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Abstract. Head tracking is an important primitive for
smart environments and perceptual user interfaces where
the poses and movements of body parts need to be deter-
mined.Most previous solutions to this problem are based
on intensity images and, as a result, su�er from a host
of problems including sensitivity to background clutter
and lighting variations. Our approach avoids these pit-
falls by using stereo depth data together with a simple
human torso model to create a head tracking system that
is both fast and robust. We use stereo data1 to derive a
depth model of the background which is then employed
to provide accurate foreground segmentation. We then
use directed local edge detectors on the foreground to
�nd occluding edges which are used as features to �t
to a torso model. Once we have the model parameters,
the location and orientation of the head can be easily
estimated. A useful side e�ect from using stereo data
is the ability to track head movement through a room
in three dimensions. Experimental results on real image
sequences are given.

Key words: Security / Surveillance / Human Motion,
Human-Computer Interaction

1 Introduction

Human head tracking has been an area of active research
in computer vision for several years. The term head track-

ing, however, means di�erent things to di�erent people.
Some think of it as the problem of �guring out not only
the location of the head, but also the 3D pose and some-
times even the complex facial expressions. Much research
has been devoted to this di�cult problem [26], [27], [28],
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[6], [29], [30], [31], [32], [33], and [5]. We will, however,
focus our e�orts on a simpli�ed version of this problem{
the determination of 3D position and 2D orientation of
the head in a sequence of images. Head position and ori-
entation are important parameters for a variety of ap-
plications including virtual reality and teleprescence [1],
[16], [17], [18], [19], [20],[21], augmented reality [22], [23],
face recognition [2], voice recognition [24], audio equal-
ization zone steering [25], and perceptual user interfaces
[15].

2 Background

There has been very little work on head tracking us-
ing stereo. Until recently, systems which produce real-
time stereo depth data have been unavailable on the
commercial market. As a result, most approaches to
this problem have relied exclusively on intensity images
and, as a result, must use color cues and intensity edges
for face/head detection and tracking. In [4], they use
color histograms and intensity gradients together with a
second-order motion model and a local search to track
skin-colored elliptical face blobs. Similar methods are
used by other researchers to track skin-colored blobs with
various additions. In [34], they also add in a hypothesis-
tree model to explicitly handle occlusions. [35] adds a
blink detection module to augment the power of the
color module, [36] uses a best-�t ellipse energy function
to more accurately classify skin-colored regions as faces,
[37] uses acoustical information to constrain the color in-
formation, and [38] adds mouth shape features to their
color module.More recently systems that rely exclusively
on color models have been pursued by [39], [41], and [40].

Not all methods track blobs of skin-color, though.
[42] and [15] track the contour of the head and shoul-
ders using image intensity gradients. [43], [9], [44], [45],
and [7] use combinations of skin color models, template
models, and various other cues to help detect and track
heads. A less typical approach is applied in [46] where
they use variable numbers of wavelets to track intensity-
based face templates.
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All of these approaches, by virtue of their reliance on
intensity and color information, are notoriously sensi-
tive to environmental factors that a�ect intensity values
such as changes in illumination or background clutter.
Recent work in adaptive mixture modelling [48] may
mitigate these e�ects somewhat, but they still cannot
e�ectively handle self-shadowing and situations where
the foreground and background are similar. In addition,
they cannot, in general, handle the full range of possi-
ble skin tones. Stereo depth calculations, however, do
not encounter these problems. This observation, coupled
with recent advances in stereo hardware which allow us
to gather depth data in real time [10], suggests a new
approach to the head tracking problem.

There has been very little work done on head tracking
using stereo. Some systems ( [11],[8] ) use stereo but still
rely heavily on skin-tone pixel extraction, an intensity-
based measure subject to all of the aforementioned prob-
lems. One approach ([14]) uses only stereo data but their
complicatedmodels prevent tracking of rapid movements
and require the user to move slowly. In addition, this al-
gorithm also requires a manual initialization step.

