C1)

where a, b, and g are the angles between ŝ1 and the
coordinate axes.

Without loss of generality, we select y1 5 0 ~this is
equivalent to a rotation of the coordinate system
about the z axis!. Because y1 5 0, y4 will also be 0,
so the s1y component should not have an effect on
the value of x4 or hence on the maximum magnifica-
tion. For simplification, then, we can further select
b 5 py2. The general equation of the line through a
point ~x0, y0, z0! and along a unit vector ŝ is

x 2 x0

sx
5

y 2 y0

sy

z 2 z0

sz
, (C2)

then the line along ŝ1, through point ~x1, 0, 0! is

x 2 x1

cos~a!
5

z
cos~py2 2 a!

. (C3)

The intersection point of the line with the upper pa-
rabola is ~x2, y2, z2!, given by the intersection of the
line @Eq. ~C4!# and the paraboloid @Eq. ~C5!#:

x2 2 x1cos~a! 5
z2

sin~a!
, (C4)

z2 5 f 2
x2

2

4f
. (C5)

The unit vector corresponding to the reflected ray ŝ2
is given by

ŝ2 5 ŝ1 2 2~ŝ1 z n̂!n̂, (C6)

where

n̂ 5 S2
]z
]x

x̂ 1 ẑDYFS]z
]xD

2

1 1G1y2

(C7a)

Fig. 5. Imaging of rays in a dual-paraboloidal mirror system with
paraboloids of identical focal length ~ f 5 fs 5 fd! and coincident foci.
Points at ~x2, y2, z2! and ~x3, y3, z3! are reflection points on the two
paraboloids, whereas points ~x1, y1! and ~x4, y4! are the starting
and end points, respectively.
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or

n̂ 5 Sx2

2f
x̂ 1 ẑDYFSx2

2fD
2

1 1G1y2

(C7b)

and

ŝ1 z n̂ 5 Fcos~a!x2

2f
1 cos~py2 2 a!GYFSx2

2fD
2

1 1G1y2

. (C8)

The components of ŝ2 become

s2x 5 cos~a! 2
x2

f Fcos~a!x2

2f
1 cos~py2 2 a!GY

FSx2

2fD
2

1 1G , (C9a)

s2y 5 0, (C9b)

s2z 5 cos~py2 2 a! 2 2Fcos~a!x2

2f
1 cos~py2 2 a!GY

FSx2

2fD
2

1 1G . (C9c)

Plugging Eqs. ~C9! into Eq. ~C2! gives us the equation
for the line of the reflected ray:

x 2 x2

s2x
5

z 2 z2

s2z
. (C10)

The intersection point of this line with the lower pa-
rabola is ~x3, y3, z3!, given by the intersection of the
line @Eq. ~C11!# and the paraboloid @Eq. ~C12!#:

x3 2 x2

s2x
5

z3 2 z2

s2z
, (C11)

z3 5
x3

2

4f
2 f. (C12)

The unit vector corresponding to the reflected ray ŝ3
is given by

ŝ3 5 ŝ2 2 2~ŝ2 z n̂!n̂, (C13)

where

n̂ 5 Sx3

2f
x̂ 2 ẑDYFSx3

2fD
2

1 1G1y2

, (C14)

ŝ2 z n̂ 5 Ss2xx3

2f
2 s2zDYFSx3

2fD
2

1 1G1y2

, (C15)

s3x 5 s2x 2
x3

f Ss2xx3

2f
2 s2zDYFSx3

2fD
2

1 1G , (C16a)

s3y 5 0, (C16b)

s3z 5 s2z 1 2Ss2xx3

2f
2 s2zDYFSx3

2fD
2

1 1G . (C16c)
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Finally, the intersection of the line formed by
~x3, y3, z3! and Eqs. ~C16!, and the base plane
~z 5 0!, gives us the final point ~x4, y4, 0!:

x4 2 x3

s3x
5

2z3

s3z
. (C17)

Then we set up the following equations to solve:

x4 5 x3 2 z3

s3x

s3z
, (C18a)

y4 5 0. (C18b)

Combining Eqs. ~C18!, ~C16!, ~C12!, ~C11!, ~C9!,
~C5!, and ~C4! gives the position ~x4, y4! in terms of
~x1, y1! and a. This process was carried out with the
algebraic calculation features of the Mathematica 3.0
program on a Power Macintosh computer. The ex-
act sequence of steps in the program is as follows:
~a! Solve Eqs. ~C1!, ~C2!, and ~C3! for ~x2, y2, z2!; ~b!
plug ~x2, y2, z2! into Eqs. ~C4!–~C6!; ~c! solve for
~s2x, s2y, s2z!; ~d! plug the result into Eqs. ~C7! and
~C8!: ~e! solve Eqs. ~C7!–~C9! for ~x3, y3, z3!; ~f ! plug
the result into Eqs. ~C10!–~C12!; ~g! solve for
~s3x, s3y, s3z!; ~h! plug the result into Eqs. ~C13! and
~C14!; ~i! solve for ~x4, y4!. On two occasions when
we solved the quadratic equations describing the two
paraboloids, a pair of solutions resulted. Each of
these was carried out to yield a solution for x4. The
solution shown below corresponds to the maximum
magnification for rays leaving a positive x1 along the
x axis. For rays leaving a positive x1 in the negative
x direction the 2 in the denominator is replaced with
a 1. The other solutions are nonphysical. To re-
duce the resulting expression for x4 to the value for
maximum magnification we performed a series ex-
pansion in powers of a about a 5 0. This was done
separately for the numerator ~N! and the denomina-
tor ~D! of the analytical form of x4:

N~x4! 5 2x1
4a4 1 order@a5#, (C19a)

D~x4! 5 x1
3~ f1 2 x1!a

4yf 1 order@a5#. (C19b)

Hence

My,DP 5
2x4

x1
5

2NyD
x1

5
1
x1

x1
4 1 order@a#

x1
3~ f 2 x1!yf 1 order@a#

3
a50

1
1 2 x1yf

, (C20)

which, in terms of ε0, is

My,DP 5
1

~1 2 2ε0!
. (5)
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22. F. Paschen, “Ubër die Vertheilung der Energie im Spectrum
des schwarzen Körpers bei nederen temperaturen,” Berl.
Akad. Wiss. 22, 405–420 ~1899!.
1 July 1998 y Vol. 37, No. 19 y APPLIED OPTICS 4149


