Chapter M

Assessment of the Distribution and Resources of Coal in the Fairfield Group of the Williams Fork Formation, Danforth Hills Coal Field, Northwest Colorado

By M.E. Brownfield,¹ L.N.R. Roberts,¹ E.A. Johnson,¹ and T.J. Mercier²

Chapter M *of* Geologic Assessment of Coal in the Colorado Plateau: Arizona, Colorado, New Mexico, and Utah

Edited by M.A. Kirschbaum, L.N.R. Roberts, and L.R.H. Biewick

U.S. Geological Survey Professional Paper 1625–B*

- ¹ U.S. Geological Survey, Denver, Colorado 80225
- ² U.S. Geological Survey contract employee, Denver, Colorado 80225
- * This report, although in the USGS Professional Paper series, is available only on CD-ROM and is not available separately

U.S. Department of the Interior U.S. Geological Survey National Coal Resource Assessment

Contents

Abstract	M1
Introduction	1
Purpose and Scope	1
Location	2
Previous Geologic Studies and Mining Activity	4
Methods	6
Geologic Maps	6
Geographical Boundaries	6
Geophysical Logs	6
Acknowledgments	10
Geologic Setting	10
Stratigraphy of the Cretaceous and Tertiary Strata of the Danforth Hills Coal Field	10
Structure	11
Coal Geology of the Danforth Hills Coal Field	11
Stratigraphy	11
Coal Distribution in the Fairfield Coal Group	12
Coal Quality	13
Methodology	35
Coal Resources	52
References Cited	52
Appendix 1—Digital Files for Coal Exploration Drill Holes in the Danforth Hills Coal Field, Northwest Colorado, for which Data are Publicly Available	
[Location, lithologic, and stratigraphic data are available in ASCII format, DBF, and Excel spreadsheets on disc 2 of this CD-ROM set]	
Appendix 2—ArcView Project for the Geologic Assessment of Coal in the Fairfield Coal Gro Williams Fork Formation, Danforth Hills Coal Field, Northwest Colorado	up,
[The digital files used for the coal resource assessment of the Fairfield coal group of the Williams Fork Formation, Danforth Hills coal field, northwest Colorado, are presented as views in the ArcView project. The ArcView project and the digital files are stored on both discs of this CD-ROM set—Appendix 2 of chapter M resides on both discs. Persons who do not have ArcView 3.1 may query the data by means of the ArcView Data Publisher on disc 1. Persons who do have ArcView 3.1 may utilize the full functionality of the software by accessing the data that reside on disc 2. An explanation of the ArcView project and data library—and how to get started using them—is given by Biewick and Mercier (chap. D, this CD-ROM). Metadata for all digital files are also accessible through the ArcView project]	

Plate

1.	Assessment c coal group of northwest Co	of the distribution and resources of coal in the Fairfield the Williams Fork Formation Danforth Hills coal field, lorado	M54
	Figure A.	Generalized geologic map of the Danforth Hills coal field	
	Figure B.	Index map showing location of public drill holes in the Danforth Hills coal field, Colorado	
	Figure C.	Coal correlation in the Fairfield coal group, Danforth Hills coal field, Colorado	

Figures

1.	Location map of the Danforth Hills coal field	M2
2.	Generalized geologic map of northwest Colorado	3
3.	Generalized regional cross section for part of the Upper Cretaceous and	
	Tertiary rocks in the Lower White River, Danforth Hills, and Yampa	
	coal fields, Colorado	
4.	Generalized stratigraphic column for a portion of the Upper Cretaceous	5
5	Index man showing location of 7 5' guadrangles in the Danforth Hills coal field	
5.	Colorado	7
6.	Map showing total net-coal thickness for the FGA coal zone	14
7.	Map showing total net-coal thickness for the FGB coal zone	15
8.	Map showing total net-coal thickness for the FGC coal zone	16
9.	Map showing total net-coal thickness for the FGD coal zone	17
10.	Map showing total net-coal thickness for the FGE coal zone	18
11.	Map showing total net-coal thickness for the FGF coal zone	19
12.	Map showing total net-coal thickness for the FGG coal zone	20
13.	Map showing overburden thickness for the FGA coal zone	21
14.	Map showing overburden thickness for the FGB coal zone	22
15.	Map showing overburden thickness for the FGC coal zone	23
16.	Map showing overburden thickness for the FGD coal zone	24
17.	Map showing overburden thickness for the FGE coal zone	25
18.	Map showing overburden thickness for the FGF coal zone	26
19.	Map showing overburden thickness for the FGG coal zone	27
20.	Map showing coal-thickness categories for the FGA coal zone	28
21.	Map showing coal-thickness categories for the FGB coal zone	29
22.	Map showing coal-thickness categories for the FGC coal zone	30
23.	Map showing coal-thickness categories for the FGD coal zone	31
24.	Map showing coal-thickness categories for the FGE coal zone	32

25.	Map showing coal-thickness categories for the FGF coal zone	33
26.	Map showing coal-thickness categories for the FGG coal zone	34

Tables

1.	Locations of publically available coal-exploration holes drilled in the Danforth Hills coal field, Colorado	M8
2.	Summary of the Fairfield coal zones of the Williams Fork	13
3.	Coal quality summary for coal collected from the Danforth Hills coal field, Colorado	35
4.	Summary of ash content and 36 elements in coal from the Danforth Hills coal field, Colorado	36
5.	Identified and hypothetical coal resources for the FGA zone of the Fairfield Group, Williams Fork Formation, Danforth coal field	37
6.	Identified and hypothetical coal resources for the FGA zone of the Fairfield Group, Williams Fork Formation, Danforth Hills coal field by county, reliability, overburden, and coal thickness	38
7.	Identified and hypothetical coal resources for the FGB zone of the Fairfield Group, Williams Fork Formation, Danforth coal field by guadrangle, township, and ownership	
8.	Identified and hypothetical coal resources for the FGB zone of the Fairfield Group, Williams Fork Formation, Danforth Hills coal field by county, reliability, overburden, and coal-thickness	
9.	Identified and hypothetical coal resources for the FGC zone of the Fairfield Group, Williams Fork Formation, Danforth coal field by quadrangle, township, and ownership	41
10.	Identified and hypothetical coal resources for the FGC of the Fairfield Group, Williams Fork Formation, Danforth Hills coal field by county, reliability, overburden, and coal-thickness	42
11.	Identified and hypothetical coal resources for the FGD zone of the Fairfield Group, Williams Fork Formation, Danforth coal field by quadrangle, township, and ownership	43
12.	Identified and hypothetical coal resources for the FGD zone of the Fairfield Group, Williams Fork Formation, Danforth Hills coal field by county, reliability, overburden, and coal-thickness	
13.	Identified and hypothetical coal resources for the FGE zone of the Fairfield Group, Williams Fork Formation, Danforth coal field by guadrangle, township, and ownership	45
14.	Identified and hypothetical coal resources for the FGE zone of the Fairfield Group, Williams Fork Formation, Danforth Hills coal field by county, reliability, overburden, and coal-thickness	
15.	Identified and hypothetical coal resources for the FGF zone of the Fairfield Group, Williams Fork Formation, Danforth coal field by guadrangle, township, and ownership	

16.	Identified and hypothetical coal resources for the FGF zone of the Fairfield Group, Williams Fork Formation, Danforth Hills coal field by county, reliability, overburden, and coal-thickness	
17.	Identified and hypothetical coal resources for the FGG zone of the Fairfield Group, Williams Fork Formation, Danforth coal field by quadrangle, township, and ownership.	
18.	Identified and hypothetical coal resources for the FGG zone of the Fairfield Group, Williams Fork Formation, Danforth Hills coal field by county, reliability, overburden, and coal-thickness	50
19.	Identified and hypothetical coal resources for the Fairfield Coal Group of the Upper Cretaceous, Williams Fork Formation, Danforth Hills coal field, Colorado by overburden, county, township, quadrangle, and ownership	51

Metric Conversion Factors

[Data in this volume are reported in customary inch-pound units because the metric system is not currently in use by the coal industry of the United States. Readers wishing to convert measurements to the International System of units (SI) may use the following factors]

U.S. customary unit	SI conversion
Acre	= 4,046.87 square meters
Acre-foot	= 1,233.49 cubic meters
British thermal unit (Btu)	= 1,055.056 joules
Btu/lb	= 2,326 joules per kilogram
Foot (ft)	= 0.3048 meters
Inch (in.)	= 0.0254 meters
Mile (mi)	= 1.609 kilometers
Pound (lb)	= 0.4536 kilograms
Short ton (ton)	= 0.9072 metric tons
Square miles (mi ²)	= 2.59 square kilometers
Short ton/acre-foot	= 0.7355 kilograms per cubic meter

Assessment of the Distribution and Resources of Coal in the Fairfield Coal Group of the Williams Fork Formation, Danforth Hills Coal Field, Northwest Colorado

By M.E. Brownfield, L.N.R. Roberts, E.A. Johnson, and T.J. Mercier

Abstract

The assessment of coal resources in the Fairfield coal group, Danforth Hills coal field, Moffat and Rio Blanco Counties, Colorado, is part of the U.S. Geological Survey's (USGS) "National Coal Resource Assessment" (NCRA) Project, a 5-year program to identify and characterize coal deposits that could potentially provide fuel for the Nation's coal-derived energy needs during the first quarter of the 21st century. For this project, the Nation is divided into nine regions, one of which encompassed the Rocky Mountains and Colorado Plateau. One of the priority subareas for resource assessment in the Rocky Mountains and Colorado Plateau region is the Danforth Hills coal field that is located along the northeastern margin of the Piceance Basin.

Coal zones targeted for assessment in the Danforth Hills coal field are in the Fairfield coal group and occur in the lower part of the Williams Fork Formation of the Upper Cretaceous Mesaverde Group. The coal beds in these zones are laterally discontinuous, are considered to be low sulfur (averaging 0.47 percent), and have an apparent rank of high-volatile C bituminous when compared to many other coal-bearing regions in the United States. The coal quantities estimated for the Fairfield coal group are only in the identified and hypothetical resource categories and represent the total net coal in beds greater than 1.2 ft thick.

The Fairfield coal group contains an estimated coal resource of 21 billion short tons in seven coal zones of which more than 60 percent of the total coal is contained within the 1,000-ft maximum overburden category. More than 90 percent of the total is federally owned. The coal resources estimated for Danforth Hills coal field do not include the area inside the Colowyo Federal and State coal leases and the Preference Right Lease Application (pending Federal coal lease) nor do they reflect economic, land-use, environmental, technological, and geologic constraints that may ultimately affect the availability and recoverability of the coal. The amount of recoverable coal is not addressed in this study. Important factors affecting recoverability are (1) a significant amount of the coal is found at depths greater than 1,000 ft and (2) many of the coal beds are in close proximity stratigraphically, which may restrict underground mining of some beds. Coal can be bypassed due to longwall mining methods related to reduced thickness from partings and splits. Currently, coal is being mined at the Colowyo mine by dragline, and truck and shovel methods, and is transported by rail line to the Denver Rio Grande Railroad lines at Craig, Colo.

Introduction

Purpose and Scope

The assessment of the distribution and resources of the coal in the Danforth Hills coal field of northwest Colorado is part of the U.S. Geological Survey's National Coal Resource Assessment (NCRA) Project, which was initiated in 1994. The primary goal of the NCRA project is to characterize the resource potential and quality of coal resources for areas in the United States that will be utilized for the next few decades. The Danforth Hills coal field (figs. 1 and 2), in Moffat and Rio Blanco Counties, is one of the priority areas within the Rocky Mountains and Colorado Plateau region. To restrict the resource assessment in the context of a 10- to 20-year development period, only coals in the Fairfield coal group (Hancock and Eby, 1930) of the Williams Fork Formation of the Upper Cretaceous Mesaverde Group were assessed for this study (fig. A on pl. 1 and fig. 3). The Fairfield coal group contains many of the thickest and potentially economic coal beds in the Danforth Hills coal field. Study areas were determined by analyzing current mining activity, coal ownership, and by discussions with the U.S. Bureau of Land Management (BLM). This study area was selected because it contains active mining, large amounts of federally administered lands, and has potential for future

Figure 1. Map showing the locations of the Danforth Hills, Lower White River, and Yampa coal fields in Moffat, Rio Blanco, and Routt Counties, Colorado.

development. Mineral rights to more that 90 percent of coal within the study area are owned by the U.S. Government. One mine (Kennecott's Colowyo mine) is presently operating in the study area and produces coal from the Fairfield coal group.

The assessment of the Fairfield coal group in the Danforth Hills coal field is based largely on data derived from geologic mapping, outcrop measurements, and drilling conducted in the study area by the U.S. Geological Survey (USGS) since the early 1900's. The coal-resource data has been stored digitally and manipulated in a Geographic Information System to calculate coal resources within a variety of spatial parameters that were deemed useful for land-use planning and potential mining. The major coal deposits in the Danforth Hills coal field are present in the Upper Cretaceous Iles and Williams Fork Formations of the Mesaverde Group (figs. 3 and 4). Coal resources reported in this study are for total net coal and assessed coal zones in the Fairfield coal group of the Williams Fork Formation and represent only a part of the total in-place coal for the Danforth Hills coal field. The Colowyo Coal Company's Federal and State coal leases and their pending Preference Right Lease Application (PRLA) were excluded in this study (fig. B on pl. 1).

Location

The Danforth Hills coal field (fig. 1 and fig. A on pl. 1) is situated in northwest Colorado, in Moffat and Rio Blanco Counties, and is within the Rocky Mountain Coal Province of Tully (1996). The coal field lies north of the White River along the northeastern margin of the Piceance Basin (fig. 1), south and west of the Axial Basin, and east of the Lower White River coal field along the northern extension of the Grand Hogback (fig. 2). The area is characterized by north- and east-trending ridges separated by steep canyons on the north, and to the south and west by steeply dipping, long and narrow hogbacks. Elevations in the coal field range from 6,200 to 8,700 ft. Northward drainage is to the Yampa River and southward drainage is to the White River. The Flat Tops highlands of the White River Plateau (fig. 2) to the southeast ranges in elevation from 8,500 to 12,000 ft.

Figure 2. Generalized geologic map of northwest Colorado showing outcrops of the coal-bearing Mesaverde Formation and Group and major coal fields within the eastern Sand Wash and Piceance Basins.

Figure 3. Generalized regional cross section showing stratigraphic correlations and facies relationships for part of the Upper Cretaceous and Tertiary rocks in the Danforth Hills, Lower White River, and Yampa coal fields, northwest Colorado. Modified from Brownfield and Johnson (1984).