3 Basic Idea and Motivation

Our approach is to use stereo data to perform a more ac-
curate foreground segmentation. We then use depth and
intensity information to �t a simple torso model to the
foreground, looking speci�cally for the occluding edges
of the shoulders. Because the model is so simple, we can
perform the �t to each frame separately without having
to use traditional tracking techniques to limit the search
space. This means that our tracker will not get confused
as easily by rapid movements or temporary occlusions.
Another important bene�t of using stereo depth data is
that, once we �nd the head in the depth image, if we
know the cameras' focal lengths and baselines, we can
easily determine its position in 3D world coordinates.

We hope to use this information in several ways. For
one, this is an important complement to a smart room
where knowing the 3D position of a user's head is a
way to steer a microphone array to listen in that di-
rection. We would also like to use it as a �rst step in the
bootstrapping of a more complicated articulated motion
tracking system that can perform human gesture recog-
nition. In addition, work is underway to use this system
to provide real-time 3D head coordinates as an input to
a face recognition algorithm similar to the one in [2].

The paper is organized as follows. Section 4 will dis-
cuss the algorithm for segmentation in detail. Section 5
will describe our torso model and its parameters, while
Section 6 will discuss how we acquire that model in
each frame. Section 7 presents our head localization al-
gorithm. Our results and conclusions will be presented
in Sections 8 and 9, respectively.

4 Segmentation

Our system begins with a segmentation of the human
�gure in the foreground of our image sequence. Con-

ventional approaches using intensity images [7] create
a Gaussian model of the intensity over a certain interval
of time of each pixel in the background and then de-
termine whether a pixel is part of the foreground based
on its distance from the background in the chosen color
space. This method has two important limitations. First,
it is extremely sensitive to variations in lighting condi-
tions. For example, if the lighting suddenly changes, the
background model is no longer valid and the resulting
segmentation is incorrect. Similarly, the e�ects of shad-
ows are very di�cult to handle. If the foreground �gure
casts a shadow, the darkened region could di�er enough
from the background to be classi�ed as foreground. In
addition, if the foreground �gure happens to be similar
in color to the background, it will be classi�ed as back-
ground.

4.1 Using Depth Data

The use of stereo eliminates the aforementioned prob-
lems. With depth images, we proceed as before, model-
ing each background pixel as a Gaussian with a mean
� and a standard deviation �. This time, however, we
build the model with depth instead of intensity values.
Closely following the work of [12], once we build a depth
model of the background, we can identify the foreground
as any region where the depth is su�ciently closer to the
camera than the background. This is much more physi-
cally intuitive than the intensity segmentation and more
accurate as well. Because the nature of the stereo corre-
lation calculation makes it insensitive to color, shadows,
or lighting variations, we do not have to worry about the
previous problems.

The segmentation, however, is not quite this simple.
Stereo matching is extremely sensitive to image texture.
In our case, the correlation-based stereo system has a
great deal of di�culty operating in regions where there
is little texture. For example, consider a blank wall. A
stereo system attempting to correlate pixels in such an
untextured region will have a di�cult time �nding the
correct matches as all pixels look alike. The result is an
area of incorrect matches yielding disparities more or
less randomly distributed throughout a range dependent
on the size of the correlation window. This noise, de-
picted in Figure 1 is neither Gaussian nor white, making
it very di�cult to model. Unfortunately, this adversely
a�ects our segmentation as we cannot e�ectively model
the background in regions without adequate texture. We
can, however, identify those background pixels that are
unreliable with a simple test of our model's standard
deviation: if �ij > � where � is a user-de�ned thresh-
old (we used � = 2). To combat this problem in un-
textured regions, we've devised our own segmentation
scheme, closely related to [12] but with an important
additional validation step.
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Fig. 1. TOP: Sample input image from camera. White square

highlights region with little texture. MIDDLE: Disparity image

from the DigiclopsTM Stereo System from Point Grey Research,

Inc. Note noise in the highlighted region. BOTTOM LEFT: Re-

construction of physical surface based on disparity values in high-

lighted region (negative z axis trends away from camera). BOT-

TOM RIGHT: Reconstruction of physical surface based on region

centered inside of the human �gure in the middle.

