UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

OFFICE OF
PREVENTION, PESTICIDES
AND
TOXIC SUBSTANCES

Memorandum

DATE: July 9, 2002
SUBJECT: Benefits assessment for diazinon use in melons: watermelon, honeydew, and cantaloupe

FROM: Nikhil Mallampalli, Entomologist
Herbicide and Insecticide Branch
Arthur Grube, Senior Economist
Economic Analysis Branch
Biological and Economic Analysis Division (7503C)
THROUGH: David Brassard, Senior Entomologist
Arnet Jones, Chief
Herbicide and Insecticide Branch
David Widawsky, Chief
Economic Analysis Branch
Biological and Economic Analysis Division (7503C)
TO: John Hebert, Chemical Review Manager
Susan Lewis, Chief
Reregistration Branch 2
Special Review and Reregistration Division (7508C)
CC: Denise Keehner, Director
Biological and Economic Analysis Division (7503C)
BEAD Peer Review Panel date: June 4, 2002

Summary of Analysis

Diazinon is used against a variety of foliar and soil insect pests in all melons. Effective alternatives exist for all of the foliar pests targeted, though some are relatively new and growers may not yet have efficiently incorporated their use, particularly for late season aphid control in California. However, no effective substitutes appear to exist for its use against soil insects. Different components of the soil insect complex have primary importance in different parts of melon-growing regions that use the most diazinon. In California, seedcorn maggots and cucumber beetle larvae, in particular, can migrate into even carefully managed fields and destroy newly planted crops. Cutworms and grubs may be particularly severe soil pests in southeastern growing regions, where these species may survive better
due to the warm climate and moist soil conditions. Yield losses in these regions to soil pests may be high in some years. In general, areas where grubs and wireworms are both abundant may be particularly vulnerable, as there are no other registered alternatives with efficacy comparable to that of diazinon. If diazinon is not available and if farmers make no cultural adjustments (and if no alternative insecticides become available) then yield losses in these regions to these soil pests could be severe in some fields in some years. Areas where grubs and wireworms are abundant - again, primarily in the south - may be particularly vulnerable. Losses due to such soil insects in Texas and adjacent southern US areas could be as high as $\$ 2,000$ per acre out of an expected gross revenue per acre of $\$ 5,000$ on some fields. Total losses could be several million dollars out of a total crop value for the three crops in the three states of about $\$ 600,000,000$. However, insecticides that provide control of these pests are registered on other crops and we would expect that requests for registration of one or more of these alternatives would occur. In sum, BEAD believes that the negative impact of diazinon loss in melons is unlikely to be severe in areas where foliar pests are the main target, but may be higher in the near future, in regions facing serious soil pest problems.

Scope and limitations of this assessment

The scope of this analysis comprises an examination of potential regional-level and industrywide impacts associated with elimination (through a phase-out) of the use of diazinon in melon production. This mitigation scenario reflects the high health risks to mixers, loaders and applicators as identified by the Health Effects Division of the Office of Pesticide Programs. This analysis does not attempt to address impacts associated with mitigation efforts targeted at workers reentering fields treated with diazinon, or potential mitigation for various environmental risks (e.g., risk mitigation for risks to terrestrial plants and organisms or water contamination). This document addresses diazinon use only in the three economically significant melon crops produced in the US: watermelon (Citrullus lanatas), cantaloupe and honeydew (both varieties of the same species, Cucumis melo). Other melons (e.g., Crenshaw and Persian melons) are grown in the same areas and in the same ways as the major types, and but are not considered specifically here. Impacts on these other melons would probably be comparable to impacts on the melons discussed here.

This assessment considers the pest management and economic implications of a loss of diazinon. Economic impacts are assessed only for California, Arizona, and Texas, which are major melon growing states. These states are also the only states in which any significant diazinon use on melons was observed. They are also those with highest proportion of diazinon usage (in these crops). Differences that might occur in other growing regions have not been considered. Since the pest complex affecting different melons are virtually identical, these scenarios have been assumed to be equally likely for each crop. Biological aspects of the implications of diazinon loss are expected to be similar across all scenarios and therefore are discussed in general terms.

The impacts estimated by this analysis only represent potential short-term- 1 to 5 years impacts on the melon production system. Impacts to the industry are calculated by simply scaling up the estimated per-acre impacts. We ignore potential price changes that could result from production changes. Further, our analysis of grower-level impacts assume that there is no shift from melons to another crop.

A major constraint on this analysis is the lack of information on possible losses if soil insects are not controlled. For western production areas, for example, the only information available was a single expert opinion that "fields could be impacted with anywhere from 10% to 50% of yields on average, taken out." (LeBoeuf, personal communication). In general, estimates of yield and quality losses associated with the various scenarios are based on the best professional judgement of BEAD analysts because they were not available from other sources. These estimates were derived from reviewing
available USDA crop profiles, state crop production guides, discussions with university extension and research entomologists knowledgeable in melon production, and other sources listed.

Background of US melon production

A number of different melons are grown in the United States. The three most important are cantaloupe, honeydew and watermelon. Appendix tables 1 through 3 provide production and value for these melons for the years 1999 to 2000.