Previous Geologic Studies and Mining Activity

Since the early 1900's the USGS has conducted investigations to study the geology and to assess the coal, oil and gas, and oil-shale resources in Colorado. Gale (1907, 1909, 1910) was the first to investigate the coal resources in the Danforth Hills coal field. Hancock (1925) and Hancock and Eby (1930) conducted the first detailed geologic investigations in the Danforth Hills from 1911 to 1913. Detailed geologic mapping of the Danforth Hills was completed by Nutt (1981), Reheis (1981, 1983a, 1983b), and Izett and others (1983, 1985). Additional mapping in the Danforth Hills was conducted by Dyni (1966), Collins (1976), and Pipiringos and Rosenlund (1977). Early mining activity in the Danforth Hills was limited because the closest railroad lines were more than 50 miles away. However, during the late 1800's and early 1900's, several mines in the Danforth Hills coal field produced coal for local utilization. In addition to local heating uses, some of the coal provided fuel for the Meeker electric plant, nearby lumber mills, and blacksmith shops (Hancock, 1925). Gale (1910) reported quality analyses of coal from several of the mines.

Coal is currently mined in the Danforth Hills coal field by surface methods at the Colowyo mine, operated by Kennecott Corporation. The coal is mined from nine beds in the upper two coal zones of the Fairfield coal group of the Williams Fork Formation by dragline, and by truck and shovel methods, then shipped by a private rail to the Denver Rio Grande rail lines at

Figure 4. Generalized stratigraphic column showing depositional environments for a portion the Upper Cretaceous and Tertiary rocks in the Danforth Hills coal field, Colorado. Shown are the major divisions of the Fairfield coal group and the Yampa bed of the Williams Fork Formation. Yampa bed not drawn to scale.

Craig, Colo. Coal production averaged 4.5 million short tons per year from 1989 to 1996 (Resource Data International, Inc., 1998). In 1997, the Colowyo mine produced 4.3 million short tons of coal, accounting for 18 percent of the 24 million short tons of coal produced in northwest Colorado (Resource Data International, Inc., 1998). Future coal production in the Colowyo mine will probably be limited to the upper part of the Fairfield coal group and potential new mines are expected to be located in the Fairfield coal group as well. Because of limited access to the Danforth Hills area by rail, new mining activity will likely be restricted to localities adjacent to the Colowyo mine.

Methods

In order to assess the coal resources of the Danforth Hills coal field, we created digital files for storing data on various geologic and other features such as outcrop lines, elevation data, coal thickness, faults, fold axes, and extent of Federal coal leases and mined-out areas within the study area. Drill-hole data have been stored and analyzed in a relational stratigraphic database and graphics software package (Stratifact, GRG Corporation, Denver, Colo., 1997). Digital files of the publicly available drill holes are provided in Appendix 1 of this chapter, which is on disc 2 of this CD-ROM. Mean coal-zone thicknesses and elevation data, derived from the Stratifact drill-hole database, were integrated with digital elevation data to derive the Fairfield coalzone outcrop lines (Roberts and others, chap. C, this CD-ROM). These outcrop lines were then used to define assessment areas for the study. The drill-hole data were analyzed by USGS computer program (G.D. Stricker, written commun., 1998) to determine net-coal-bed thickness, after Wood and others (1983). The digital files were stored, analyzed, and manipulated in a Geographic Information System (GIS) using ARC/INFO (Environmental Systems Research Institute, Inc.) software. Gridding, and subsequent generation of contour and isopach maps, was done with EarthVision (Dynamic Graphics, Inc.) software, and the contours were converted to ARC/INFO coverages using custom programs ISMARC and Convert-ISM.AML (Roberts and others, 1998). This software integrated the various coverages, allowing us to calculate coal resources and characterize coal distribution within a variety of geologic and geographic parameters. The various digital coverages used in this report are available in the ArcView project in Appendix 2, and they are explained by Biewick and Mercier (chap. D, this CD-ROM). The methodology for reporting the estimated coal resources is from Wood and others (1983) and is described in more detail in the methodology chapter of this report (Roberts and others, chap. C, this CD-ROM).

Geologic Maps

Digital geologic maps of the study area were generated using ARC/INFO coverages that included stratigraphic unit

boundaries and elevations, faults, fold axes, and coal thicknesses. Data from the 1:500,000-scale geologic map of Colorado (Tweto, 1979; Green, 1992) were used to generate digital regional maps of northwest Colorado (fig. 2). The studyarea portion of Colorado geologic map was compiled from 1:250,000-scale geologic maps (Tweto 1975, 1976; Rowley and others, 1979) and published at a scale of 1:500,000. The geologic map for the Danforth Hills coal field was compiled at a scale of 1:62,500 and modified from 1:62,500-scale maps by Hancock (1925), Hancock and Eby (1930), Barnum and others (1974), and Izett and others (1985), and from 1:24,000-scale maps by Nutt (1981), and Reheis (1981, 1983a, 1983b). The 1:62,500-scale map was then reduced to the map shown on plate 1 (see fig. A on pl. 1).

Geographical Boundaries

Geographic boundary coverages were imported from existing public-domain databases. Surface and mineral ownership were obtained from 1:24,000-scale digital compilations completed by the Craig District Office, BLM. County and State lines were obtained from 1:100,000-scale Topologically Integrated Geographic Encoding and Referencing (TIGER) files produced by the U.S. Bureau of the Census in 1990. Surface topography was obtained from 1:24,000 Digital Elevation Model (DEM) files for the 7.5-minute quadrangles within the study area (fig. 5). Coal-lease boundaries were obtained from the U.S. Bureau of Land Management and compiled digitally by the USGS.

Geophysical Logs

More than 640 borehole geophysical logs, supplied in part by the BLM, were used in this study. Table 1 lists information on 110 of the publicly available exploratory drill holes. Fiftysix of these holes were drilled from 1976 to 1979 by the U.S. Geological Survey. Another 52 holes were obtained from expired coal leases, and two are oil and gas exploration holes. Figure B on plate 1 shows drill-hole locations with index numbers that are cross-referenced with the hole number in table 1. Data on the other drill holes in the Danforth Hills coal field are proprietary and were obtained over a 25-year drilling period by several different operators and organizations, commonly at different scales. Coal and other lithologic units are readily identified on the geophysical logs because good natural gamma and density traces are recorded on them. The log quality allowed unit boundaries generally to be picked to the nearest 1/2 ft. A few of the older, lower quality logs allowed interpretations to the nearest foot, but a few of the most recent, well-calibrated logs allowed unit picks to the nearest one-tenth of a foot.

As in most coal studies, the degree of certainty in establishing coal-bed correlations varies with distance between control points (the higher the drilling density, the better the corre-

Figure 5. Index map showing location of the Danforth Hills coal field with respect to the 7.5' topographic quadrangles. Outline of the Danforth Hills coal field drawn on the base of the Upper Cretaceous Iles Formation.

Table 1. Locations of coal exploration drill holes in the Danforth Hills coal field, northwest Colorado, for which data are publicly available.

[Index number shown on figure B, plate 1. Also shown for the holes are elevations, depth drilled, and quadrangle. Surface elevation and depth drilled are in feet; to convert feet to meters, multiply by 0.3048]

Index	Drill hole	Latitude	Longitude	Sec	To wnship	Range	7.5' quadrangle	Elevation	Depth drilled
no.	no.							(feet)	(feet)
1	D-53EG	40.3229	107.96235	17	T. 4 N.	R. 94 W.	EASTON GULCH	7560	706
2	D-51EG	40.31652	107.93306	15	T. 4 N.	R. 94 W.	EASTON GULCH	7080	1510
3	D-38EG	40.31292	107.97329	18	T. 4 N.	R. 94 W.	EASTON GULCH	7895	1080
4	D-44EG	40.29633	107.90723	23	T. 4 N.	R. 94 W.	EASTON GULCH	6990	1320
5	D-49EG	40.29474	107.95667	29	T. 4 N.	R. 94 W.	EASTON GULCH	7260	1425
6	D-47A	40.28484	107.82436	28	T. 4 N.	R. 93 W.	AXIAL	6980	715
7	D-39EG	40.27864	107.93852	33	T. 4 N.	R. 94 W.	EASTON GULCH	6895	800
8	D-41EG	40.27829	107.91592	34	T. 4 N.	R. 94 W.	EASTON GULCH	6980	820
9	D-42EG	40.27805	107.96646	32	T. 4 N.	R. 94 W.	EASTON GULCH	7400	700
10	D-40EG	40.27699	107.92591	34	T. 4 N.	R. 94 W.	EASTON GULCH	7290	1453
11	D-47A1	40.27566	107.83014	33	T. 4 N.	R. 93 W.	AXIAL	7045	975
12	D-56A	40.27499	107.80896	34	T. 4 N.	R. 93 W.	AXIAL	7200	1430
13	D-45EG	40.26531	107.94592	4	T. 3 N.	R. 94 W.	EASTON GULCH	7050	840
14	D-50EG	40.26158	107.92715	3	T. 3 N.	R. 94 W.	EASTON GULCH	7200	620
15	D-26A	40.25948	107.84076	5	T. 3 N.	R. 93 W.	AXIAL	7327.5	500
16	#1 GOSSARD	40.25602	107.82337	4	T. 3 N.	R. 93 W.	AXIAL	7357	8785
17	D-11A	40.25235	107.84564	5	T. 3 N.	R. 93 W.	AXIAL	7560.8	1140
18	D-03A	40.25068	107.87005	7	T. 3 N.	R. 93 W.	AXIAL	7620	900
19	D-31NG	40.2492	107.8599	7	T. 3 N.	R. 93 W.	NINEMILE GAP	6917	200
20	D-52D	40.24872	107.95106	9	T. 3 N.	R. 94 W.	DEVILS HOLE GULCH	7200	600
21	D-06NG	40.24576	107.79421	11	T. 3 N.	R. 93 W.	NINEMILE GAP	7240	1583
22	D-43DH	40.24483	107.97887	7	T. 3 N.	R. 94 W.	DEVILS HOLE GULCH	7400	560
23	D-27NG	40.24468	107.85122	8	T. 3 N.	R. 93 W.	NINEMILE GAP	7774.1	500
24	D-01NG	40.23941	107.76081	7	T. 3 N.	R. 92 W.	NINEMILE GAP	7250	1102
25	D-29NG	40.23922	107.86176	7	T. 3 N.	R. 93 W.	NINEMILE GAP	7257.8	381
26	D-34NG	40.23887	107.7917	11	T. 3 N.	R. 93 W.	NINEMILE GAP	6700	200
27	D-12NG	40.2385	107.85236	8	T. 3 N.	R. 93 W.	NINEMILE GAP	7913.6	1240
28	D-54D	40.23737	107.94241	9	T. 3 N.	R. 94 W.	DEVILS HOLE GULCH	8120	940
29	D-07NG	40.23682	107.81922	15	T. 3 N.	R. 93 W.	NINEMILE GAP	7747	1675
30	D-35NG	40.23418	107.86255	18	T. 3 N.	R. 93 W.	NINEMILE GAP	7514.7	380
31	D-02NG	40.23327	107.8553	17	T. 3 N.	R. 93 W.	NINEMILE GAP	8018.7	800
32	D-20NG	40.23306	107.84364	17	T. 3 N.	R. 93 W.	NINEMILE GAP	7991.1	520
33	D-18NG	40.23047	107.81049	15	T. 3 N.	R. 93 W.	NINEMILE GAP	7480	540
34	D-04NG	40.23037	107.75639	18	T. 3 N.	R. 92 W.	NINEMILE GAP	7000	1171
35	D-28NG	40.2273	107.86126	18	T. 3 N.	R. 93 W.	NINEMILE GAP	7780	280
36	D-19NG	40.22453	107.84029	17	T. 3 N.	R. 93 W.	NINEMILE GAP	8095	520
37	D-24NG	40.22449	107.86777	18	T. 3 N.	R. 93 W.	NINEMILE GAP	8336.2	220
38	D-17NG	40.22323	107.82707	16	T. 3 N.	R. 93 W.	NINEMILE GAP	7827	500
39	D-32NG	40.22187	107.81128	22	T. 3 N.	R. 93 W.	NINEMILE GAP	6885	220
40	D-25NG	40.22185	107.85228	20	T. 3 N.	R. 93 W.	NINEMILE GAP	8241.8	540
41	D-37DH	40.22151	107.99056	19	T. 3 N.	R. 94 W.	DEVILS HOLE GULCH	8080	715
42	D-33NG	40.22119	107.867	19	T. 3 N.	R. 93 W.	NINEMILE GAP	8243	600
43	D-05NG	40.2195	107.76436	24	T. 3 N.	R. 93 W.	NINEMILE GAP	7345	1235
44	D-23NG	40.21922	107.86302	19	T. 3 N.	R. 93 W.	NINEMILE GAP	8441.8	500
45	D-10NG	40.21869	107.84266	20	T. 3 N.	R. 93 W.	NINEMILE GAP	8114.3	1480
46	D-22NG	40.21622	107.8525	20	T. 3 N.	R. 93 W.	NINEMILE GAP	8228	500
47	D-48NG	40.21429	107.86422	19	T. 3 N.	R. 93 W.	NINEMILE GAP	8411	1200
48	D-16NG	40.21276	107.83113	21	T. 3 N.	R. 93 W.	NINEMILE GAP	7443.6	518
49	D-21NG	40.21075	107.84955	20	T. 3 N.	R. 93 W.	NINEMILE GAP	7983.4	560
50	D-58NG	40.20518	107.87	30	T. 3 N.	R. 93 W.	NINEMILE GAP	8155.3	660
51	D-62NG	40.20318	107.84271	29	T. 3 N.	R. 93 W.	NINEMILE GAP	7105.1	320
52	D-61NG	40.20152	107.8511	29	T. 3 N.	R. 93 W.	NINEMILE GAP	7225.5	275
53	D-60NG	40.19709	107.87215	30	T. 3 N.	R. 93 W.	NINEMILE GAP	8006.5	400
54	D-13NG	40.19594	107.8343	28	T. 3 N.	R. 93 W.	NINEMILE GAP	7855	500
55	D-14NG	40.19436	107.84436	29	T. 3 N.	R. 93 W.	NINEMILE GAP	7815	500
56	/5-M-184	40.18805	107.83736	33	1.3 N.	K. 93 W.	NINEMILE GAP	7948.2	1100

Table 1. Locations of coal exploration drill holes in the Danforth Hills coal field, northwest Colorado, for which data are publicly available— Continued.