4.2 Surface Validation Segmentation

Once we've modeled the background, we face the prob-
lem of picking out the foreground in a new disparity2 im-
age DI. In the case where a pixel of the foreground DIij

2 In the rest of the paper, we refer to disparity images obtained
using Digiclops; these are the depth images used in our experi-

ments. Digiclops is a commercial stereo system from Point Grey
Research. It uses 3 cameras to do multiple-baseline stereo dispar-

ity calculation. Calibration is done in the factory and, according
to Point Grey, the input images are recti�ed to �t an ideal stereo

camera model within 0.06 pixels. The system also has a "cali-
bration retention system" which makes it robust to shocks and

vibrations. Noise is also an issue with these systems; however, the
image transmission in Digiclops is completely digital (via an IEEE
1394 interface),which removes the problems of frame grabber jitter

and analog-to-digital conversion noise. That said, Digiclops su�ers
from the same limitations every other stereo system has. It does

is in front of a reliable background pixel (�ij < beta),
we've demonstrated that the segmentation is simple. All
we must say is that a pixel is part of the foreground
if the disparity value at that point is in front of the
mean background by more than a standard deviation.
When we are dealing with an unreliable background pixel
(�ij � beta), things get muchmore complicated. In these
cases, since �ij is not a reliable representation of depth,
we cannot know based only on the value of DIij whether
that pixel is in front of the background or not. Here we
make an important assumption: the foreground �gure
must consist of a smooth blob of pixels with similar dis-
parity values. In other words, it should be distinguishable
from untextured background in that its disparity values
suggest a surface that is smooth and realistic (Figure
1, (bottom right)), not noisy and spiked like the one in
Figure 1 (bottom left). Assuming we can identify all re-
gions in an image that can be considered smooth physical
surfaces, segmentation of the foreground is as simple as
identifying all such surface regions that occur in front of
the background. To �nd these surfaces, we use a modi�ed
connected components algorithm as follows:

1. consider DI to be a graph G where every vertex Gij

corresponds to a pixel DIij
2. for each vertex Gij connect it to its four neighbors

if and only if
P

n2Nij
jGij � Gnj < t where Nij is

the 4-neighborhood of vertex Gij and t is a user-
de�ned threshold. Since neighboring disparity values
in untextured regions di�er by large amounts, there
is a great deal of latitude in choosing this threshold.

3. connected components larger than a nominal size are
accepted as surfaces and all other pixels are ignored.
The size cuto� is also relatively easy to choose and is
based on the assumption that the human �gure will
take up at least 10% of the image.

4.3 Segmentation Algorithm

Thus, our segmentation algorithm is:

1. using 20-30 images, model the background using a
Gaussian [�; �] for each pixel

2. based on the values for standard deviation, determine
unreliable background models by looking for pixels
with � > � where � is a user-de�ned threshold (we
used � = 2)

3. for each subsequent disparity imageDI, calculate the
areas considered to be physical surfaces

4. a surface pixel DIsij is classi�ed as foreground if

a) the background is reliable at [i; j] and DIsij >
�ij + �ij

b) the background is unreliable at [i; j]
5. �nally, to eliminate all remaining noise, we run a bi-

nary connected components algorithm and extract
the largest component.

not perform well in areas without much image texture, it does not
handle specular reections, and it cannot handle occlusions.
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(c) (d)
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Fig. 2. Illustration of segmentation: (a) One of the images in the

input sequence of background images. (b) Disparity map output

from Digiclops for this image. (c) Illustration of reliable (white)

background pixels based on standard deviation of background

model. (Steps 1 and 2 of our algorithm) (d) New, test image for

foreground segmentation. (e) Results from surface validation (Step

3). Surfaces shown (all regions except black) passed the validation

requirement. (f) Final result of segmentation (Steps 4 and 5).

We've already looked at the �rst case in step 4, but
the second deserves a bit of explanation. When we clas-
sify the background as unreliable, we are implicitly as-
suming that it is located in an untextured region. This
is a safe assumption as it is generally only in those re-
gions that the disparity value would uctuate so much
from frame to frame. As a result, the data in this region
do not correspond to a physical surface and would not
aggregate into a connected component large enough to
classify as a surface. So, if we see a surface pixel where we
expect to �nd an unreliable background pixel, we know
that it must be part of the new foreground. Figure 2
illustrates these concepts.