Acreage of watermelons varies from year to year but is normally above 150,000 acres. The southern states of Florida, Georgia and Texas account for approximately half of the total acreage. On average, across years, approximately 10% of planted acres are not harvested. Harvesting costs account for about $1 / 3$ of total production costs and it is probable that some fields are not harvested because the price has fallen below the harvesting cost. Average gross revenue from an acre of watermelons for these three states has varied from about $\$ 1,750$ an acre to $\$ 2,000$ over the past three years. Per acre gross revenues vary significantly depending on yield and time of harvest. Texas watermelon growers grossed an average of $\$ 550$ per acre in 2000 while in the same year watermelon growers in California grossed an average of $\$ 6,250$ per acre. Texas growers had low yields and sold their watermelons at low prices while California farmers faced the opposite situation.

Cantaloupes are grown on fewer acres (about 100,000) than watermelon. More than one-half are grown in California. Arizona and Texas also have significant acreage. The yield per acre is similar but cantaloupes sell for approximately three times as much as watermelons. Gross revenue from an acre of cantaloupe is expected to be around $\$ 5,000$. The state and year per acre variation in gross revenue appears to be much less for cantaloupe than it is for watermelon. Over the nine state and year combinations the lowest average gross revenue per acre was for California in $1999(\$ 3,630)$ while the highest was for Texas in $2001(\$ 6,225)$.

Honeydew melons are grown on about 25,000 acres, but have yields and prices similar to cantaloupes so also have gross revenues of about $\$ 4,000$ acre. Most production is in California. Arizona and Texas are the only other states with significant acreage. Honeydew melon gross revenue variation for honeydew melons is similar to that for cantaloupes.

Use of diazinon for insect control on melons

Most reported use of diazinon on these three crops is in Arizona, California and Texas. Appendix Tables 4, 5 and 6 summarize available public-domain data on the usage of diazinon on melons. The NASS data indicate that somewhat less than 5% of watermelons in Texas are treated with diazinon. Use of diazinon on cantaloupe varies from very low up to 25% depending on the year. Use of honeydew melons was around 20% in the early 1990's but in recent years has been much lower.

We also have an estimate of diazinon use on melons in Texas from an extension specialist (Holloway) He states that 95% of the melons grown in South Texas are treated with diazinon. He also states that 35% to 40% of state acreage is in South Texas. This would imply a state-wide usage percentage of about 35%. This percentage is almost an order of magnitude higher than the NASS estimate for watermelons and two to three times the NASS estimate for diazinon use on cantaloupes and honeydews.

Insect pests targeted by diazinon, and potential alternatives

While the pest complex targeted by diazinon applications is similar across the major production
regions, there are some important differences in the role of diazinon in various growing areas. Therefore, we describe this role on the basis of the main melon production areas in the US.

Texas and adjacent southeastern regions

In watermelon production in these areas, diazinon is used against a variety of foliar pests, some of which are disease vectors. Those considered most important are the melon (= cotton) aphid (Aphis gossypii), and cucumber beetles (Diabrotica spp.). In cantaloupe and honeydew melons also, diazinon is used against these insects, as well as to control occasionally serious infestations of flea beetles (Epitrix spp.), spider mites (Tetranychus spp), and thrips (Frankliniella spp.) (USDA 1999b). Effective alternatives are currently registered for use against most of these pests (Table 1). It should be noted that the synthetic pyrethroids esfenvalerate and permethrin are suspected to cause flareups of mites as secondary pests. Thus, BEAD believes that these chemicals, while recommended by some state extension guides (e.g. Mississippi 2000), may not be frequently used as alternatives.

In all melon crops in these regions, the most critical benefit of diazinon appears to be the control of soil insects. Important ones among these are: cutworms (Agrotis spp.), grubs (larvae of cucumber beetles, white-fringed beetles, Graphognathus leucoloma, and June beetles, Cotinus nitida), and wireworms (larvae of click beetles in the genus Limonius). There are no alternatives to diazinon except 1,3 dichloropropene (brand name "telone"), which is only labeled for wireworms, and bifenthrin, which is labeled for wireworms, cutworms, and grubs. However, their efficacy against these insects, relative to that of diazinon, is unclear. BEAD was unable to find comparative product performance data in this regard. It should also be noted that the main use of telone is as a nematicide (Holloway and Edelson, personal communication), and that it is much more expensive than diazinon. The soil insect complex described above appears to be at its worst in south Texas, where warm, relatively moist conditions year-round may foster better survival (Holloway, personal communication).

Table 1. Alternative chemical control options for foliar and fruit-feeding insect pests occurring in all melon-producing areas, including Texas and the southeast.

Insect	Likely alternatives to diazinon
aphids	bifenthrin, dimethoate *, endosulfan *, esfenvalerate, imidacloprid, oxamyl *, pymetrozine, thiamethoxam
cucumber and flea beetles	azinphos-methyl *, bifenthrin, carbaryl, endosulfan *, esfenvalerate, imidacloprid, methomyl, permethrin, thiamethoxam (flea beetles only)
mites	avermectin, dicofol, fenpropathrin
thrips	dimethoate *, imidacloprid, fenpropathrin, spinosad

Notes: (1) Sources: Mississippi State University Extension Service (Mississippi 2000); USDA Crop Profiles (USDA 1999b); UC Pest Management Guidelines (Godfrey et al. 2000)
(2) $*=$ undergoing reregistration and use on melons may be restricted in the near future.