Index no.	Drill hole no.	Latitude	Longitude	Sec	To wnship	Range	7.5' quadrangle	Elevation (feet)	Depth drilled (feet)
57	K15-CD-79	40.18023	107.85085	32	T. 3 N.	R. 93 W.	NINEMILE GAP	8125	1085
58	D-08NG	40.15764	107.75801	7	T. 2 N.	R. 92 W.	NINEMILE GAP	8490	1231
59	75-M-172	40.15664	107.82444	9	T. 2 N.	R. 93 W.	NINEMILE GAP	7701.1	700
60	74-M-169	40.15588	107.82207	9	T. 2 N.	R. 93 W.	NINEMILE GAP	7401.3	700
61	75-M-171	40.15143	107.82865	9	T. 2 N.	R. 93 W.	NINEMILE GAP	7510.6	100
62	75-M-174	40.14857	107.82647	16	T. 2 N.	R. 93 W.	NINEMILE GAP	7622.4	1000
63	77-M-211	40.14239	107.82757	16	T. 2 N.	R. 93 W.	NINEMILE GAP	7172.7	2578
64	74-M-163	40.14037	107.8212	16	T. 2 N.	R. 93 W.	NINEMILE GAP	7165.5	860
65	76-M-199	40.13683	107.82968	16	T. 2 N.	R. 93 W.	NINEMILE GAP	7051.7	2700
66	HFC-5	40.13563	107.81944	21	T. 2 N.	R. 93 W.	NINEMILE GAP	7150	679
67	70-M-002	40.13408	107.80002	23	T. 2 N.	R. 93 W.	NINEMILE GAP	7407.6	1000
68	74-M-164C	40.13316	107.79113	23	T. 2 N.	R. 93 W.	NINEMILE GAP	7434	270
69	HFC-4A	40.13013	107.83968	20	T. 2 N.	R. 93 W.	NINEMILE GAP	6978	110
70	79-23	40.1297	107.82768	21	T. 2 N.	R. 93 W.	NINEMILE GAP	7249.4	251
71	79-17	40.12924	107.83619	21	T. 2 N.	R. 93 W.	NINEMILE GAP	7170.9	2635
72	75-M-175	40.12905	107.76387	24	T. 2 N.	R. 93 W.	NINEMILE GAP	7154.3	634
73	77-M-207	40.12881	107.79258	23	T. 2 N.	R. 93 W.	NINEMILE GAP	7629.5	2756
74	76-M-204	40.12812	107.77314	24	T. 2 N.	R. 93 W.	NINEMILE GAP	7445.7	2020
75	74-M-152	40.12646	107.78214	24	T. 2 N.	R. 93 W.	NINEMILE GAP	7567.8	1001
76	74-M-153	40.12506	107.79494	23	T. 2 N.	R. 93 W.	NINEMILE GAP	7863.7	1000
77	74-M-160	40.12425	107.77066	24	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	7717.9	1050
78	76-M-198	40.12315	107.78997	23	T. 2 N.	R. 93 W.	NINEMILE GAP	7619	1995
79	74-M-151	40.11946	107.82884	28	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	7414	1100
80	HRP-1	40.11881	107.84462	29	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	6925.2	701
81	76-M-195	40.11747	107.77728	25	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	7876.8	1485
82	80-08C	40.11738	107.83514	28	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	7532.7	1475
83	79-13	40.11725	107.82793	28	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	7499	1564
84	77-NNG-04	40.117	107.84733	29	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	6940	1600
85	77-M-210A	40.11663	107.76616	25	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	7542.1	1250
86	80-04	40.11642	107.81915	28	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	7681.9	1700
87	77-NNG-07C	40.11604	107.84023	29	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	7541	1800
88	HRJ-1	40.11598	107.84509	29	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	6915.5	204
89	77-NNG-01C	40.11549	107.8538	29	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	7664	1820
90	74-M-161	40.11467	107.80488	27	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	7686.3	780
91	77-NNG-05C	40.11452	107.84787	29	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	6940	1120
92	HRG-1	40.1141	107.84524	29	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	6910.8	182
93	D-09RM	40.11371	107.76102	30	T. 2 N.	R. 92 W.	NINEMILE GAP	7025	761
94	79-08	40.11341	107.83526	28	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	7707.8	868
95	76-M-203	40.11309	107.83714	28	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	7709.1	1460
96	74-M-159	40.11283	107.79058	26	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	8104.9	906
97	80-06C	40.11281	107.82345	28	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	7990	1148
98	77-NNG-10	40.11216	107.84886	29	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	6960	1220
99	77-NNG-02C	40.11173	107.85671	29	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	7883.2	1340
100	80-03	40.11109	107.83517	28	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	7851.6	1000
101	76-M-194A	40.1109	107.77672	25	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	8170.9	778
102	77-NNG-09	40.11029	107.83968	29	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	7720	800
103	80-12	40.10967	107.83163	28	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	8024.3	660
104	77-NNG-03	40.10925	107.85716	29	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	7880	1220
105	77-NNG-06A	40.10873	107.84856	29	T. 2 N.	R. 93 W.	KATTLESNAKE MESA	6920	990
106	80-11	40.10692	107.82769	28	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	8143	580
107	76-M-196	40.10681	107.79196	26	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	8330.7	1465
108	68-M-016	40.10678	107.80705	27	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	7559.5	655
109	77-M-208B	40.10428	107.77509	36	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	8102.8	1560
110	74-M-154	40.09947	107.79502	35	T. 2 N.	R. 93 W.	RATTLESNAKE MESA	8559	512

lation), local stratigraphy, presence or absence of stratigraphic markers, and log quality. Although correlations of individual coal beds should generally be regarded as indications of stratigraphic position within coal zones, the lithologic and stratigraphic log interpretations resulting from the present study are considered to reflect an accurate representation of the stratigraphic framework of coal beds that exist within the Danforth Hills area.

Acknowledgments

We would like to thank Janet Hook, Craig District Office, BLM, for supplying coal-exploration drill-hole data, land-use data, and leasing information for the study area, and Matt McMcolm, Colorado State Office, BLM, for confirming the lease maps. We want to gratefully acknowledge Bruce Barnum (Sage Discovery, Golden, Colo.) for his geologic data and valuable discussions on the study area. We also would like to thank USGS employees Ron Affolter for contributing coal quality data, Laura Biewick for providing GIS support, Dorsey Blake for computer programming support, and Gary Stricker for computer programming support. USGS contractors Tim Gognat, Al Heinrich, Jon Haacke, and Marin Popov are acknowledged for their technical support with drill-hole databases and computer graphics. In addition, we would like to thank USGS employees Ronald Affolter, Stephen Roberts, and William Keefer for their peer reviews of the manuscript, and Rick Scott for his editorial work.

Geologic Setting

Stratigraphy of the Cretaceous and Tertiary Strata of the Danforth Hills Coal Field

All of the coal stratigraphic units exposed within the Danforth Hills coal field are of Upper Cretaceous and Tertiary age (fig. 3), with all the coal-bearing rocks considered in this study confined to the Upper Cretaceous Mesaverde Group. The lowest unit is the thick marine Mancos Shale of Early to Late Cretaceous age, which is overlain by the mostly nonmarine, coal-bearing Iles and Williams Fork Formations of the Mesaverde Group. A generalized columnar section for the Danforth Hills coal field is shown in figure 4. The Mesaverde Group generally consists of a thinly to thickly interbedded succession of shale, siltstone, and sandstone deposited largely in a terrestrial environment, although regional relations indicate that this sedimentation was directly influenced by sealevel changes. Carbonaceous rocks are common, and thick beds of coal occur throughout the Williams Fork Formation. Rocks of marine or marginal-marine origin do occur within the Mesaverde Group, most notably the Trout Creek Sandstone Member at the top of the Iles Formation (figs. 3 and 4).

This persistent marginal-marine sandstone is one of the best stratigraphic markers in the area. It is directly overlain by the Fairfield coal group (Hancock and Eby, 1930), which contains the most extensive coal resources in the area.

The Iles Formation averages about 1,500 ft thick in the Danforth Hills coal field. Thick ledge-forming sandstones are the most notable feature of the Iles when observed in outcrop. Thin coals occur throughout the formation and locally reach significant thickness and continuity in the Black Diamond coal group (Hancock and Eby, 1930) and in the lower coal group (see Coal Geology of the Danforth Hills Coal Field section, this report). The Trout Creek Sandstone Member at the top of the Iles Formation averages about 75 ft in thickness in the central part of the Danforth Hills. The Trout Creek is a persistent, upward-coarsening, ledge-forming, light-colored sandstone that can be mapped over the entire study area. The Iles Formation correlates well to other areas of northwest Colorado, although the Trout Creek Member thins out and disappears to the west (fig. 3). Thus, the Trout Creek cannot be used to separate of the Iles and the overlying Williams Fork (fig. 3) in the Lower White River coal field (Brownfield and others, chap. N, this CD-ROM).

The Williams Fork Formation is present at the surface over most of the study area, and it contains a large majority of the coal resources in the area. Hancock and Eby (1930) subdivided the Williams Fork into five stratigraphic units: in ascending order, these are the Fairfield coal group, barren interval, Goff coal group, Lion Canyon Sandstone, and Lion Canyon coal group. Hancock and Eby (1930) estimated the Williams Fork to be 4,500 to 5,000 ft thick and to contain all of the significant coal beds; thickness of 3,000 to 3,500 ft were considered to be a more reliable range for the present study. These large thicknesses relative to other areas of northwest Colorado are the result of structural and erosional relationships and to facies changes. The lower part of the barren interval correlates with the upper coal group of the Yampa coal field (fig. 3). The uppermost part of the Goff coal group of the Williams Fork Formation in the Danforth Hills coal field is equivalent to the Lewis Shale-Fox Hills Sandstone succession (fig. 3) in the Yampa coal field to the north (Hancock and Eby, 1925). Marine units equivalent to the Lewis Shale are represented by a thin shale tongue that occurs below the Lion Canyon Sandstone, which is present along the western margin of the Danforth Hills; this shale, however, has been eroded from most of the study area. The shoreward facies of this marine unit is represented by the Lion Canyon Sandstone Member (fig. 3), which is equivalent to the Fox Hills Sandstone in the western part of the Yampa coal field. The 1,000 ft of coal-bearing Williams Fork Formation overlying the Lion Canyon Sandstone in the western part of the Danforth Hills area represents an extension of the Lance Formation westward from the Yampa coal field (Sears, 1925). Thin lenticular coals present in the Lance-equivalent rocks are included in the Lion Canyon coal group (fig. 4) of Hancock and Eby (1930). No definite correlative unit to the Twentymile Sandstone Member (fig. 3), an important marker unit in the Williams Fork to the

northeast in the Yampa coal field, is present in the Danforth Hills coal field.

The depositional setting of the Williams Fork Formation in the Danforth Hills was especially favorable for the formation of coal. The rocks were deposited along the western margin of the late Campanian to Maastrichtian Western Interior Seaway (Roberts and Kirschbaum, 1995), where, regionally, there was a stacking of several thousand feet of coalbearing strata along the coastal plain. During deposition of this strata, the area that is now northwest Colorado was at a latitude of about 42 degrees north (Roberts and Kirschbaum, 1995) and had a humid, subtropical climate. This coupled with a high water table, characteristic of lower-coastal-plain depositional setting, was conducive to the development of a complex network of peat swamps. The resulting coal-bearing rocks typically show a cyclic pattern of coal deposition, which is now reflected in the coal zones defined during the present study. Sedimentary processes associated with near-shore deposition and fluvial deposition in the Danforth Hills area have influenced the geometry and distribution of these deposits.

Tertiary rocks in the Danforth Hills coal field are restricted to the western margin of the study area along the Grand Hogback monocline (fig. 2). Overlying the Upper Cretaceous rocks is a section of fluvial and lacustrine rocks assigned to the Paleocene Fort Union Formation and Paleocene to Eocene Wasatch Formation (fig. 3). Thin lenticular coals have been mapped in the Fort Union (Pipiringos and Rosenlund, 1977; Izett and others, 1985) but were not included in this study.

Structure

The Danforth Hills area lies along the northeastern flank of the Piceance Basin. The Grand Hogback monocline, a major structure, forms the eastern margin of the basin (fig. A on pl. 1 and fig. 2). The study area lies northwest of the broad White River Plateau and directly south of the Axial Basin (figs. 1 and 2), which can be considered an eastward extension of the Uinta Mountain uplift.

The study area is deformed by several major folds, as shown on a structure map drawn on the top of the Trout Creek Sandstone Member of the Iles Formation (fig. A on pl. 1). The Sulphur Creek syncline trends generally east-west across the southern part of the area (fig. A on pl. 1). The Danforth Hills anticline trends generally southeastward along the southwest margin of the study area where it is subparallel to the Grand Hogback monocline where dips commonly reach 45° (fig. A on pl. 1 and fig. 2). The anticline then turns eastward, paralleling the Sulphur Creek syncline. Structural relief of 2,000 to 3,000 ft is common between the axes of these two folds (fig. A on pl. 1). Strata on the flanks of the Sulphur Creek syncline dip 10° – 30° .

Structural deformation is less intense in the northern and northeastern part of the study area (fig. A on pl. 1), and dips are generally less than 10° and commonly less than 5° .

The Elkhorn syncline plunges north-northeast across the eastern margin from a structural "saddle" on the trend of the Danforth Hills anticline. Subparallel to the northern margin is the Collom syncline (Hancock, 1925). The northernmost margin of the study area coincides with the south flank of the Axial Basin anticline (Hancock, 1925).

Large-displacement faults are not common in the Danforth Hills area except for two faults cutting the northern extension of the Grand Hogback (fig A on pl. 1). The northern fault has produced a distinct offset in the Trout Creek Sandstone and has an estimated vertical displacement of 510 ft (Hancock and Eby, 1930), whereas the southern fault has a vertical displacement of 285 ft. However, local faulting related to folding along the Danforth Hills anticline is common, and fracturing and minor displacements have accompanied the removal of thick coals by burning.

Older, published elevation and outcrop data for the Danforth Hills coal field and adjacent areas is of uncertain quality because of the small-scale and now-obsolete methods used for preparing topographic bases (Gale, 1910). Perhaps the best sources for structural information for much of the study area are the Meeker quadrangle geologic map (1:62,500 scale) by Hancock and Eby (1930) and the Axial quadrangle geologic map (1:62,500 scale) by Hancock (1925) who constructed structure contours on the top the Trout Creek Sandstone Member of the Iles Formation. Geologic mapping and exploration drilling by Nutt (1981), Reheis (1976, 1978a, 1978b, 1981, 1983a, 1983b), and Izett and others (1985) provided additional structural information for some parts of the study area. Information derived from an analysis of drill-hole data during the present study was used to further update and construct the final structure contour map shown in figure A, plate 1.