5 Torso Model

Once we have an accurate segmentation, we look to �t a
simple torso model to the foreground �gure. The model
is based on the assumption that the �gure is upright
or leaning slightly to one side, a reasonable assumption
for our domain of interest. Given this, we notice that
the occluding edges of the shoulders, heretofore referred
to as the mantle, are strong cues that vary very little
with respect to the motion of an upright �gure. Thus our
torso model consists only of �ve parameters, two for the
straight line that captures the general lean of the �gure
and three for the quadratic that traces the outline of the

mantle. Figure 3 shows the model and its application to

Mantle (3 params)

Lean (2 params)

Fig. 3. TOP: Illustration of simple torso model. BOTTOM: Ap-

plication of torso model to image.

a real image. We loosely interpret the intersection of the
lean and the mantle as being the neck point. This will
be useful later as we're looking to localize the head.

6 Model Acquisition

Because we have such a simplemodel, it is relatively easy
to acquire. Given the segmented foreground �gure as a
binary image, we take advantage of the depth informa-
tion stereo gives us to help us extract the lean in the
following way:

1. For each row i of the binary image, calculate the me-
dian of the column values of the foreground pixels.
We will call this value the horizontal median. We use
medians instead of means because they are less sen-
sitive to outliers in the foreground �gure caused by
waving arms (Figure 4).
In addition, we use a second level of outlier rejection
based on the perceived 3D position of the �gure. To
do this, we need a rough approximationof the `center'
(Cfg) of the �gure in 3 dimensions. If we can make
a reasonable guess about this point, we can ignore
foreground pixels that are too far away horizontally
from it (e.g. those belonging to waving arms). Since
we're using stereo and have access to depth data, we
can de�ne the term `too far away' in world space
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Fig. 4. Illustration of the horizontal mean values (pluses) vs. hor-
izontal median values (squares). Notice how much more the means
are a�ected by the waving arm.

and not in image space. This allows us to handle �g-
ures at any depth and maintain scale independence
without having to resort to messy multi-resolution
calculations. We make our guess about Cfg using the
assumption that the majority of the lower area of the
�gure is usually evenly distributed around the center
of the �gure, a reasonable assumption for our domain
of interest. This area encompasses a �gure's legs and
lower to mid-torso region and its horizontal medians
are very seldom disturbed by waving arms. We can
get a value for the image coordinates of Cfg by �nd-
ing the centroid of the horizontal medians calculated
on the lowest 33% of the foreground �gure. Once we
have Cfg in image coordinates, we can use our depth
data and the known camera parameters to project
this point into 3D world coordinates. (Figure 5).

Fig. 5. Example of thresholds (depicted as vertical bars) in action.
The dark circles represent the recalculated horizontalmedians and
the pluses represent the line that best �ts them.

2. Perform outlier rejection in the following manner:
{ Set pixel threshold columns to the left (Tl) and
right (Tr) of Cfg by calculating the distance in
pixels represented by world displacements of �
centimeters to the left and right of Cfg, respec-
tively. The idea here is that � should approximate
the half-width of a standard human �gure

{ Using the thresholds, reject foreground pixel val-
ues as outliers if their column component does not

fall within the left and right thresholds. Recal-
culate the horizontal medians based on this new
information.

3. using a Singular Value Decomposition line �t, �nd
the best-�t line to the adjusted horizontal median
values for each row. That line is the lean.

In our experiments, we used � = 25 centimeters though
there is a fair amount of latitude in this choice. We used
SVD line �tting instead other, less expensive approaches
because of its numerical robustness. Speci�cally, its sta-
bility makes it a good deal less sensitive to perturbations
of the data [49]. Figure 5 depicts an example of the lean
acquisition.