Arizona and California

Cucumber and flea beetle adults do not appear to be a problem of major concern in Arizona. However, in California, cucumber beetle adults are listed as an occasional pest of foliage, flowers, young fruit, and roots, particularly in honeydew melons (Godfrey et al. 2000). In addition to the foliar feeders listed for Texas (above), beet armyworm (Spodoptera exigua), leafhoppers (Empoasca spp.)
and leafminers (Liriomyzia spp.) are also occasional pests that are targeted by diazinon applications. For all these insects, effective alternatives exist (Table 2). Only those insecticides with residual activity and/or efficacy comparable to that of diazinon's are listed. Note that a range of chemistries (synthetic pyrethroids, neonicotinoids, carbamates, etc.) and some reduced-risk pesticides are available for all the insects listed.

Table 2. Alternative chemical control options for foliar and fruit-feeding insect pests occurring primarily in Arizona and California.

Insect	Likely alternatives to diazinon
Beet armyworm	bifenthrin, fenpropathrin, methomyl, permethrin, spinosad
Leafminers	avermectin, cryomazine, dimethoate *, permethrin, spinosad
Leafhoppers	bifenthrin, dimethoate, esfenvalerate, imidacloprid , naled, permethrin

Notes: (1) The same alternatives as those listed for Texas (see Table 1) are available for cucumber and flea beetles.
(2) Sources: UC Pest Management Guidelines (Godfrey et al. 2000); USDA Crop Profiles (USDA 1999a, 2000a)
(3) $*=$ undergoing reregistration and use on melons may be restricted in the near future.

The soil pests targeted by diazinon in these regions are somewhat different than those in the southeastern US areas. Grubs do not appear to be insect problems in either Arizona or California (Godfrey et al. 2000, USDA 1999a, 2000a). Wireworms, cutworms (many species), seedcorn maggots (Delia platura), and cucumber beetle larvae are all occasionally the focus of diazinon use. All are pest problems in newly planted fields, where young plants can easily be completely destroyed. Cutworms can also damage mature plants and fruit (Leboeuf, personal communication). Field crickets (Gryllus spp.), mole crickets (Gryllotalpa spp.), and darkling beetles (Blapstinus spp.) can damage flowers, ripening fruit and irrigation equipment occasionally and are also targeted with diazinon (Palumbo, personal communication, USDA 1999a, 2000a). As in the southeast, no alternatives to diazinon are available for wireworms other than telone and isotox (a mixture of lindane and captan), neither of which can be applied after planting and have unknown efficacy relative to diazinon. It should also be noted here that lindane is undergoing reregistration and may be restricted in the near future. For seedcorn maggots, isotox is the only alternative currently available.

For cutworms, carbaryl, methomyl, or esfenvalerate may be used with efficacy comparable to that of diazinon (Godfrey et al. 2000). Note here that esfenvalerate is available for all melons except casaba, Crenshaw and Persian varieties. For crickets and darkling beetles, carbaryl and permethrin are alternatives that should provide adequate control; malathion is also recommended for beetles by some authorities (USDA 1999a, Godfrey et al. 2000). For cucumber beetle larvae, carbaryl and imidacloprid are the only insecticide alternatives to diazinon that are available as soil treatments. For the soil insect complex in general, no effective natural enemies appear to exist (Godfrey et al. 2000, USDA 2000a). In these western growing regions, cultural practices such as elimination of weeds in and around fields and removal of organic debris from previously harvested crops often prevents many of these insects from building up to economically injurious levels (Godfrey et al. 2000). However, seedcorn maggots and cucumber beetle larvae, in particular, may become soil pests more frequently. This is because females of these species can migrate into even carefully managed fields and oviposit rapidly (LeBoeuf,
personal communication).

Biological impacts of eliminating diazinon in melon production

BEAD believes that the loss of diazinon as a foliar insecticide should not have a dramatic immediate (1 to 2 year) impact on pest management, in all melon producing regions, due to the availability of alternative chemical controls. However, diazinon sometimes fills an important niche, in that it can be rotated into pest management programs to help delay resistance development in the foliar pests it targets. Thus, removal of diazinon will make resistance management more difficult, particularly in melon aphids (which have developed resistance to many insecticides in other crops). Other limitations also exist for some of the foliar alternatives. Methomyl is thought to sometimes cause leafminer outbreaks while esfenvalerate may have the same effect on thrips and mites, possibly due to high toxicity of these materials to natural enemies (LeBoeuf, personal communication, Walgenbach et al. 2001). However, BEAD was unable to find any specific assessments of the extent to which these phenomena occur in melons. Thus, the long term impact of the absence of diazinon is unpredictable in terms of resistance development and epidemics of previously minor pests.

An additional factor that must be considered regarding the foliar use of diazinon is that some of the alternative insecticides are relatively new and growers and researchers are still testing ways in which to incorporate them into pest control programs in such a way as to effectively substitute them, particularly for late-season use of diazinon against aphids in California (LeBouef, personal communication). BEAD believes that this aspect of the impact of diazinon risk mitigation may be adequately addressed by allowing time for a phaseout if elimination of this insecticide is to be considered.