Coal Geology of the Danforth Hills Coal Field

Stratigraphy

The coal-bearing intervals in the Iles and Williams Fork Formations of the Mesaverde Group in the Danforth Hills were stratigraphically subdivided into six coal units (see figs. 3 and 4) by Hancock and Eby (1930). The Iles was subdivided into two units, the lower and the Black Diamond coal groups. The Williams Fork was subdivided into three coal units and one barren interval. In ascending order, these units are Fairfield coal group, the barren interval, the Goff coal group, and the Lion Canyon coal group.

Along the northern and eastern margins of the study area, thin coal beds occur in the lower coal group between 100 to 250 ft above the base of the Iles Formation. The lower coal group consists of a few thin coal beds and thick beds of carbonaceous shale associated with thick, cliff-forming sandstones north of Meeker, Colo. (fig. A on pl. 1). These coals were used for local consumption in the late 1800's and are presently of little economic value. The principal coal beds of the Iles Formation occur in the upper part, within an interval from 150 to 350 ft below the top the Trout Creek Sandstone. This coal-bearing interval was named for the Black Diamond coal mine (Hancock and Eby, 1930) north of Meeker (fig. A on pl. 1). The Black Diamond coal group commonly contains four to six coal beds that were extensively developed in the late 1800's and early 1900's owing to their proximity to the town. This coal interval thins eastward and also has little current economic value. The Iles Formation is predominately terrestrial in origin and consists of thick beds of sandstone interbedded with mudstone, carbonaceous shale, and coals deposited in a coastal-plain environment.

The Williams Fork Formation contains the thickest and economically the most important coal beds in the Danforth Hills coal field. Data from drill holes and geologic maps indicates that the formation is about 3,000 to 3,500 ft thick. Thickness of the Fairfield coal group at the base of the Williams Fork averages 1,300 ft (Hancock and Eby, 1930), but the complete interval was rarely penetrated in the drill holes studied. This coal group was named for the Fairfield mine near the town of Meeker (fig. A on pl. 1). The Fairfield coal group is equivalent to the Cameo-Wheeler coal zone in the southern part of the Piceance Basin and to the Wheeler-Fairfield coal zone along the southern part of the Grand Hogback (Hettinger and others, chap. O, this CD-ROM). It is correlated to the middle coal group of the William Fork Formation (fig. 2) in the Yampa coal field (Johnson and others, chap. P, this CD-ROM). The Fairfield coal group is predominately terrestrial in origin and consists of thin to thick beds of sandstone interbedded with mudstone, carbonaceous shale, and coal deposited in a coastal-plain environment.

A regionally persistent tonstein (altered ash-fall tuff) named the Yampa bed by Brownfield and Johnson (1986) occurs in the lower part of the Fairfield coal group of the Williams Fork Formation (pl. 1, fig. C and fig. 4). Where exposed on the surface or observed in drill core, this unit is a white to gravish white structureless claystone. In the subsurface, it serves as an important regional marker bed that is easily identified on geophysical logs. The Yampa bed ranges in thickness from less than 1 ft to more than 3 ft. In the central and western parts of the coal field, the unit lies between 100 and 300 ft above the top of the Trout Creek Sandstone, respectively. However, in the northern part of the coal field the stratigraphic separation is less than 100 ft. The age of the Yampa bed, 72.5±5.1 Ma, was determined using K-Ar dating methods on andesine. The tonstein was used to as a datum for the correlation of coal beds in the Fairfield coal group throughout the Danforth Hill coal field (pl. 1, fig. C).

The Goff coal group named after the Goff ranch (Hancock and Eby, 1930) averages 700 ft thick and consists of sandstone, mudstone, carbonaceous shale, and coal. The unit is separated from the Fairfield coal group below by approximately 1,000 ft of strata that are virtually barren of coal called the barren interval by Hancock and Eby (1930). Drill holes and outcrops in the Sulphur Creek syncline area contain coals assigned to the Goff coal group. The Lion Canyon coal group of Hancock and Eby (1930) averages 1,000 ft thick and directly overlies the Lion Canyon Sandstone (figs. 3 and 4) in the southwestern and western part of the Danforth Hills coal field. The Lion Canyon coal group consists of sandstone, mudstones, carbonaceous shale, and thin lenticular coal beds. The barren interval and the Goff and Lion Canyon coal groups were not assessed in this study.

Coal Distribution in the Fairfield Coal Group

The Fairfield coal group was the only unit for which resources were assessed in this study. The coal group directly overlies the Trout Creek Sandstone and has average an maximum thicknesses of 1,130 ft and 1,770 ft, respectively, based on available drill-hole data. For this study, the Fairfield coal group was subdivided into seven coal zones in order to focus on the most important coal resources and resources were calculated for each coal zone. We were generally able to reliably identify and trace the individual zones across the area (fig. C on pl. 1).

The Fairfield coal group includes the FGA, FGB, FGC, FGD, FGE, FGF, and FGG coal zones (fig. C on pl. 1 and fig. 4). The average thickness and average stratigraphic distance above the Trout Creek are shown for each zone in table 2. The range in the number of coal beds with net-coal thickness greater than 1.2 ft (Wood and others, 1983) is also shown. The Fairfield coal group contains at least 26 coal beds that have maximum thicknesses greater than 5 ft; 20 of these coal beds have a thicknesses greater than 12 ft. The deeper drill holes, which penetrated most of the Fairfield coal group, consistently contain total net-coal thicknesses greater than 100 ft. Total netcoal thickness greater than 200 ft occurs in a few of the deep drill holes that penetrated coals of the Fairfield, Goff, and Lion Canyon coal groups. The thickest net-coal deposits in the study area occur where there is a merging of several coal beds. The most significant deposits of this type occur in the FGB and FGE zones, which locally have net-coal coal thicknesses of 40 to 80 ft in intervals that have only minor partings. These intervals are known only from drill holes and have not been observed in outcrop.

The FGA coal zone of the Fairfield coal group (FGA coal zone, fig. C, pl. 1) directly overlies the Trout Creek Sandstone Member of the Iles Formation; it ranges in thickness from 17 to 280 ft and contains as many as five coal beds. The FGA coal-thickness map (fig. 6) displays the thickest total net coal (>30 ft) in townships T. 2 N., R. 93 W.; T. 4 N., Rs. 92 and 93 W. The FGB zone ranges in thickness from 6 to 230 ft, with at least five coal beds having a net-coal thickness of 20–30 ft over much of the area and 60 ft or more in T. 2 N., Rs. 92 and 93 W. (fig. 7). Zone FGC, 12 to 195 ft thick, contains as many as five coal beds. The coal-thickness map (fig. 8) shows net-coal thickness to range from 10 to 30 ft with the thickest (>

40 ft) occurring in the central part of the Danforth Hills (Tps. 2 and 3 N., R. 93 W.). The FGD zone ranges in thickness from 3.5 to 248 ft and contains as many as four coal beds. Figure 9 shows a uniform distribution of total net-coal thickness ranging from 10 to 20 ft thick for this zone over most of the study area, and a maximum greater than 30 ft locally in the southeastern part. The FGE zone, 7.5 to 500 ft thick, contains at least nine coal beds with thicknesses generally ranging from 10 to 50 ft, but exceeding 60 ft in several areas (fig. 10). In the FGF zone, which ranges in thickness from 3 to 310 ft, there are as many as seven coal beds with total net coal ranging in thickness from 10 to more than 40 ft (fig. 11). This zone contains pods of coal greater than 30 ft thick in several townships (Tps. 2, 3, and 4 N., Rs. 93 and 94 W.). The FGG zone ranges in thickness from 2.5 to 410 ft and contains at least six coal beds. The coal-thickness map (fig. 12) generally displays a uniform distribution of total net coal ranging in thickness from 5 to more than 20 ft. The variability in total netcoal thicknesses in the Fairfield coal group coal zones within the study area is due in part to the lenticularity and the varying number of beds within each coal zone.

Overburden-thickness maps (figs. 13-19) were constructed for each of the Fairfield coal zones based on depths where the elevation to the base of each zone was combined with the digital elevation data for the study area. Overburden is thickest along the southwest margin of the study area where the generally northwest-striking rocks of the Fairfield coal group dip from 30° to 50° to the southwest. Other areas of thick overburden are related to the Collom, Elkhorn, and Sulphur Creek synclines. The overburden thickness along the axis of the Sulphur Creek syncline is greater than 2,000 ft for the FGA through FGF zones, whereas the thinnest overburden areas are generally related to the crest of the Danforth Hills anticline and (or) near outcrops of the Trout Creek Sandstone. Only the FGE, FGF, and FGG zones in the north half of the study area have extensive areas where the overburden thickness is less than 500 ft (figs. 17–19). This is the area where the Colowyo strip mine is located.

Net-coal-thickness category (Wood and others, 1983, p. 34) maps (figs. 20–26) generally show net-coal-thickness trends that are in agreement with the coal isopach maps. The FGB, FGC, FGE, and FGF coal zones (figs. 21, 22, 24, 25, respectively) display the largest areas where total net-coal thickness exceeds 14 ft.

Coal Quality

Gale (1910) reported that coal analyses for several mines in the southern part of the Danforth Hills coal field showed values for the heat of combustion to be 11,210 to 12,000 Btu/lb, total sulfur content ranges to vary from 0.33 to 1.42 percent, and ash yields to range from 5.2 to 5.52 percent on an as-received basis. Analytical data reported by Hancock (1925) for several mines in the northern part of the Danforth Hills shows heat of combustion to range from 10,140 to 11,830 Btu/lb, total sulfur content to range from 0.3 to 1.12 percent, and ash yields to range from 4.6 to 7.4 percent on an as-received basis. Coal quality data from Hancock and Eby (1930) for coals in several mines in the Meeker 15' quadrangle, in the southwestern part of the Danforth Hills, suggest that the heat of combustion ranges from 10,790 to 11,490 Btu/lb, total sulfur content ranges from 0.28 to 1.36 percent, and ash yields range from 2.2 to 9.6 percent on an as-received basis. The above analyses yield an apparent rank of high-volatile C bituminous using the Parr formula (American Society for Testing and Materials, 1997, D388-95). The Colowyo mine shipped about 4.6 million short tons of coal in 1994 with a with a mean heat of combustion of 10,550 Btu/lb, total sulfur content of 0.039 percent, moisture content of 16.54 percent, and an ash-yield content of 5.32 percent (S.K. Allen, Colowyo Coal Company, written commun., 1996).

In the present study, the 47 coal samples from the Danforth Hills coal field (table 3) were determined to be high-volatile C bituminous in apparent rank (Parr formula, American Society for Testing and Materials, 1997, D388-95)

Text continues on page 35

Table 2. Fairfield coal zones of the Williams Fork Formation showing, thickness range, average thickness, number of coal beds,general net-coal thickness range, maximum net-coal thickness, and average stratigraphic distance above the Trout CreekSandstone Member of the Iles Formation, Mesaverde Group, Danforth Hills coal field.

Fairfield coal zone	Thickness range (feet)	Average zone thickness (feet)	Average stratigraphic distance above Trout Creek Sandstone Member (feet)	Number of coal beds in zone	General net-coal thickness range (feet)	Maximum net- coal thickness (feet)
FGG	2.5-410	160	970	1 to 6	5-20	>30
FGF	3-310	210	760	1 to 7	10-40	>40
FGE	7.5-500	280	480	1 to 9	10-50	>60
FGD	3.5-248	120	360	1 to 4	10-20	>30
FGC	12-195	115	240	1 to 5	10-30	>40
FGB	6-230	110	130	1 to 5	20-30	>60
FGA	17-280	130	0	1 to 5	10-20	>30

Figure 6. Map showing total net-coal thickness for the FGA coal zone of the Fairfield coal group of the Williams Fork Formation, Danforth Hills coal field, Colorado. Outline of the Danforth Hills coal field drawn on the base of the Upper Cretaceous Iles Formation. Areal extent of FGA zone shown in light green. Data not shown for the Colowyo Federal and State coal leases or PRLA.

Figure 7. Map showing total net-coal thickness for the FGB coal zone of the Fairfield coal group of the Williams Fork Formation, Danforth Hills coal field, Colorado. Outline of the Danforth Hills coal field drawn on the base of the Upper Cretaceous Iles Formation. Areal extent of FGB zone shown in light green. Data not shown for the Colowyo Federal and State coal leases or PRLA.

Figure 8. Map showing total net-coal thickness for the FGC coal zone of the Fairfield coal group of the Williams Fork Formation, Danforth Hills coal field, Colorado. Outline of the Danforth Hills coal field drawn on the base of the Upper Cretaceous Iles Formation. Areal extent of FGC zone shown in light green. Data not shown for the Colowyo Federal and State coal leases or PRLA.

Figure 9. Map showing total net-coal thickness for the FGD coal zone of the Fairfield coal group of the Williams Fork Formation, Danforth Hills coal field, Colorado. Outline of the Danforth Hills coal field drawn on the base of the Upper Cretaceous Iles Formation. Areal extent of FGD zone shown in light green. Data not shown for the Colowyo Federal and State coal leases or PRLA.

Figure 10. Map showing total net-coal thickness for the FGE coal zone of the Fairfield coal group of the Williams Fork Formation, Danforth Hills coal field, Colorado. Outline of the Danforth Hills coal field drawn on the base of the Upper Cretaceous Iles Formation. Areal extent of FGE zone shown in light green. Data not shown for the Colowyo Federal and State coal leases or PRLA.

Figure 11. Map showing total net-coal thickness for the FGF coal zone of the Fairfield coal group of the Williams Fork Formation, Danforth Hills coal field, Colorado. Outline of the Danforth Hills coal field drawn on the base of the Upper Cretaceous Iles Formation. Areal extent of FGF zone shown in light green. Data not shown for the Colowyo Federal and State coal leases or PRLA.

Figure 12. Map showing total net-coal thickness for the FGG coal zone of the Fairfield coal group of the Williams Fork Formation, Danforth Hills coal field, Colorado. Outline of the Danforth Hills coal field drawn on the base of the Upper Cretaceous Iles Formation. Areal extent of FGG zone shown in light green. Data not shown for the Colowyo Federal and State coal leases or PRLA.

Figure 13. Map showing overburden thickness for the FGA coal zone of the Fairfield coal group of the Williams Fork Formation, Danforth Hills coal field, Colorado. Outline of the Danforth Hills coal field drawn on the base of the Upper Cretaceous Iles Formation. Areal extent of FGA zone is drawn on the top of the Trout Creek Sandstone.

Figure 14. Map showing overburden thickness for the FGB coal zone of the Fairfield coal group of the Williams Fork Formation, Danforth Hills coal field, Colorado. Outline of the Danforth Hills coal field drawn on the base of the Upper Cretaceous Iles Formation. Areal extent of FGB zone is drawn on the top of the Trout Creek Sandstone.