Once we have the body lean, we can start acquisition
of the mantle. As we mentioned before, the strongest
cues are the occluding edges of the shoulders on either
side of the head. To �nd these we employ directed local
edge detectors similar to those used in [13]. We orient
these detectors perpendicular to the lean and look for
edges by thresholding the image gradient along slices
perpendicular to the detector's orientation (parallel to
the lean). Figure 6 o�ers an illustrated example of such
an edge detector. To place these detectors in the best
position, we use the depth data of the points along the
lean to give us an estimate of how far the �gure is from
the camera. Based on this information, we can determine
where, in image coordinates, to place the edge detectors.
More speci�cally, once we decide where in world coor-
dinates we'd like to place the edge detectors, using our
camera parameters we can project these points back into
image coordinates. For example, if the �gure is close to
the camera, we're going to look for edges along a much
longer line than if it is further away. Figure 7 shows an il-
lustration of these concepts. We use the assumption that
the typical head is .2 meters wide and that the typical
mantle is .4 meters across.

We place a series of these local edge detectors up
and down the image perpendicular to the body lean and
keep a running tally of how many potential edge points
we �nd. After searching the length of the body lean line,
we select the pair of trackers that yield the most edge
points and, using least squares, �t a quadratic to those
points. That quadratic is the mantle and represents the
�nal three parameters of our model.

7 Head Localization

Once we've acquired a model, we calculate the intersec-
tion of the mantle and the lean, which we interpret as
the neck. We then look radially out from the neck at
points in the foreground that are:

{ `above' the mantle
{ within a reasonable distance (.2 meters) in world co-
ordinates from the neck (again, we can do this be-
cause we are working with 3D data)

After identifying such points, we calculate their centroid
and make the assumption that, regardless of tilt, this
point will represent the center of the head. We can now
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Fig. 6. TOP: Example of a directed local edge detector. The detail
of the �gure shows examples of four of the slices along which the

image gradient is calculated. The gray dots represent occluding

edge points found by the detector. MIDDLE: graph of 1D slice of

the image intensity together with its gradient along slice 1 of the

edge detector above. BOTTOM: same as above except with slice

2 of the edge detector.

determine the orientation of the head simply by calcu-
lating the angle made by the line containing the head's
centroid and the neck point. We assume that the dis-
tance between those two points is half of the height of
the head and can easily draw a box around it (Figure 7).
Also, since we're using stereo, once we know the centroid
of the head region we can easily �gure out its position
in 3D.

8 Results

Figures 8-12 illustrate the results of our tracking scheme.
They were all recorded using the same values for the
aforementioned user-de�ned thresholds and parameters
for each experiment. The choice of these parameters was
easy for this particular domain and the experiments show
that a single choice can handle di�erent people and dif-
ferent motions in this domain. The sequences feature a

Fig. 7. This image shows the lean, the mantle, and a few examples
of the placementof the local edge detectors (gray rectangles). Also,
the light grey area above themantle line representspoints classi�ed
as being part of the head. The `x' represents the centroid (in image
coordinates) of those head points.

variety of skin tones, cluttered backgrounds and rapid
head movements that would be likely to confuse a tracker
that relied on accurate predictions based on past mo-
tion. Plotted on each image is our acquired torso model
as well as the orientation of the head. Figure 8 shows
the tracker's ability to track changes in head orienta-
tion. Similarly, Figure 9 illustrates the tracker's work on
a �gure approaching the camera and then moving away.
Since we can adjust our algorithmusing our knowledge of
the depth of the �gure, we maintain scale independence
without any signi�cant complications. Both �gures also
demonstrate our tracker's ability to work without any
assumptions based on skin tone. The �gure's dark skin
is something that would confuse many of the trackers
that rely on the identi�cation of \skin colored" pixels.

Figures 10 and 11 show the tracker's ability to work
in the presence of waving arms and image clutter. Figure
10 also shows one of the failure modes of the system.
When the assumption that the �gure more or less faces
the camera (a reasonable assumption for our domain of
interest) is violated, the shoulder cues are not always
strong enough to lead us to the correct con�guration of
the model. Fortunately, since our next step is entirely
independent of the previous one, we are not confused for
long and reacquire the �gure soon after.