Texas extension service crop experts estimate a minimum 10% loss of yield to occur if diazinon use against soil pests is eliminated in their region (Anciso and Smith 2000, Holloway, personal communication). In California and Arizona, BEAD believes that some losses to soil insects - particularly seedcorn maggots and cucumber beetle larvae - would also occur if diazinon is lost. Level of loss to the soil insect complex is difficult to estimate reliably. One crop expert commented that it may be as high as 50% in as much as 30% of production fields, at least in California cantaloupes and honeydews (LeBoeuf, personal communication). Even if growers are able to successfully use the few available soil insecticide alternatives, the lack of chemistries with different modes of action makes it more likely that resistance will develop in the targeted insects. In California, soil insects are apparently historically minor pests that are now increasing in impact, because melon seed prices have increased and growers are forced to plant fewer seeds per acre, and so cannot tolerate high losses as much nowadays (LeBoeuf, personal communication).

Economic impacts of eliminating diazinon in melon production

Estimates of economic impacts of eliminating diazinon in melon production will be limited to a consideration of the use of diazinon to control soil insects in Arizona, California and Texas. Ranges of estimates will be presented for both per acre and aggregate effects. All estimates below are presented in round numbers both because of the imprecision of loss estimates and because of the range of growing costs, selling prices and yields.

LeBoeuf estimates that some fields in California could suffer a 50% yield loss due to uncontrolled damage by soil insects. Since harvesting costs are about one-half of total production costs for cantaloupe and honeydew melon producers this could amount to a per acre loss of $\$ 1,000$. Total revenue would fall by about $\$ 2,000$ per acre but this would be partially offset by a reduction in harvest costs of about $\$ 1,000$ per acre because of the need to handle fewer melons.

For watermelons, harvesting costs appear to be about one-third of total growing costs. If we assume total costs (and revenue) of \$ 1,500 per acre, revenue would fall to about $\$ 750$ but costs would fall about \$ 135 leading to a net loss of about $\$ 615$ per acre. Growers with this level of damage are almost certainly going to suffer net losses.

It is possible that fields with 50% damage to soil insects would be abandoned early in season soon after the damage had occurred.

The above are worst case estimates. It is not known how many acres/farmers would be affected to this extent. Planted watermelon acreage in Texas has declined by about one-third over the past decade which suggests that watermelons are not a particularly profitable crop for many Texas growers. Texas farmers have had low yields over most of this time compared to Arizona and California but in the early 1990s received prices much higher than they have seen in the past few years.

The lack of available pest damage data makes it difficult to choose a reasonable average yield loss for determining aggregate impacts of soil pests. We will use 10\% (Anciso and Smith, 2000; Holloway, personal communication) as a basis for our calculations. A range will be used for the number of affected acres. The low end of the range will be the average percent of crop treated estimated by NASS. For cantaloupes and honeydew melons, the high end will be the figure provided by Holloway. Based on the NASS data which estimated usage of diazinon on watermelons varying from less than one percent of crop treated in Texas to a maximum of less than 5 percent we think that treatment of more than 10% of Texas watermelons with diazinon for control of soil insects is very unlikely.

Aggregate impacts are likely to be less than 5% of total production of honeydews and cantaloupes in the three states. If there are no price effects, total gross revenues to farmers could fall $\$ 15,000,000$ out of a total crop value of about $\$ 350,000,000$ for cantaloupes and about $\$ 5,000,000$ out of a total crop value of $\$ 100,000,000$ for honeydew melons. Watermelon impacts will proportionally less - about $\$ 2,000,000$ out of a $\$ 100,000,000$ crop for the three states. Appendix Tables 7, 8 and 9 provide hypothetical impacts for the years 1999 to 2001 assuming a 10% yield loss and low, medium and high percentages of the crop affected.

Sources

Anciso, J., and D. Smith. 2000. Cantaloupes and Honeydews in Texas: Crop Brief on Production, Pests, and Pesticides. Texas A\&M University Agriculture Program Report SCS-2000-03.

Edelson, Jonathan. Professor, Department of Entomology, Oklahoma State University, Stillwater, OK.
Godfrey, L.D., R. L. Coviello, C. G. Summers, J. J. Stapleton, M. Murray, and E. T. Natwick. 2000. UC IPM Pest Management Guidelines: Cucurbits. University of California, Davis, CA.

Holloway, Rodney. Extension Specialist, Department of Entomology, Texas A \& M University, College Station TX.

Kemble, J. M. 1996. Guide to the Commercial Production of Muskmelon (Cantaloupe) and Related Melons. Alabama Cooperative Extension System Publication ANR-974.

LeBoeuf, John. Research Coordinator, California Melon Research Advisory Board, Fresno, CA.

Palumbo, John. Professor, Department of Entomology, University of Arizona, Tucson, AZ.
USDA. 1999a. Crop Profile for Melons in California. Available on the Web at: http://www.pmcenters.org/CropProfiles/index.html.

USDA. 1999b. Crop Profile for Watermelons in Texas. Available on the Web at:
http://www.pmcenters.org/CropProfiles/index.html.
USDA. 2000a. Crop Profile for Melons in Arizona. Available on the Web at: http://www.pmcenters.org/CropProfiles/index.html.

USDA. 2000b. Crop Profile for Cantaloupes and Honeydew Melons in Texas. Available on the Web at: http://www.pmcenters.org/CropProfiles/index.html.