Figure 15. Map showing overburden thickness for the FGC coal zone of the Fairfield coal group of the Williams Fork Formation, Danforth Hills coal field, Colorado. Outline of the Danforth Hills coal field drawn on the base of the Upper Cretaceous Iles Formation. Areal extent of FGC drawn on base of zone.

Figure 17. Map showing overburden thickness for the FGE coal zone of the Fairfield coal group of the Williams Fork Formation, Danforth Hills coal field, Colorado. Outline of the Danforth Hills coal field drawn on the base of the Upper Cretaceous Iles Formation. Areal extent of FGE drawn on base of zone. Data not shown for the Colowyo Federal and State coal leases or PRLA.

Figure 19. Map showing overburden thickness for the FGG coal zone of the Fairfield coal group of the Williams Fork Formation, Danforth Hills coal field, Colorado. Outline of the Danforth Hills coal field drawn on the base of the Upper Cretaceous Iles Formation. Areal extent of FGG drawn on base of zone.

Figure 20. Map showing coal-thickness categories for the FGA coal zone of the Fairfield coal group of the Williams Fork Formation, Danforth Hills coal field, Colorado. Outline of the Danforth Hills coal field drawn on the base of the Upper Cretaceous Iles Formation. Areal extent of FGA drawn on base of zone. Data not shown for the Colowyo Federal and State coal leases or PRLA.

Figure 21. Map showing coal-thickness categories for the FGB coal zone of the Fairfield coal group of the Williams Fork Formation, Danforth Hills coal field, Colorado. Outline of the Danforth Hills coal field drawn on the base of the Upper Cretaceous Iles Formation. Areal extent of FGB drawn on base of zone. Data not shown for the Colowyo Federal and State coal leases or PRLA.

Figure 22. Map showing coal-thickness categories for the FGC coal zone of the Fairfield coal group of the Williams Fork Formation, Danforth Hills coal field, Colorado. Outline of the Danforth Hills coal field drawn on the base of the Upper Cretaceous Iles Formation. Areal extent of FGC drawn on base of zone. Data not shown for the Colowyo Federal and State coal leases or PRLA.

Figure 23. Map showing coal-thickness categories for the FGD coal zone of the Fairfield coal group of the Williams Fork Formation, Danforth Hills coal field, Colorado. Outline of the Danforth Hills coal field drawn on the base of the Upper Cretaceous Iles Formation. Areal extent of FGD drawn on base of zone. Data not shown for the Colowyo Federal and State coal leases or PRLA.

Figure 24. Map showing coal-thickness categories for the FGE coal zone of the Fairfield coal group of the Williams Fork Formation, Danforth Hills coal field, Colorado. Outline of the Danforth Hills coal field drawn on the base of the Upper Cretaceous Iles Formation. Areal extent of FGE drawn on base of zone. Data not shown for the Colowyo Federal and State coal leases or PRLA.

Figure 25. Map showing coal-thickness categories for the FGF coal zone of the Fairfield coal group of the Williams Fork Formation, Danforth Hills coal field, Colorado. Outline of the Danforth Hills coal field drawn on the base of the Upper Cretaceous Iles Formation. Areal extent of FGF drawn on base of zone. Data not shown for the Colowyo Federal and State coal leases or PRLA.

Figure 26. Map showing coal-thickness categories for the FGG coal zone of the Fairfield coal group of the Williams Fork Formation, Danforth Hills coal field, Colorado. Outline of the Danforth Hills coal field drawn on the base of the Upper Cretaceous Iles Formation. Areal extent of FGG drawn on base of zone. Data not shown for the Colowyo Federal and State coal leases or PRLA.

with a calculated mean heat of combustion (moist, mineralmatter-free basis) of 11,030 Btu/lb. Hildebrand and others (1981) reported proximate and ultimate data on 19 coal samples included in table 3. Nine samples were collected at the Colowyo mine, and the other samples were from drill cores within the Fairfield coal group elsewhere in the study area. The coal has a mean heat of combustion of 9,650 Btu/lb, a total sulfur content of 0.47 percent, and an ash yield of 11.51 percent on an as-received basis (R.H. Affolter, written commun., 1998). Ranges in values for proximate and ultimate analyses are given in table 3. Means and ranges of selected trace-element data for as many as 50 coal samples from the Danforth Hills and the Fairfield group are given in table 4. The methods for sampling and inorganic analysis of coal used to determine the elements listed in table 4 are discussed in Golightly and Simon (1989).

Methodology

Digital files or coverages of various geologic and other features such as outcrop lines, elevation data, coal thickness, faults, fold axes, Federal coal leases, and mined-out areas were created within the study area. The coal benches and parting thicknesses were determined from geophysical logs using the natural gamma and density traces. Coal-bed thicknesses from the log traces are calculated using a USGS program (G.D. Stricker, written commun., 1998) that follows the methodology of Wood and others (1983) and excludes bituminous coal beds less than 1.2 ft thick. The total net-coal thickness values for each zone were used in the resource calculations (see Roberts and others, chap. C, this CD-ROM).

Coal resources for the Fairfield coal group are reported in the identified and hypothetical resource categories (Wood and others, 1979). Identified resources are located within a 3-mile radius of a data point and include the reliability categories of measured, indicated, and inferred. The measured resource category has the highest degree of geologic assurance and is located within a 0.25-mile radius of a data point. The indicated resource category has a more moderate degree of geologic assurance and is located within an area bounded by a 0.25to 0.75-mile radius from a data point. The inferred resource category has a lower degree of geologic assurance and is located within an area bounded by a 0.75- to 3-mile radius from a data point. The hypothetical resource category has the lowest degree of geologic assurance in this scheme and is located within an area beyond a 3-mile radius from a data point and to a depth of 6,000 ft. Coal resources estimated in this study do not include the area inside the Colowyo Federal and State coal leases and the Preference Right Lease

 Table 3.
 Number of samples, range, arithmetic mean, and standard deviation of proximate and ultimate analyses, heat
 of combustion, forms of sulfur, and ash-fusion temperatures of coal from the Danforth Hills coal field.

[All values are in percent except Btu/lb and ash-fusion temperatures, and are reported on the as-received basis (R.H. Affolter, written commun, 1998)]

	Number of	Rai	nge	Arithmetic	Standard	
	samples	Minimum	Maximum	mean	deviation	
	Proxi	nate and ultimate an	alyses			
Moisture	47	2.9	23.8	14.82	3.27	
Volatile matter	47	11.3	34.9	30.86	4.11	
Fixed carbon	47	22.5	50.9	42.82	6.23	
Ash	47	2.59	45.8	11.51	10.29	
Hydrogen	47	2.5	6.16	5.48	0.65	
Carbon	47	33.5	64.4	55.85	7.53	
Nitrogen	47	0.6	1.62	1.31	0.24	
Oxygen	47	6.4	30.6	25.37	3.72	
Sulfur	47	0.3	1.1	0.47	0.20	
		Heat of combustion				
Btu/lb	47	5,780	11,200	9,650	1,320	
		Forms of sulfur				
Sulfate	41	0.01	0.04	0.01	0.01	
Pyritic	47	0.01	0.41	0.09	0.10	
Organic	47	0.12	0.76	0.37	0.13	
Ash-fusion temperatures, °F						
Initial deformation	47	2,030	2,910	2,420	220	
Softening temperature	47	2,090	2,910	2,520	220	
Fluid temperature	47	2,140	2,910	2,590	210	

Table 4. Number of samples, range, arithmetic mean, and standard deviation of ash content and 36 elements in coal from the Fairfield coal group of the Williams Fork Formaiton, Danforth Hills coal field, Colorado Plateau.

[All analyses are in percent or parts per million and are reported on a whole-coal basis. L, less than value shown]

	Number of	Ran	Range		Standard
	samples	Minimum	Maximum	mean	deviation
		Perc	ent		
Ash	50	2.4	45	13	11
Si	49	0.32	15	3.3	3.6
Al	49	0.18	4.2	1.3	0.96
Ca	49	0.16	2.2	0.49	0.35
Mg	50	0.009	0.36	0.1	0.068
Na	50	0.003	1.1	0.078	0.15
K	49	0.002	0.65	0.12	0.16
Fe	49	0.084	1	0.31	0.24
Ti	49	0.009	0.2	0.058	0.045
		Parts per	million		
As	50	0.35	11	1.5	1.9
В	50	21	83	48	15
Ba	50	81	940	240	170
Be	46	0.14L	4.4	1.2	1
Со	50	0.33	8.8	2.3	1.8
Cr	48	0.1L	47	7.5	8.7
Cu	50	1.3	33	6.4	5.9
F	50	20L	510	120	100
Ga	50	0.62	14	3.2	2.9
Hg	50	0.010L	0.39	0.046	0.071
La	44	4.3L	22	6.8	5.3
Li	50	0.28	63	6.5	10
Mn	50	0.81	150	21	31
Мо	46	0.071L	3.1	0.68	0.65
Nb	47	0.68L	13	2.2	2.8
Ni	50	0.86	33	7	7.3
Pb	50	0.72L	57	4.8	8.6
Sb	50	0.10L	4.4	0.77	0.85
Sc	50	0.77L	8.8	1.8	1.6
Se	44	0.25	1.9	0.71	0.31
Sr	50	11	520	120	110
Th	50	0.3	10	2.4	1.8
U	50	0.18L	6.3	1.4	1.2
V	50	2.1	88	15	16
Y	50	1	22	5.9	5.1
Yb	50	0.1	2.2	0.53	0.45
Zn	50	1.2	100	15	21
Zr	50	2.4	110	28	25

Application (PRLA). Estimated coal resource tonnages were rounded to 2 significant figures. Therefore, totals may not equal the sum of individual categories because of independent rounding. 500-1,000 ft, 1,000-2,000 ft, 2,000-3,000 ft, and 3,000-6,000 ft overburden categories by integrating the overburden maps (figs. 13–19), net coal isopach maps (figs. 6–12), and the areal extent of each zone (figs. 6–12) and (2) isopach maps that show total net coal in the thickness categories of 1.2-2.3, 2.3-3.5, 3.5-7.0, 7.0-14.0, and greater than 14.0 ft were con-

Estimates of coal resource tonnages for the Fairfield coal group are based on the methodology of Wood and others (1983) which uses a mean density of 1.32 g/cm^3 or 1,800 short tons/acre-ft for bituminous coal. Also, following this methodology (1) calculations were made for the 0–500 ft,

Table 5. Identified and hypothetical coal resources in millions of short tons for the FGA zone of the Fairfield coal group,

 Williams Fork Formation, Danforth Hills coal field reported by quadrangle, township, and ownership categories.

[Resources are not reported for areas inside the Colowyo Federal coal leases and Preference Right Lease Application (PRLA) boundaries. Coal resources rounded to two significant figures]

			Grand total				
-	0-500	500-1,000	1,000-2,000	2,000-3,000	3,000-6,000	-	
By quadrangle							
AXIAL	47	55	48	0	0	150	
DEVILS HOLE GULCH	190	100	56	32	100	480	
EASTON GULCH	160	160	230	0	0	560	
MEEKER	14	13	46	23	28	120	
MONUMENT BUTTE	9.8	27	18	0	0	54	
NINEMILE GAP	48	140	160	67	0	410	
PRICE CREEK	15	0.07	0	0	0	15	
RATTLESNAKE MESA	58	38	120	11	0	230	
SAWMILL MOUNTAIN	4.2	0	0	0	0	4.2	
THORNBURGH	32	25	15	0	0	72	
WHITE ROCK	16	35	58	33	120	260	
Total	590	600	750	170	250	2400	

By township							
T1N R93W	0.63	0	0	0	0	0.63	
T1N R94W	4.4	2.9	0.72	0	0	8.1	
T2N R92W	26	9.5	0.96	0	0	36	
T2N R93W	66	80	190	78	0	410	
T2N R94W	51	30	88	51	110	330	
T2N R95W	0	0	0.27	3.1	38	41	
T3N R92W	34	45	63	0	0	140	
T3N R93W	23	82	87	0	0	190	
T3N R94W	140	100	35	0	0	280	
T3N R95W	59	46	63	34	100	300	
T4N R92W	12	25	1.1	0	0	37	
T4N R93W	42	49	19	0	0	110	
T4N R94W	110	130	200	0	0	440	
T4N R95W	28	0	0	0	0	28	
T5N R94W	0.45	0	0	0	0	0.45	
Grand total	590	600	750	170	250	2400	

Coal ownership	Total	Surface ownership	Total
Federal	2100	BLM	640
Non-Federal	300	Private	1700
		State	83
Total	2400		2400

Table 6. Identified and hypothetical coal resources in millions of short tons for the FGA zone of the Fairfield coal group, Williams Fork Formation, Danforth Hills coal field reported by county, reliability, overburden, and coal-thickness categories.

County	Reliability		0-500 feet o coal-thickness c	overburden ategories, in feet		0-500 total	500-1000 feet overburden coal-thickness categories, in feet				500-1,000 total
	-	2.3-3.5	3.5-7.0	7.0-14.0	>14.0		2.3-3.5	3.5-7.0	7.0-14.0	>14.0	_
Moffat	Identified	0	4.1	110	190	300	0	8.2	150	160	320
	Hypothetical	0	0.85	14	7.3	22	0	0	24	17	41
Moffat total		0	4.9	120	200	330	0	8.2	170	180	360
Rio Blanco	Identified	2.6	32	130	75	240	1.5	47	120	60	230
	Hypothetical	0	1.8	15	4.0	21	0	.30	11	3.7	15
Rio Blanco tot	al	2.6	33	150	79	260	1.5	47	130	60	240
Total		2.6	38	270	280	590	1.5	55	300	240	600

[Resources are not reported for area inside the Colowyo Federal coal leases and Preference Right Lease Application (PRLA) boundaries. Coal resources rounded to two significant figures]

County Reliability			1,000-2,000 fe coal-thickness c	et overburden ategories, in feet		1,000-2,000 total	2,000-3,000 feet overburden coal-thickness categories, in feet			2,000-3,000 total
	-	2.3-3.5	3.5-7.0	7.0-14.0	>14.0		3.5-7.0	7.0-14.0	>14.0	_
Moffat	Identified	0	0.8	170	190	360	0	0	11	11
	Hypothetical	0	0	19	0	19	0	0	0	0
Moffat total		0	0.8	190	190	380	0	0	11	11
Rio Blanco	Identified	0.33	11	140	180	330	0.22	67	62	130
	Hypothetical	0	0	19	12	31	0	23	2.1	25
Rio Blanco tota	1	0.33	11	160	190	360	0.22	90	64	160
Total		0.33	12	350	390	740	0.22	90	75	170

_

County	Reliability	3,000-6,000 f coal-thickness	eet overburden categories, in feet	3,000-6,000 total	Grand total
		7.0-14.0	>14.0	-	
Moffat	Identified	0	19	19	1000
	Hypothetical	0	6.1	6.1	900
Moffat total		0	25	25	1100
Rio Blanco	Identified	5.4	44	49	980
	Hypothetical	110	66	180	270
Rio Blanco total		120	110	230	1300
Total		120	135	250	2400

Table 7. Identified and hypothetical coal resources in millions of short tons for the FGB zone of the Fairfield coal group, Williams Fork Formation, Danforth Hills coal field.