Figures 12 illustrates two failure modes of the tracker.
At the top, the �gure comes too close to the edge of the
�eld of view so that our torso model cannot be acquired,
and at the bottom, the �gure's arms occlude the head
and shoulders, obscuring our most important cues. In
both cases, a simple tracker could easily get thrown o�
and have a di�cult time �nding the target again. In our
case, however, regardless of where the �gure is, we simply
reacquire our torso model as soon as it becomes available
again.

Figure 13 shows one of the important side e�ects from
using stereo. Since we are using stereo and we know the
cameras' intrinsic and extrinsic parameters, once we �nd
where the head is located in image coordinates, we can
easily turn that into a 3D point. As a result, we can track
the movement of the head throughout a room in 3D.
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frame 30 frame 40 frame 50 frame 60 frame 70

frame 80 frame 90 frame 100 frame 110 frame 120

Fig. 8. Results from a sequence of rapid head movements. The images were acquired at about 2 Hz so this sequence lasts about 45
seconds.

frame 30 frame 35 frame 40 frame 45 frame 50

frame 55 frame 60 frame 65 frame 70 frame 75

Fig. 9. Results from a �gure approaching and then walking away from the camera. The images were acquired at about 2 Hz so this

sequence lasts about 22 seconds.
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Fig. 13. Bird's eye view of head movement through room in se-
quence from Figure 11. Both axes are in meters.

8.1 Performance

This system is run using a resolution of 320x240 pixels
and the processing time per frame is approximately one
second on a dual Pentium II 350 MHz.

9 Conclusion

What we have shown is a new approach to head tracking
taking advantage of stereo depth data as well as the seg-
mentation accuracy real-time stereo a�ords. We've cre-
ated a simple torso model that is quick to acquire and
does not require accurate predictions between frames to
work. As a result, we can ignore the common assumption
of small interframe motions as well as the problems gen-
erated by occlusions. We use this system to track heads
in 3D throughout a room.

9.1 Future Work

As mentioned earlier, work is underway to use the re-
sults of this algorithm as input to a steerable phased
array of microphones in order to achieve more accurate
voice recognition without the use of user-mounted micro-
phones. Also, we hope to use the 3D position of the head
as input to a face recognition algorithm or to bootstrap
a more complicated articulated motion tracker.
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frame 56 frame 58 frame 60 frame 62 frame 64

frame 66 frame 68 frame 70 frame 72 frame 74

Fig. 10. Results from another rapid sequence of head and arm movements with a cluttered background. Notice the failure of the tracker
(frame 58) when the �gure is turned too much to the side reducing the strength of the shoulder cues. The timing is the same as in Figure
9

frame 10 frame 15 frame 20 frame 25 frame 30

frame 35 frame 40 frame 45 frame 50 frame 55

Fig. 11. More results from rapid sequence of head and arm movements with a di�erent �gure. The timing is same as in Figure 9

As for extensions of the algorithm itself, a relatively
easy one would be to track multiple heads in an image.
This is a simple matter of identifying all of the blobs
in the foreground and acquiring a torso model for each.
Another extension under consideration is to add a very
simple prediction step that would reduce the computa-
tion time to acquire a model, but not sacri�ce the ro-
bustness of our `one image at a time' system. We could
also integrate this prediction step as a separate module.
In this way we might have the model acquisition and
prediction act independently and then use a comparison
function to decide which solution makes the most sense.
This could potentially eliminate failure modes in which
one of these approaches fails but the other doesn't.

Other interesting extensions could be used to han-
dle more di�cult failure modes. For example, if a �g-
ure is holding a large object that is occluding its shoul-
ders, or if the �gure is occluded by another person, our
algorithm will fail. We would need to be able to ei-
ther recognize that situation and handle it gracefully or,
potentially, perform a more intelligent segmentation of
the foreground into layers, recognize the boundaries be-
tween them and ignore all pixels except those actually
belonging to the �gure. This segmentation would obvi-
ously require extensive work, especially to make it recog-

nize such complicated and smoothly-varying boundaries
in real time. However, advances in image segmentation
techniques suggest that it might not be out of reach [47].
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