Walgenbach, J.F., K.A. Sorensen, and G.G. Kennedy. 2001. North Carolina Agricultural Chemicals Manual. North Carolina State University, Raleigh, NC.

Appendix Tald e 1
Cant al oups for Fresh Market: Area Pl anted and Harvested, Yi el d,

State	Area Planted			Area Harvested		
	1999	2000	2001	1999	2000	2001
	Acres					
$\stackrel{A}{C}$	19,700	14,900	14, 600	19, 700	14, 900	14, 600
80	2, 100	58, 800	51, 800	1, 900	51, 500	56, 800
CE $1 /$		6800	5.900		5.500	5430
1	3, 500	3, 200	3, 000	3, 200	3, 000	2, ${ }^{1} 900$
M	1, 800	1, 500	1, 800	1, 700	1, 750	1, 600
OH_{21}	, 720					
SC 11	1,100	1, 300	1. 300	1,000	1, 1080	1,200
VA1/	11, 700	11, 900	12, 800	11, 100	10, 800	11, 200
US	109, 120	103, 130	101, 930	107, 350	98, 670	98, 630

Yi el d per Acre			Producti on		
1999	2000	2001	1999	2000	2001
	Ont			1,000	
$\begin{aligned} & 270 \\ & 2180 \\ & 180 \end{aligned}$	225 230 240	270 235 230 105	$\text { 12, } 319$	3,353 13,225 360 46	3, 13, 342 391 45
170	165	160	1, 105	908	848
180	215	250	158	645	725
140	140	150	980	105	105
120	130	93 100	120	143	112
180	178	150	1,998	1, 112	2, 123
210	212	231	22, 577	20,965	22,765

Val ue					
Per Ont			Total		
1999	2000	2001	1999	2000	2001
Dollars					
$\begin{aligned} & 13.80 \\ & 17.30 \\ & 13.60 \end{aligned}$	19. 60	14.90 18.90 150	$\begin{array}{r} 731,402 \\ 231,{ }_{2}^{\prime}, 651 \\ 4 \end{array}$	$\begin{array}{r} 65,719 \\ 2266^{\prime}, 148 \\ 4,188 \end{array}$	$\begin{array}{r} 58,736 \\ 25,277 \\ 5,982 \end{array}$
13. 40	17. 50	20. 00	14, 807		10.900
15. 50	15. 50	110. 30		2, 918	11, ${ }^{1} 108$
17. 30	15. 30	17. 90	1, 695	1, 607	1, ${ }^{1} 879$
16. 00	16. 30	13. 60	1, 920	2, 351	1, 697
28. 40	$\begin{aligned} & 13.50 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { 24: } 90 \\ & \text { 12: } \\ & \hline 0 \end{aligned}$	56, 743	$\begin{aligned} & \text { 42,', } 412 \\ & 1,568 \end{aligned}$	691, 723
17. 20	17. 50	18. 50	388, 812	367, 193	420, 226

1/ Added to veget abj e programin 2000 .
Est inates di scont inuedi 2000 .

Appendi x Table 2

Honeydens for Fresh Market: Area PI anted and Harvested Mield, Producti on, and Val ue by State and Uni ted States, 1999-2001						
	Area Pl anted			Area Harvested		
	1999	2000	2001	1999	2000	2001
	Acres					
$\begin{aligned} & A Z \\ & C A \\ & T X \end{aligned}$	$\begin{array}{r} \text { 4, } 200 \\ \text { 20, } 900 \end{array}$	$\begin{array}{r} \text { 3, } 600 \\ \text { 20, } 600 \end{array}$	$\begin{aligned} & \text { 21, } 400 \\ & \text { 21, } 000 \end{aligned}$	$\begin{array}{r} \text { 4, } 200 \\ \text { 20, } 500 \\ \hline 200 \end{array}$	23, 600	21, 400
us	27,600	26, 200	25,400	27, 500	26,000	25,200
	Yi el d per Acre			Product i on		
	1999	2000	2001	1999	2000	2001
		Ont			000 Cut	
$\begin{aligned} & A Z \\ & C A \\ & T X \end{aligned}$	245 1810 210	210 185 230	$\begin{aligned} & 215 \\ & 1855 \\ & 200 \end{aligned}$	$\begin{aligned} & \text { 1, } 029 \\ & \text { 3', } 698 \\ & 588 \end{aligned}$	3,756	3, 516
us	193	193	189	5,307	5, 008	4,761
	Val ue					
		Per Ont			Total	
	1999	2000	2001	1999	2000	2001
		Dolilar			OOCOIIa	
$\begin{aligned} & A Z \\ & C A \\ & T X \end{aligned}$	$\begin{aligned} & 19.20 \\ & \text { 21. } \\ & \text { 29. } 10 \end{aligned}$	$\begin{aligned} & \text { 117. } 50 \\ & \text { 18. } 60 \\ & \text { 25. } \end{aligned}$	$\begin{aligned} & 16.20 \\ & 19.60 \\ & 37.80 \end{aligned}$	$\begin{aligned} & 19,757 \\ & \text { 7T,', } 859 \\ & 111 \end{aligned}$	$\begin{aligned} & 13,230 \\ & 68,820 \\ & 14,131 \end{aligned}$	$\begin{aligned} & 8,359 \\ & 766,146 \\ & 13,508 \end{aligned}$
US	21. 60	19. 20	20. 60	114, 727	96, 181	98, 113