[Resources are reported in overburden categories and are grouped by county, township, and 7½-minute quadrangle. Resources in coal- and surface-ownership categories are also reported. Resources are not reported for areas inside the Colowyo Federal coal leases and Preference Right Lease Application (PRLA) boundaries. Coal resources rounded to two significant figures]

			Grand total					
-	0-500	500-1,000	1,000-2,000	2,000-3,000	3,000-6,000			
		By qua	adrangle					
AXIAL	29	45	63	0	0	140		
DEVILS HOLE GULCH	440	240	120	68	230	1100		
EASTON GULCH	210	270	410	0	0	890		
MEEKER	28	27	98	52	71	280		
MONUMENT BUTTE	6.7	18	19	0	0	43		
NINEMILE GAP	230	480	340	170	0	1200		
PRICE CREEK	22	0.09	0	0	0	22		
RATTLESNAKE MESA	110	62	220	22	0	420		
SAWMILL MOUNTAIN	16	0	0	0	0	16		
THORNBURGH	87	45	22	0	0	150		
WHITE ROCK	26	60	92	53	190	420		
Grand total	1200	1200	1400	370	490	4700		
By township								
T1N R93W	0.67	0	0	0	0	0.67		
T1N R94W	10	7.0	1.8	0	0	19		
T2N R92W	140	75	8.4	0	0	220		
T2N R93W	150	220	400	190	0	950		
T2N R94W	99	60	180	120	270	730		
T2N R95W	0	0	0.54	6.1	70	80		
T3N R92W	78	76	82	0	0	240		
T3N R93W	97	240	160	0	0	490		
T3N R94W	350	280	77	0	0	700		
T3N R95W	100	81	100	53	150	480		
T4N R92W	5.6	14	0.89	0	0	20		
T4N R93W	27	37	26	0	0	90		
T4N R94W	130	165	340	0	0	630		
T4N R95W	39	0	0	0	0	39		
T5N R94W	0.32	0	0	0	0	0.32		
Grand total	1200	1200	1400	370	490	4700		

By ownership category							
Coal ownership	Total	Surface ownership	Total				
Federal	4100	BLM	1200				
Non-Federal	600	Private	3400				
		State	120				
Total	4700		4700				

Table 8. Identified and hypothetical coal resources in millions of short tons for the FGB zone of the Fairfield coal group, Williams Fork Formation, Danforth Hills coal field reported by county, reliability, overburden, and coal-thickness categories.

		0-500 feet overburden coal-thickness categories, in feet			0-500 total	500-1000 feet overburden coal-thickness categories, in feet			500-1,000 total
County	Reliability	3.5-7.0	7.0-14.0	>14.0		3.5-7.0	7.0-14.0	>14.0	_
Moffat	Identified	3.9	17	460	480	1.4	32	520	550
	Hypothetical	1.8	4.8	17	24	2.6	14	8.0	25
Moffat total		5.7	22	480	500	4.0	46	530	580
Rio Blanco	Identified	0	1.4	670	700	0	20	630	650
	Hypothetical	0	0	15	15	0	0	17	17
Rio Blanco total		0	1.4	720	720	0	20	650	670
Grand total		5.7	23	1200	1200	4.0	66	1200	1200

[Resources are not reported for areas inside Colowyo Federal coal leases and Preference Right Lease Application (PRLA) boundaries. Coal resources rounded to two significant figures]

County	Reliability	1,000-2000 feet <u>coal-thickness ca</u> 7.0-14.0	overburden tegories (feet) >14.0	1,000-2,000 total	2000-3,000 feet overburden coal-thickness categories (feet) >14.0	2,000-3,000 total	3,000-6,000 feet overburden coal-thickness categories (feet) >14.0	3,000-6,000 total	Grand total
Moffat	Identified	38	580	610	15	15	24	24	1700
	Hypothetical	5.6	0.63	6.3	0	0	7.3	7.3	62
Moffat total		44	580	620	15	15	31	31	1800
Rio Blanco	Identified	33	680	710	310	310	150	150	2500
	Hypothetical	0	41	41	39	39	310	310	420
Rio Blanco total		33	720	750	350	350	460	460	2900
Grand total		77	1300	1400	370	370	490	490	4700

Table 9. Identified and hypothetical coal resources in millions of short tons for the FGC zone of the Fairfield coal group, Williams Fork Formation, Danforth Hills coal field.

[Resources are grouped in overburden categories and are grouped by county, township, and 7½-minute quadrangle. Resources in coal- and surface-ownership categories are also reported. Resources are not reported for areas inside Colowyo Federal coal leases and Preference Right Lease Application (PRLA) boundaries. Coal resources rounded to two significant figures]

			Grand total			
-	0-500	500-1,000	1,000-2,000	2,000-3,000	3,000-6,000	
		By qu	uadrangle			
AXIAL	66	64	48	0	0	180
DEVILS HOLE GULCH	360	110	87	61	175	790
EASTON GULCH	120	210	80	0	0	410
MEEKER	22	23	96	45	61	250
MONUMENT BUTTE	30	49	20	0	0	99
NINEMILE GAP	410	460	210	85	0	1200
PRICE CREEK	1.7	0	0	0	0	1.7
RATTLESNAKE MESA	31	32	110	5.2	0	180
THORNBURGH	91	75	18	0	0	180
WHITE ROCK	26	20	20	11	33	110
Grand total	1200	1100	690	210	270	3400
		By t	ownship			
T1N R94W	4.9	4.3	0.11	0	0	9.3
T2N R92W	58	15	0.18	0	0	73
T2N R93W	160	170	250	890	0	670
T2N R94W	77	69	170	100	220	640
T2N R95W	0	0	0.61	3.2	29	33
T3N R92W	120	160	80	0	0	350
T3N R93W	220	270	79	0	0	570
T3N R94W	290	130	0.99	0	0	420
T3N R95W	46	24	23	11	18	120
T4N R92W	28	24	0	0	0	52
T4N R93W	59	46	10	0	0	120
T4N R94W	88	140	80	0	0	310
T4N R95W	6.7	0	0	0	0	6.7
Grand total	1200	1100	690	210	270	3400

By ownership category							
Coal ownership	Total	Surface ownership	Total				
Federal	3100	BLM	900				
Non-Federal	320	Private	2400				
		State	66				
Grand Total	3400		3400				

 Table 10.
 Identified and hypothetical coal resources in millions of short tons for the FGC zone of the Fairfield coal group, Williams Fork Formation, Danforth Hills coal field reported by county, reliability, overburden, and coal-thickness categories.

County	Reliability	y 0-500 feet overburden coal-thickness categories, in feet		0-500 total		500-1000 fee coal-thickness c	t overburden ategories, in feet		500-1,000 total		
		2.3-3.5	3.5-7.0	7.0-14.0	>14.0		2.3-3.5	3.5-7.0	7.0-14.0	>14.0	
Moffat	Identified	1.6	5.9	74	380	470	0.64	11	120	330	460
	Hypothetical	0	0	0	49	49	0	0	0	46	46
Moffat total		1.6	5.9	74	430	520	0.64	11	120	380	510
Rio Blanco	Identified	0	0.6	24	610	630	0	3.5	14	500	520
	Hypothetical	0	0	0	15	15	0	0	0	21	21
Rio Blanco tota	1	0	0.6	24	620	645	0	3.5	14	530	540
Grand total		1.6	6.5	98	1100	1200	0.64	15	130	910	1100

[Resources are not reported for areas inside Colowyo Federal coal leases and Preference Right Lease Application (PRLA) boundaries. Coal resources rounded to two significant figures]

County	Reliability	1,000-2,000 feet overburden coal-thickness categories, in feet		1,000-2,000 total		2,000-3,000 fe coal-thickness c	2,000-3,000 total			
	_	3.5-7.0	7.0-14.0	>14.0		2.3-3.5	3.5-7.0	7.0-14.0	>14.0	
Moffat	Identified	9.4	31	190	230	0.36	2.1	0	0	2.5
	Hypothetical	0	0	2.6	2.6	0	0	0	0	0
Moffat total		9.4	31	190	230	0.36	2.1	0	0	2.5
Rio Blanco	Identified	7.6	32	390	430	0	5.5	13	150	170
	Hypothetical	0	0	34	34	0	0	1.1	34	35
Rio Blanco tota	1	7.6	32	420	460	0	5.5	14	180	200
Grand total		17	63	610	690	0.36	7.6	14	180	200

County	Reliability		3,000-6,000 fe coal-thickness c	et overburden ategories, in feet	3,000-6,000 total	Grand total	
	-	2.3-3.5	3.5-7.0	7.0-14.0	>14.0		
Moffat	Identified	2.6	0.21	0	0	2.8	1200
	Hypothetical	0.78	0	0	0	0.78	99
Moffat total		3.3	0.21	0	0	3.6	1300
Rio Blanco	Identified	5.4	5.1	0.37	78	89	1800
	Hypothetical	0.15	3.3	18	150	180	280
Rio Blanco total		5.6	8.3	18	230	270	2100
Grand total		8.9	8.5	18	230	270	3400

Table 11. Identified and hypothetical coal resources in millions of short tons for the FGD zone of the Fairfield coal group, Williams Fork Formation, Danforth Hills coal field.

[Resources are grouped in overburden categories and are grouped by county, township, and 7½-minute quadrangle. Resources in coal- and surface-ownership categories are also reported. Resources are not reported for areas inside Colowyo Federal coal leases and Preference Right Lease Application (PRLA) boundaries. Coal resources rounded to two significant figures]

		Overbu	urden categories	, in feet		Grand total
-	0-500	500- 1,000	1,000-2,000	2,000-3,000	3,000-6,000	-
		By qu	adrangle			
AXIAL	43	39	13	0	0	95
DEVILS HOLE GULCH	150	43	38	28	84	340
EASTON GULCH	150	220	21	0	0	390
MEEKER	23	24	76	27	37	190
MONUMENT BUTTE	3.8	4.4	0.74	0	0	8.9
NINEMILE GAP	190	170	110	68	0	540
PRICE CREEK	0.70	0	0	0	0	0.70
RATTLESNAKE MESA	60	68	150	2.2	0	280
THORNBURGH	7.3	5.5	0.64	0	0	13
WHITE ROCK	28	17	16	7.8	18	87
Grand total	650	590	430	130	140	1900
		By to	ownship			
T1N R94W	5.0	3.2	0.02	0	0	8.2
T2N R92W	34	7.8	0	0	0	42
T2N R93W	120	130	260	71	0	580
T2N R94W	42	48	110	54	120	370
T2N R95W	0	0	0.29	1.2	11	11
T3N R92W	12	17	5.9	0	0	35
T3N R93W	93	100	7.4	0	0	200
T3N R94W	150	74	0.12	0	0	220
T3N R95W	40	18	17	7.5	13	96
T4N R92W	3.8	1.4	0	0	0	5.2
T4N R93W	43	29	5.2	0	0	77
T4N R94W	100	160	21	0	0	280
T4N R95W	4.6	0	0	0	0	4.6

By ownership category									
Coal ownership	Total	Surface ownership	Total						
Federal	1700	BLM	500						
Non-Federal	180	Private	1400						
		State	29						
Grand Total	1900		1900						

650

Grand total

590

430

130

140

1900

Table 12. Identified and hypothetical coal resources in millions of short tons for the FGD zone of the Fairfield coal group, Williams Fork Formation, Danforth Hills coal field reported by county, reliability, overburden, and coal-thickness categories.

County	Reliability	0-500 feet overburden coal-thickness categories, in feet				0-500 total	500-1000 feet overburden coal-thickness categories, in feet				500-1,000 total
	_	2.3-3.5	3.5-7.0	7.0-14.0	>14.0	-	2.3-3.5	3.5-7.0	7.0-14.0	>14.0	_
Moffat	Identified	7.6	14	130	180	330	11	16	170	130	320
	Hypothetical	1.6	0	0	0	1.6	0	0	0	0	0
Moffat total		9.2	14	130	180	330	11	16	170	130	320
Rio Blanco	Identified	6.8	24	100	180	310	5.0	21	62	170	260
	Hypothetical	0	0	6.0	0.67	6.6	0	0	8.0	2.2	10
Rio Blanco total		6.8	24	110	180	320	5.0	21	70	180	270
Grand total		16	38	240	360	650	16	37	240	310	590

[Resources are not reported for areas inside Colowyo Federal coal leases and Preference Right Lease Application (PRLA) boundaries. Coal resources rounded to two significant figures]

County	Reliability	Reliability 1,000-2,000 feet overburden coal-thickness categories, in feet				1,000-2,000 total	2,000-3,000 feet overburden coal-thickness categories, in feet				2,000-3,000 total
	_	2.3-3.5	3.5-7.0	7.0-14.0	>14.0		2.3-3.5	3.5-7.0	7.0-14.0	>14.0	_
Moffat	Identified	3.9	10	25	8.0	48	0.78	1.4	0	0	2.2
	Hypothetical	0	0	0	0	0	0	0	0	0	0
Moffat total		3.9	10	25	8.0	48	0.78	1.4	0	0	2.2
Rio Blanco	Identified	1.8	8	3.8	350	360	2.5	3.8	5.8	110	120
	Hypothetical	0	0.39	11	3.0	14	0.10	2.1	10	3.5	16
Rio Blanco total		1.8	8.9	15	350	380	2.6	6.0	15	110	130
Grand total		5.7	19	40	360	430	3.4	7.4	16	110	130

County	Reliability		3,000-6,000 fe coal-thickness c	3,000-6,000 total	Grand total		
	_	2.3-3.5 3.5-7.0 7.0-14.0		>14.0			
Moffat	Identified	2.3	0.21	0	0	2.6	710
	Hypothetical	0.78	0	0	0	0.78	2.4
Moffat total		3.1	0.21	0	0	3.3	710
Rio Blanco	Identified	7.2	0.81	0	44	52	1100
	Hypothetical	3.7	9.1	43	28	84	130
Rio Blanco total		11	9.9	43	72	140	1200
Grand total		14	10	43	72	280	1900

Table 13. Identified and hypothetical coal resources in millions of short tons for the FGE zone of the Fairfield coal group, Williams Fork Formation, Danforth Hills coal field.