Appendi x Tabl e 3
Water nel ons for Fresh Narket: Area Pl ant ed and Harvested Yi el d,
and Producti

State	Area Pl anted			Area Harvested		
	1999	2000	2001	1999	2000	2001
	Acres					
${ }^{\text {A }}$	6, 800	5,600	$\text { 3, } 400$		3,900	2,400
AV	7, 200	2, 100	3, 800	3, 400	2, 100	6, 500
CA	14, 700	12, 300	12, 500	14, 700	13, 300	12, 500
DE	25, 500	30, 700	2, 800	35,500	2, 600	2, 700
GA	25, 000	28, 000	24, 000	35, 000	24, 000	24, 000
N	2, 000	7, 000	6, 900	6, 500	2, 100	6, 400
$\mathrm{PD}^{1 /}$	2, 800	3, 000	3,200	2, 700	2, 800	3, 100
0	3, 600	3, 880	3, ${ }^{3} 00$	3, 200	2', 880	2, 500
NC	10, 400	10, 900	10, 600	S, 900	10, 800	9, 500
OK	10, 000	8, 500	7, 000	7, 500	6, 000	6, 000
11	39, 700	47, 800	455, 000	37, 200	40, 000	40, 000
VA 21		1, 800	1, 600		1,500	1,400
Total	200, 000	188, 000	170,900	174,500	164,400	154,600
H 1/	560	560		560	560	
Oth Sts 3/			2,800			2,300
us	200, 560	188, 560	173, 700	175, 060	164,960	156,900
	Yi el d per Acre			Product i on		
	1999	2000	2001	1999	2000	2001
		Cut			1,000	
ALARCADEGANAD $1 /$WNCCSCTA 21	7142611543030019526010022024514590130200	130	180			
		150	170			
		535	530			
		320	310			
		195	265			
		110	400			
		195	280			868
		210	230			1,150
		160	155			1, 473
		200	125			1, 380
		1420	160			6, 400
Total	235	228	258	41,041	37,503	40,269
H 1/	200	225		112	126	
Oth Sts 3/			127			292
US	235	228	257	41, 153	37,629	40,374
1/ 2001	pubd ine the avoid sidates osureal. uned in the dine sfates total. ad programin 2000.			i i ndi vi dual operations. Data		

Waternel ons for Frest Market: Valite by State Appendi x Tall e 3 (conti ned)							
	Val ue						
State	Per Cut			Total			
	199	2000	2001	1999	2000	2001	
	Doilars ---------			1,000 Dol Iars --------			
AL AR CA C C C		$\begin{array}{r} 5.60 \\ 6: 80 \\ 1.70 \\ 7.60 \\ 5: .65 \\ 6: 48 \end{array}$	$\begin{array}{r} 6.60 \\ 10.90 \\ 10.90 \\ \text { : } 00 \\ \text { 5: } 80 \end{array}$				
${ }^{\text {P }}$		9. 0	8. 00			6, 944	
$\begin{aligned} & \text { M5 } \\ & 08 \end{aligned}$			$\begin{aligned} & 5.50 \\ & 5: 50 \end{aligned}$				
${ }_{\text {SK }}$		1. 0	7: 60				
$\begin{aligned} & \text { SC } \\ & \text { VA } \end{aligned}$		$\begin{aligned} & \text { 5. } 90 \\ & \text { 5: } 00 \end{aligned}$	$\begin{aligned} & 5: 50 \\ & \text { 7: } 50 \end{aligned}$			$\begin{aligned} 28,2800 \\ 20,058 \end{aligned}$	
Total	6. 43	6. 35	6. 81	$\begin{array}{r} 263,740 \\ 2,352 \end{array}$	238,203	274,351	
H 1/	21.00	23. 00	12. $90 \quad 2,352$		2,898		
Oth Sts 3/							3,773
us	6. 47	6. 41	6. 86	266, 092	241,101	276, 871	
i] 201 dat 3) adold to	$\begin{aligned} & \text { publ id } \\ & \text { taded } \end{aligned}$	$\begin{aligned} & \text { d to avoi } \\ & \text { the a } \\ & \text { grami } \end{aligned}$	$\begin{aligned} & \\ & \text { es to } \\ & \text { es } \end{aligned}$	of indivi	operat	s. Data	

Appendi x Tall e 4
 Reported Use of D azi non on Cantal oupes (Vari ous Sources)