[Resources are grouped in overburden categories and are grouped by county, township, and 7½-minute quadrangle. Resources in coal- and surface-ownership categories are also reported. Resources are not reported for areas inside Colowyo Federal coal leases and Preference Right Lease Application (PRLA) boundaries. Coal resources rounded to two significant figures]

		Overb	urden categories,	in feet		Grand total
_	0-500	500-1,000	1,000-2,000	2,000-3,000	3,000-6,000	
		By q	uadrangle			
AXIAL	170	140	12	0	0	320
DEVILS HOLE GULCH	270	100	110	96	350	920
EASTON GULCH	410	670	0	0	0	1100
MEEKER	45	57	170	67	110	440
MONUMENT BUTTE	23	9.9	0.27	0	0	33
NINEMILE GAP	750	470	180	83	0	1500
PRICE CREEK	0.17	0	0	0	0	0.17
RATTLESNAKE MESA	56	97	180	0.14	0	330
THORNBURGH	30	8.6	0.10	0	0	39
WHITE ROCK	71	71	97	82	240	560
Grand total	1800	1600	750	330	700	5200
		By	township			
T1N R94W	12.5	4.1	0	0	0	17
T2N R92W	64	6.2	0	0	0	70
T2N R93W	240	210	350	83	0	890
T2N R94W	90	130	270	160	420	1100
T2N R95W	0	0	2.7	11	97	110
T3N R92W	83	69	15	0	0	170
T3N R93W	470	360	4.6	0	0	830
T3N R94W	320	120	0.14	0	0	440
T3N R95W	88	77	100	78	180	520
T4N R92W	28	2.0	0	0	0	30
T4N R93W	170	86	0.95	0	0	260
T4N R94W	260	560	0	0	0	820
T4N R95W	7.3	0	0	0	0	7.3
Grand total	1800	1600	750	330	700	5200

By ownership category								
Coal ownership	Total	Surface ownership	Total					
Federal	4500	BLM	1200					
Non-Federal	700	Private	3800					
		State	160					
Grand total	5200		5200					

Table 14. Identified and hypothetical coal resources in millions of short tons for the FGE of the Fairfield coal group, Williams Fork Formation, Danforth Hills coal field reported by county, reliability, overburden, and coal-thickness categories.

County	Reliability	Reliability 0-500 feet overburden coal-thickness categories, in feet			et	0-500 total	500-1000 feet overburden coal-thickness categories, in feet				500-1,000 total
	-	2.3-3.5	3.5-7.0	7.0-14.0	>14.0		2.3-3.5	3.5-7.0	7.0-14.0	>14.0	_
Moffat	Identified	3.6	3.9	24	810	840	4.0	3.9	9.9	920	940
	Hypothetical	0	0	0.91	7.3	8.2	0	0	0	0	0
Moffat total		3.6	3.9	25	820	850	4.0	3.9	9.9	920	940
Rio Blanco	Identified	0.37	1.2	14	950	960	0	0.09	7.0	640	650
	Hypothetical	0	0	0	20	20	0	0	0	29	29
Rio Blanco total		0.37	1.2	14	970	980	0	0.09	7.0	670	680
Grand total		4.0	5.1	39	1800	1800	4.0	4.0	17	1600	1600

[Resources are not reported for areas inside Colowyo Federal coal leases and Preference Right Lease Application (PRLA) boundaries. Coal resources rounded to two significant figures]

	_	-		1,000-2,000 total	2000—3000 feet overburden coal-thickness categories (feet)	2,000-3,000 total	3000-6000 feet overburden coal-thickness categories (feet)	3,000-6,000 total	Grand total
County	Reliability	7.0-14.0	>14.0		>14.0		>14.0		
Moffat	Identified	9.2	52	61	19	19	25	25	1900
	Hypothetical	0	0	0	0	0	16	16	24
Moffat total		9.2	52	61	19	19	41	41	1900
Rio Blanco	Identified	1.7	630	630	250	250	270	270	2800
	Hypothetical	00	48	48	63	63	390	390	550
Rio Blanco total		1.7	680	680	310	310	660	660	3300
Grand total		11	730	740	330	330	700	700	5200

Table 15. Identified and hypothetical coal resources in millions of short tons for the FGF zone of the Fairfield coal group, Williams Fork Formation, Danforth Hills coal field.

[Resources are grouped in overburden categories and are grouped by county, township, and 7½-minute quadrangle. Resources in coal- and surface-ownership categories are also reported. Resources are not reported for areas inside Colowyo Federal coal leases and Preference Right Lease Application (PRLA) boundaries. Coal resources rounded to two significant figures]

			Grand total							
-	0-500	500-1,000	1,000-2,000	2,000-3,000	3,000-6,000	-				
		By q	uadrangle							
AXIAL	38	20	0.61	0	0	60				
DEVILS HOLE GULCH	107	60	83	72	250	570				
EASTON GULCH	400	110	0	0	0	510				
MEEKER	31	70	78	36	680	280				
MONUMENT BUTTE	5.9	4.0	0	0	0	9.9				
NINEMILE GAP	350	110	150	4.1	0	610				
RATTLESNAKE MESA	39	82	42	0	0	160				
THORNBURGH	20	4.3	0	0	0	24				
WHITE ROCK	51	46	60	67	170	400				
Grand total	1000	500	410	180	490	2600				
By township										
T1N R94W	5.8	0.12	0	0	0	5.9				
T2N R92W	13	0.09	0	0	0	13				
T2N R93W	120	150	190	4.0	0	460				
T2N R94W	75	120	150	100	280	730				
T2N R95W	0	0.08	5.1	14	84	100				
T3N R92W	49	24	2.6	0	0	76				
T3N R93W	240	34	0	0	0	270				
T3N R94W	170	1.8	0	0	0	170				
T3N R95W	59	51	63	60	120	360				
T4N R92W	1.5	0	0	0	0	1.5				
T4N R93W	32	11	0	0	0	43				
T4N R94W	270	110	0	0	0	380				
Grand total	1000	500	410	180	490	2600				

By ownership category									
Coal ownership	Total	Surface ownership	Total						
Federal	2200	BLM	500						
Non-Federal	390	Private	2000						
		State	61						
Grand total	2600		2600						

Table 16. Identified and hypothetical coal resources in millions of short tons for the FGF zone of the Fairfield coal group, Williams Fork Formation, Danforth Hills coal field reported by county, reliability, overburden, and coal-thickness categories.

County	Reliability	bility 0-500 feet overburden coal-thickness categories, in feet					0-500 total	500-1000 feet overburden coal-thickness categories, in feet				500-1,000 total	
	-	1.2-2.3	2.3-3.5	3.5-7.0	7.0-14.0	>14.0	_	1.2-2.3	2.3-3.5	3.5-7.0	7.0-14.0	>14.0	—
Moffat	Identified	3.6	0.73	16	38	480	540	1.1	0.66	6.42	21	160	190
	Hypothetical	0	0	0	0	0	0	0	0	0	0	0	0
Moffat total		3.6	0.73	16	38	480	540	1.1	0.66	6.4	21	160	190
Rio Blanco	Identified	0.1	0.61	6.7	39	400	450	0	0.05	0.89	12	270	280
	Hypothetical	0	0	0	0	45	45	0	0	0	0	34	34
Rio Blanco total		0.1	0.61	6.7	39	450	500	0	0.05	0.89	12	300	310
Grand total		3.7	1.3	23	77	930	1000	1.1	0.71	7.3	33	460	500

[Resources are not reported for areas inside Colowyo Federal coal leases and Preference Right Lease Application (PRLA) boundaries. Coal resources rounded to two significant figures]

County	Reliability	1000-2000 fe _coal-thickness	et overburden categories (feet)	1,000-2,000 total	2000-3000 feet overburden coal-thickness categories, in feet	2,000-3,000 total	3000-6000 feet overburden coal-thickness categories (feet)	3,000-6,000 total	Grand total
		7.0-14.0	>14.0		>14.0		>14.0		
Moffat	Identified	2.2	21	23	13	13	14	14	780
	Hypothetical	0.	0	0	0.01	0.01	12	12	12
Moffat total		2.2	21	23	13	13	26	26	790
Rio Blanco	Identified	6.0	320	330	99	99	160	160	1300
	Hypothetical	0.	62	62	68	68	300	300	510
Rio Blanco total		6.0	380	390	170	170	460	460	1800
Grand total		8.2	400	410	180	180	490	490	2600

Table 17. Identified and hypothetical coal resources in millions of short tons for the FGG zone of the Fairfield coal group, Williams Fork Formation, Danforth Hills coal field.

[Resources are grouped in overburden categories and are grouped by county, township, and 7½-minute quadrangle. Resources in coal- and surface-ownership categories are also reported. Resources are not reported for areas inside Colowyo Federal coal leases and Preference Right Lease Application (PRLA) boundaries. Coal resources rounded to two significant figures]

		Overbur	den categories, i	n feet							
-	0-500	500-1,000	1,000-2,000	2,000-3,000	3,000-6,000	Grand total					
		By quad	rangle								
AXIAL	48	7.5	0	0	0	56					
DEVILS HOLE GULCH	12	5.9	9.9	8.9	28	64					
EASTON GULCH	160	0	0	0	0	160					
MEEKER	7.0	15	12	5.7	10	50					
MONUMENT BUTTE	11	0.28	0	0	0	11					
NINEMILE GAP	130	34	85	0	0	250					
RATTLESNAKE MESA	17	34	11	0	0	62					
THORNBURGH	9.3	0.10	0	0	0	9.4					
WHITE ROCK	4.2	3.4	4.1	4.7	11	27					
Grand total	390	99	120	19	48	680					
By township											
T1N R94W	0.51	0	00	0	0	0.51					
T2N R92W	3.7	0	0	0	0	3.7					
T2N R93W	46	63	97	0	0	200					
T2N R94W	15	20	22	14	35	100					
T2N R95W	0	0.04	0.48	1.1	6.3	7.9					
T3N R92W	42	11	0	0	0	52					
T3N R93W	94	2.7	0	0	0	97					
T3N R94W	29	0.01	0	0	0	29					
T3N R95W	4.6	3.7	4.2	4.2	7.3	24					
T4N R92W	1.5	0	0	0	0	1.5					
T4N R93W	26	0.25	0	0	0	26					
T4N R94W	130	0	0	0	0	130					
Grand total	390	99	120	19	48	680					

By ownership category								
Coal ownership	Total	Surface ownership	Total					
Federal	600	BLM	110					
Non-Federal	80	Private	560					
		State	12					
Grand total	680		680					

Table 18. Identified and hypothetical coal resources in millions of short tons for the FGG zone of the Fairfield coal group, Williams Fork Formation, Danforth Hills coal field reported by county, reliability, overburden, and coal-thickness categories.

County	Reliability	0-500 feet overburden coal-thickness categories, in feet					0-500 total		500-1000 feet overburden coal-thickness categories, in feet				500-1,000 total
	-	1.2-2.3	2.3-3.5	3.5-7.0	7.0-14.0	>14.0	_	1.2-2.3	2.3-3.5	3.5-7.0	7.0-14.0	>14.0	_
Moffat	Hypothetical	2.2	0	0.00	0	0	2.2	1.6	0	0	0	0	1.6
	Identified	0.10	0.96	29	180	44	250	0	0	0.38	13	0	13
Moffat total		2.3	0.96	29	180	44	250	1.6	0	0.38	13	0	15
Rio Blanco	Hypothetical	3.5	2.4	0.61	0	0	6.5	2.2	1.8	0.73	0	0	4.7
	Identified	0.72	2.0	30	51	49	130	0.04	0.13	22	43	15	80
Rio Blanco tota	ıl	4.2	4.4	31	51	49	140	2.2	1.9	22	43	15	85
Grand total		6.5	5.4	60	230	93	390	3.8	1.9	22	56	15	99

[Resources are not reported for areas inside Colowyo Federal coal leases and Preference Right Lease Application (PRLA) boundaries. Coal resources rounded to two significant figures]

County	Reliability	1000-2000 feet overburden coal-thickness categories, in feet					1,000-2,000 total	2000-3000 feet overburden coal-thickness categories, in feet				2,000-3,000 total
		1.2-2.3	2.3-3.5	3.5-7.0	7.0-14.0	>14.0	4.0	1.2-2.3	2.3-3.5	3.5-7.0	7.0-14.0	_
Moffat	Hypothetical	1.5	0	0	0	0	1.5	1.1	0	0	0	1.1
	Identified	0	0	0	0	0	0	0	0	0	0	0
Moffat total		1.5	0	0	0	0	1.5	1.1	0	0	0	1.1
Rio Blanco	Hypothetical	2.9	3.0	2.4	0	0	8.4	3.3	2.6	4.0	0	10
	Identified	0	0	6.6	38	68	110	0	0	4.5	3.8	8.2
Rio Blanco total		2.9	3.0	9.0	38	68	120	3.3	2.6	8.5	3.8	18.2
Grand total		4.3	3.0	9.0	38	68	120	4.4	2.6	8.5	3.8	19

County	Reliability	C	3000-6000 fee coal-thickness c	3,000-6000 total	Grand total		
	-	1.2-2.3	2.3-3.5	3.5-7.0	7.0-14	-	
Moffat	Hypothetical	1.8	0	0	0	1.8	8.2
	Identified	0	0	0	0	0	260
Moffat total		1.8	0.00	0	0	1.8	270
Rio Blanco	Hypothetical	6.1	4.4	22	.63	33	63
	Identified	0	0	9.2	4.3	14	350
Rio Blanco total		6.1	4.4	31	4.9	47	410
Grand total		7.9	4.4	31	4.9	49	680

Table 19. Identified and hypothetical coal resources in millions of short tons for the Fairfield coal group of the Upper Cretaceous Williams Fork Formation, Danforth Hills coal field, Colorado.