Source	Year	$\begin{aligned} & \text { Acres } \\ & \text { Pl anted } \end{aligned}$	Acres Treated	Percent of Acres	Nunber Appl i cations	Tot al I ngredi ent	Total Pounds/ Acre
				Arizona			
NASS	1990	9,000		*	.		
NASS	1992	14, 000	3, 000	24	1. 0	1,000	0. 2
1) NASS	(1996	18, 000		$\stackrel{*}{5}$		2,000	2. 2
NSS NASS	(19098	19,000		*	.		2. 2
				ifor			
NGFAP	(1992)			19	.	6,000	0.5
$\begin{aligned} & \text { NASS } \\ & \hline \end{aligned}$	1994	59, 000	10,000	17	1. 0	6, 000	0.6
$1{ }^{\text {Pr }}$ NASS	1996	79, 000	8, 000	10	1. 2	6, 000	0.8
NOAP	(18908)			27		15, 080	1. 0
NAS	1998	63,000	5,000	8	1. 0	2, 000	0. 5
NASS	2000	59,000	9, 000	15	1. 3	8, 000	0. 9
			-----	Del avare			
NASS	1998	$\llcorner 50$		*			
				Georgi a			
NASS	1992	9, 000		*	-		
NASS	1998	6, 000		*			
NASS	2000	7, 000		*			
				I ndi ana			
NASS	1998	3, 000		*	.		
				M chi gan			
NASS	1992	1, 0000		*	-		.
NASS	1994	1, 1,000		$\stackrel{*}{*}$			
				*	.		
			----	Tennessee			
NCFAP	(1997)			35	.	$\llcorner 00$	2. 2
			-----	Texas			
NASS	1990	19, 000	1,000	7	1. 1	1,000	0. 8
$\begin{aligned} & \text { NAFAP } \\ & \text { NASS } \end{aligned}$		13, 000	$\text { 1, } 000$	$\frac{11}{11}$	1.1	11,000	0. 5
$\begin{aligned} & \text { NOSS } \\ & \text { NASSNS } \end{aligned}$	$\begin{aligned} & 1994 \\ & 1996 \\ & \hline 10 \end{aligned}$	14,000 16000	$\begin{aligned} & \text { 2, }, 000 \\ & 1,000 \end{aligned}$	11	1. 0	1, 1,000	0. 8
NOAP	$\binom{1097}{1090}$			18	1.0	1, 000	0.7
$\begin{aligned} & \text { NASS } \\ & \text { Holionay } \end{aligned}$	$\begin{array}{r} 2000 \\ (2001) \end{array}$	12, 000	3,000	26 35	1. 6	6,000	2. 0
				Virgi ni a			
NCFAP	(1997)			9		$\stackrel{500}{ }$	0.7
			----	tes Survey			
NASS	1992	123, 000	6, 000	75		4, 000	
$\begin{aligned} & \text { NASS } \\ & 1 \end{aligned}$	$\begin{aligned} & 1994 \\ & 1996 \end{aligned}$	$\begin{aligned} & 980,000 \\ & 71,3,000 \end{aligned}$	$\begin{aligned} & \text { 15', } 000 \\ & \text { g', } 000 \end{aligned}$	15	$\begin{aligned} & 1.0 \\ & 7.1 \end{aligned}$	$\text { B, } 800$	0. ${ }^{8}$
NASS	1996	$\begin{aligned} & 113,000 \\ & 102,000 \end{aligned}$		8	- 3	6, 600	0. ${ }^{1}$
NASS	2000	93', 000	14, 000	15	1.3	15, 000	1.1
1/ NASS surveyd "Ot her" nel ons in 1996. I ncl udes cant al oupes and honeydeus. A_{*} d data from NASS unness andi cated. Indi cates low evel s of uad isage Years in parent heses ind cate esti nates made for that gneral tine. peri od but not necessarily for that specific year							

Appendi x Table 5
Reported Use of Diazi non on Honeydew Mel ons (Vari ous Sources)

Appendi \times Tabl e 6Reported Use of d azi non on Waternel ons (Vari ous Sources)							
Source	Year	P Acranted	Acres Treated	Percent ofreated	Nunber Appl i cations	Total I ngredi ent	Total Pounds/
NGFAP	(${ }_{20007}$	6, 000		15		$\checkmark 50$	0.5
$\begin{aligned} & \text { NASS } \\ & \text { NASAP } \\ & \text { NASS } \\ & \text { NATAS } \\ & \text { NASS } \end{aligned}$		$\begin{aligned} & 4,000 \\ & 7,000 \\ & 7,000 \\ & 7,000 \\ & 7,000 \end{aligned}$	2, 000		1. 5	1,000 1,000	0: 6 0: 5
NCFAP	(1992)			8		500	0.5
		$\begin{aligned} & 15,000 \\ & 17,000 \\ & 17,000 \\ & 12,000 \end{aligned}$	$\begin{aligned} & 2,000 \\ & 4,000 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 16 \\ & 17 \\ & 17 \\ & \dot{*} \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1: 9 \end{aligned}$		$\begin{aligned} & 1.8 \\ & \frac{1}{2}: 8 \\ & 1: 6 \\ & 1: 1 \end{aligned}$
NASESP	(1998)	2, 000		30		500	0.4
$\begin{aligned} & \text { NASS } \\ & \text { NESTAP } \\ & \text { NASS } \\ & \text { NAES } \\ & \text { NASS } \end{aligned}$		$\begin{aligned} & 53,000 \\ & 53,000 \\ & 40,000 \\ & \text { 40, } 000 \\ & \text { 30, } 000 \end{aligned}$	1,000	1 ${ }_{*}^{*}$ $*$ $*$	1.0	$\begin{array}{r} 1,000 \\ 500 \end{array}$	$\begin{aligned} & 0.7 \\ & 0.7 \end{aligned}$
$\begin{aligned} & \text { NASS } \\ & \text { NAESE } \\ & \text { NASS } \end{aligned}$	$\begin{aligned} & 1992 \\ & 199 \\ & 1990 \\ & 1908 \\ & \hline 1080 \end{aligned}$	$\begin{aligned} & 42,000 \\ & 3,000 \\ & 342,000 \\ & 28,000 \end{aligned}$		${ }_{*}^{*}$			
$\begin{gathered} \text { NGAP } \\ \text { NASS } \end{gathered}$	$\begin{gathered} (1992) \\ 1998 \end{gathered}$	7,000		3		5500	8: 6
NGFAP	(1997)			30		500	0.4
NGEAB	(1997)			ssi ssi ppi 18^{8}		500	0.5
MSSS NASE NASS NASS	$\begin{aligned} & 1992 \\ & 1994 \\ & 1990 \\ & 1908 \\ & 2080 \end{aligned}$	$\begin{aligned} & 11,000 \\ & 110 \\ & \text { id, } 000 \\ & \text { 11, } 000 \end{aligned}$		th Carol in			
Reported Use of Diazi non on Waternel ons (Vari ous Sources) (conti nued)							
NASS	2000	10,000		-			

		51, 000 567, 000 47, 000	$\begin{array}{r} 2,000 \\ 1,000 \\ 2,000 \\ 1,500 \\ 1,000 \end{array}$	$\begin{array}{r} 4 \\ 2 \\ 2 \\ 4 \\ 7 \\ 7 \\ 3 \\ 3 \\ 3 \end{array}$	$\begin{gathered} 1.1 \\ 1: 1 \\ 1: 7 \\ 1: 9 \\ \vdots \\ 1: 5 \end{gathered}$	2,000 $1+1,000$ 4,000 500 500 2,000	
ncFAP	(1997)			10		$\llcorner 00$	0.4
	1992 1994 1968 2080	$\begin{aligned} & 178,000 \\ & 1766_{6}^{0} \\ & 14400 \\ & 151,080 \end{aligned}$		Surve 3 3 4 5 3		$\begin{array}{r} \text { 5, } 000 \\ \text { 13, } 000 \\ 3^{\prime}, 080 \\ \text { 6, } 000 \end{array}$	0.9 1.5 0.4 1.6
1/ NASS syrveyd "Oter" nel ons in 1996. I ncl udes cantal oupes and honeydens. Indi cates low evel sof usade Years od buar not hesess ind cape esti mates made for that gneral tine. peri od but not necessaril y for that specific year							

Tald e 7
Cantal oups for Fresh Market:

	Area Pl anted and $\stackrel{\text { barvest ed }}{ }$ yi el d and Producti on by State and Uni ted States 1999-2001					
State	Area Planted			Area Harvested		
	1999	2000	2001	1999	2000	2001
CA IX 3 states	$\begin{aligned} & 19,700 \\ & 611,000 \\ & 11^{\prime}, 400 \\ & \hline 100 \end{aligned}$	$\begin{array}{ll} 14,900 & 14,600 \\ 58,500 & 57, ' \\ 11500 \\ 85,200 & 124, \\ \hline 000 \end{array}$				$\begin{aligned} & 14,600 \\ & 56,900 \\ & 11,200 \\ & 82,600 \end{aligned}$
	Yi el d per Acre			Producti on		
$\begin{aligned} & A Z \\ & C A \\ & T X \end{aligned}$	1999	2000	2001	1999	2000	2001
	$\begin{aligned} & 270 \\ & 210 \\ & 180 \end{aligned}$	$\begin{aligned} & \text { Cnt } \\ & 225 \\ & 230 \\ & 170 \end{aligned}$	$\begin{aligned} & 270 \\ & 235 \\ & 250 \end{aligned}$			
$A Z$ CA 3 states	Val ue-					
	:------Per Cut			Total		
	$\begin{aligned} & 1999 \\ & 13.8 \\ & 178.3 \\ & 28.4 \end{aligned}$	2000 2001 Dollars -14.9 19.6 14.9 23.1 24.9				

Medi umEsti mates of \% of acres affected

Hgh Esti nates of \%of acres affected

Tabl e8
Honeydeus for Fresh Market:
Productí on and Val ue by State and Unit ed States 1999-2001

St ate	Area Pl anted			Area Harvested		
	1999	2000	2001	1999	2000	2001
	Acres					
$\begin{aligned} & \text { AZ } \\ & \text { CA } \\ & 1 \mathrm{X} \text { states } \end{aligned}$	4,200	3, 600	2,400	$\begin{array}{r} 4,200 \\ 20,500 \\ 2,800 \end{array}$	$\begin{array}{r} 3,600 \\ 20,1,000 \\ 2,400 \end{array}$	$\begin{array}{r} 2,400 \\ 21,000 \end{array}$
	20, 200	20, 60	21, 200			
	27, 600	26, 200	25, 40			
	Yi el d per Acre			Production		
	1999	2000	2001	1999	2000	2001
A CA TX	245 180 210	cht 210 185 230	215 185 200		000 Cu 3,706 552	3, $\begin{array}{r}516 \\ 360\end{array}$
			Val ue			

Revenue per harvested acre
1, $9999^{---7,000--7}$

Low Esti nates of \%of acres affected

Medi umEsti nates of \% of acres affected

H gh Esti nates of \% of acres affected

Tald e 9