[Resources are reported in overburden categories and are grouped by county, township, and 7½-minute quadrangle. Resources in coal- and surface-ownership categories are also reported. Resources are not reported for areas inside Colowyo Federal coal leases and Preference Right Lease Application (PRLA). Coal resources rounded to two significant figures]

			Total						
_	0-500	500-1000	1000-2000	2000-3000	3000-6000	-			
		By	y county						
Moffat	3300	2900	1400	64	130	7800			
Rio Blanco	3600	2800	3100	1300	2300	13000			
Total	6900	5700	4500	1400	2400	21000			
By township									
T1N R93W	1.3	0	0	0	0	1.3			
T1N R94W	43	22	2.7	0	0	68			
T2N R92W	340	110	9.5	0	0	460			
T2N R93W	900	1000	1700	520	0	4100			
T2N R94W	450	480	990	590	1500	4100			
T2N R95W	0	.12	9.9	40	340	390			
T3N R92W	420	400	250	0	0	1100			
T3N R93W	1200	1100	340	0	0	2600			
T3N R94W	1500	690	120	0	0	2300			
T3N R95W	400	300	370	250	590	1900			
T4N R92W	80	66	2.0	0	0	150			
T4N R93W	400	260	61	0	0	720			
T4N R94W	1100	1300	640	0	0	3000			
T4N R95W	86	0	0	0	0	86			
T5N R94W	.77	0	0	0	0	77			
Total	6900	5700	4500	1400	2400	21000			
		By q	uadrangle						
AXIAL	450	370	180	0	0	1000			
DEVILS HOLE GULCH	1500	660	480	360	1200	4200			
EASTON GULCH	1600	1600	740	0	0	4000			
MEEKER	170	210	580	260	370	1600			
MONUMENT BUTTE	90	110	58	0	0	260			
NINEMILE GAP	2100	1900	1200	480	0	5700			
PRICE CREEK	45	.16	0	0	0	45			
RATTLESNAKE MESA	370	410	830	41	0	1700			
SAWMILL MOUNTAIN	25	0	0	0	0	25			
THORNBURGH	280	160	54	0	0	490			
WHITE ROCK	220	250	340	250	770	1800			
Total	6900	5700	4500	1400	2400	21000			

By ownership category									
Coal ownership	Total	Surface ownership	Total						
Federal	19000	BLM	5100						
Non-Federal	2500	Private	15000						
		State	530						
Total	21000		21000						

structed for each of the seven coal zones in the Fairfield coal group (figs. 20–26).

The maximum overburden for the Fairfield coal zones was determined by integrating structure contours drawn on the top of the Upper Cretaceous Trout Creek Sandstone (base of the Fairfield coal group) of the Iles Formation (fig. A on pl. 1), basal elevations for each coal zone, and surface elevations imported from 1:24,000 Digital Elevation Models for the 14 quadrangles within the Danforth Hills (fig. 5). The areal extent of each zone was determined by integrating structure contours drawn on top of the Trout Creek Sandstone, the mean base elevation for each zone above the Trout Creek (table 3), and the Digital Elevation Models for the quadrangles to determine a zero overburden line. The zero overburden line is equivalent to a basal crop line for the coal zone (see Roberts and others, chap. C, this CD-ROM). For this study, the base of the FGA and FGB zones was drawn on the top of the Trout Creek Sandstone.

Coal Resources

Hancock and Eby (1930) reported an estimated original coal resource on a coal-group basis of 10.6 billion short tons to an overburden depth of 3,000 ft for the Meeker quadrangle. Landis (1959) reported an estimated original coal resource on an individual-bed basis of 7.9 billion short tons to an overburden depth of 3,000 ft for the Danforth Hills coal field. Hornbaker and others (1976) reported an estimated original coal resource of 10.5 billion short tons to an overburden depth of 6,000 ft for the Danforth Hills coal field.

Based on data derived from the present study, coal resources of about 21 billion short tons (table 19) in the identified and hypothetical resource reliability categories (Wood and others, 1983) are estimated for the Fairfield coal group. This estimate includes all coal beds greater than 1.2 ft thick to an overburden depth of less than 6,000 ft. The calculated coal resources are shown for various categories (coal and overburden thickness; resource type, county, township, and quadrangle location; coal ownership) in tables 5-18; a summary is given in table 19. Sixty percent of the total coal (13 billion short tons) is within the 1,000-ft overburden category, and more than 32 percent (6.9 billion short tons) is with the 500-ft overburden category. More than 47 percent of the total coal resource is contained in the FGB (4.7 billion short tons) and FGE (5.2 billion short tons) coal zones; more than 88 percent of the coal in these two zones is federally owned and administrated by the Bureau of Land Management. The FGE, FGF, and FGG zones in the northern two-thirds of the study area have significant areas where the overburden is less than 500 ft. About 32 percent of the total coal in the FGE, FGF, FGG zones (3.2 billion short tons), in the northern part of the study area, is within the 500-ft maximum overburden category.

Although the Danforth Hills coal field contains estimated original resources of 21 billion short tons of coal in the Fair-

field coal group, this figure does not reflect economic, landuse, environmental, technological, and geologic constraints that may affect coal availability and recoverability (T.J. Rohrbacher, written commun., 1998). Some of the economic constraints involve costs to build or move infrastructures such as railroads, highways, and primary electrical transmission lines. Environmental restrictions include river valleys, towns and communities, wildlife habitat, and air-quality issues. Geologic constraints include faulting, coal-bed thickness, and the dip of the strata. Any combination of these constraints and (or) restrictions can reduce the amount of coal that is available and recoverable by as much as 10 to 20 percent of the original resource (Rohrbacher and others, 1994).

Within the Danforth Hills coal field, the recoverable coal will be restricted because many of the deeper coals within the Fairfield coal group are too close together for longwall mining. Longwall mining methods causes controlled collapsing of overburden, including coal beds thus reducing the amount of recoverable coal. The thickness of the partings and splits can also limit the recovery of the coal being mined. Mining techniques can reduce the original resource; for example, longwall methods can restrict the recovery of thick beds where mining equipment is engineered for a limited range of coal-bed thickness, normally less than 14 ft. Another factor that may limit recoverability is that much of the total coal resource is deeper than 1,000 ft. Currently, coal is being mined, by dragline, and truck and shovel methods, from two zones (FGF and FGG) in the Colowyo strip mine. Future mining in the Danforth Hills coal field will most likely be restricted to the areas adjacent to the Colowyo mine and its rail line by both longwall and stripping methods. Although the factors just discussed will reduce the amount of coal that can ultimately be recovered, we did not estimate the tonnages that might be affected.

References Cited

- American Society for Testing and Materials, 1997, Standard classification of coals by rank [ASTM designation D-388-95], *in* Petroleum Products, Lubricants, and Fossil Fuels: 1997 Annual Book of ASTM standards, v. 5, sec. 5, p. 168–171.
- Barnum, B.E., and Bass, N.W., 1974, The Danforth Hills Known Coal Leasing Area, Moffat and Rio Blanco Counties, Colorado: U.S. Geological Survey unpublished geologic map and report supporting outline map, legal description, and minutes published in Federal Register, scale 1:62,500.
- Brownfield, M.E., and Johnson, E.A., 1984, Selected references on the geology of the Danforth Hills coal field, Moffat and Rio Blanco Counties, Colorado: U.S. Geological Survey Open-File Report 84-768, 28 p.
- Brownfield, M.E., and Johnson, E.A., 1986, A regionally extensive altered air-fall ash for use in correlation of lithofacies in the Upper Cretaceous Williams Fork Formation, northeastern Piceance Creek and southern Sand Wash Basins, Colorado, *in* Stone, D.S., ed., New

Assessment—Distribution, Resources of Coal, Fairfield Coal Gp., Williams Fork Fm., Danforth Hills Coal Field, Colo. M53

Interpretations of Northwest Colorado Geology: Rocky Mountain Association of Geologists, p. 293–295.

Gale, H.S., 1907, Coal fields of the Danforth Hills and Grand Hogback in northwestern Colorado: U.S. Geological Survey Bulletin 316-E, p. 264–301.

Gale, H.S., 1909, Coal fields of northwestern Colorado and northeastern Utah: U.S. Geological Survey Bulletin 341-C, p. 283–315.

Gale, H.S., 1910, Coal fields of northwestern Colorado and northeastern Utah: U.S. Geological Survey Bulletin 415, 265 p.

Green, G.N., 1992, Digital geologic map of Colorado: U.S. Geological Survey Open-File Report OF-92-0425, scale 1:500,000.

Hancock, E.T., 1925, Geology and coal resources of the Axial and Monument Butte quadrangles, Moffat County, Colorado: U.S. Geological Survey Bulletin 757, 134 p.

Hancock, E.T., and Eby, J.B., 1930, Geology and coal resources of the Meeker quadrangle, Moffat and Rio Blanco Counties, Colorado: U.S. Geological Survey Bulletin 812-C, p. 191–242.

Hornbaker, A.L, Holt, R.D., and Murray, D.K., 1976, 1975 summary of coal resources in Colorado: Colorado Geological Survey Special Publication No. 9, 17 p.

Izett, G.A, Honey, J.G., and Brownfield, M.E., 1985, Geologic map of the Citadel Plateau quadrangle, Moffat County, Colorado: U.S. Geological Survey Miscellaneous Investigations Series Map I-1532, scale 1:48,000.

Landis, E.R., 1959, Coal resources of Colorado: U.S. Geological Survey Bulletin 1072-C, p. 131–232.

Nutt, C.J., 1978, Drilling during 1977 in the Danforth Hills coal field, Axial and Ninemile Gap quadrangles, Moffat and Rio Blanco Counties, Colorado: U.S. Geological Survey Open-File Report 78-273, 17 p.

Nutt, C.J., 1981, Geologic map and coal resources of the western part of the Ninemile Gap quadrangle and the southern part of the Axial quadrangle, Moffat and Rio Blanco Counties, Colorado: U.S. Geological Survey Open-File Report 81-12, scale 1:24,000.

Pipiringos, G.N. and Rosenlund, G.C., 1977, Preliminary geologic map of the White Rock quadrangle, Rio Blanco and Moffat Counties, Colorado: U.S. Geological Survey Miscellaneous Field Studies Map MF-837, scale 1:24,000.

Resource Data International, Inc., 1998, COALdat database: Boulder, Colorado, Resource Data International, Inc. [1320 Pearl Street, Suite 300, Boulder, CO 80302].

Reheis, M.C., 1976, Reconnaissance drilling in the Danforth Hills coal field, Moffat and Rio Blanco Counties, Colorado, August–September 1976: U.S. Geological Survey Open-File Report 76-870, 74 p.

Reheis, M.C., 1978a, Drilling during 1977 in the Danforth Hills coal field, Easton Gulch and Devils Hole Gulch quadrangles, Moffat County, Colorado: U.S. Geological Survey Open-File Report 78-272, 29 p.

Reheis, M.C., 1978b, Drilling during 1978 in the Danforth Hills coal field, Easton Gulch, Devils Hole Gulch, Axial, and Ninemile Gap quadrangles, Moffat and Rio Blanco Counties, Colorado: U.S. Geological Survey Open-File Report 78-1031, 38 p. Reheis, M.C., 1980a, Geologic map and coal sections of the Thornburgh quadrangle, Moffat and Routt Counties, Colorado: U.S. Geological Survey Open-File Report 80-251, scale 1:24,000.

Reheis, M.C., 1980b, Geologic map and coal sections of the Sawmill Mountain quadrangle, Rio Blanco County, Colorado: U.S. Geological Survey Open-File Report 80-252, scale 1:24,000.

Reheis, M.C., 1981, Geologic map and coal resources of the Easton Gulch quadrangle, Moffat County, Colorado: U.S. Geological Survey Coal Investigations Map C-87, scale 1:24,000.

Reheis, M.C., 1983a, Geologic map and coal sections of the Sawmill Mountain quadrangle, Rio Blanco County, Colorado: U.S. Geological Survey Coal Investigations Map C-99, scale 1:24,000.

Reheis, M.C., 1983b, Geologic map and coal sections of the Thornburgh quadrangle, Moffat and Rio Blanco counties, Colorado: U.S. Geological Survey Coal Investigations Map C-100, scale 1:24,000.

Roberts, L.N., and Kirschbaum, M.A., 1995, Paleogeography of the Late Cretaceous of the western interior of middle North America—Coal distribution and sediment accumulation: U.S. Geological Survey Professional Paper 1561, 115 p.

Roberts, L.N.R., Mercier, T.J., Biewick, L.R.H., and Blake, Dorsey, 1998, A procedure for producing maps and resource tables of coals assessed during the U.S. Geological Survey's National Coal Assessment: Fifteenth Annual International Pittsburgh Coal Conference Proceedings, CD-ROM (ISBN 1-890977-15-2), 4 p.

Rowley, P.D, Tweto, Ogden, Hanson, W.R., and Carrara, P.E., 1979, Geologic map of the Vernal 1°×2° quadrangle, Colorado, Utah, and Wyoming: U.S. Geological Survey Miscellaneous Investigations Series Map I-1526, scale 1:250,000.

Sears, J.D., 1925, Geology and oil and gas prospects of part of Moffat County, Colorado, and southern Sweetwater County, Wyoming: U.S. Geological Survey Bulletin 751, p. 269–319.

Tully, John, 1996, Coal fields of the conterminous United States: U.S. Geological Survey Open-File Report 96-92, 1 plate, scale 1:5,000,000.

Tweto, O., 1976, Geologic map of the Craig 1°×2° quadrangle, northwestern Colorado: U.S. Geological Survey Miscellaneous Investigations Series Map I-972, scale 1:250,000.

Tweto, O., 1979, Geologic Map of Colorado: U.S. Geological Survey, scale 1:500,000.

Tweto, O., 1975, Preliminary geologic map of the east half of the Vernal 1°×2° quadrangle, Colorado: U.S. Geological Survey Open-File Report 75-788, scale 1:250,000.

Wood, G.H., Kehn, T.M., Carter, M.D., and Culbertson, W.C., 1983, Coal resource classification system of the U. S. Geological Survey: U. S. Geological Survey Circular 891, 65 p.

Click on image below to bring up high-resolution image of plate 1

Plate 1. Assessment of the distribution and resources of coal in the Fairfield coal group of the Williams Fork Formation, Danforth Hills coal field, northwest Colorado.

Appendix 1—Digital Files for Coal Exploration Drill Holes in the Danforth Hills Coal Field, Northwest Colorado, for which Data are Publicly Available

Appendix 1 contains the publicly available drill-hole database (110 holes—shown in table 1) used to asses coal resources in the Fairfield coal group Williams Fork Formation in the Danforth Hills coal field, northwest Colorado. The location, lithologic, and stratigraphic data are available in ASCII format, DBF, and Excel spreadsheet files on disc 2 of this CD-ROM.

Appendix 2—ArcView Project for the Geologic Assessment of Coal in the Fairfield Coal Group, Williams Fork Formation, Danforth Hills Coal Field, Northwest Colorado

The digital files used for the coal resource assessment of the Fairfield coal group of the Williams Fork Formation, Danforth Hills coal field, northwest Colorado, are presented as views in the ArcView project.

The ArcView project and the digital files are stored on both discs of this CD-ROM set—Appendix 2 of chapter M resides on both discs. Persons who do not have ArcView 3.1 may query the data by means of the ArcView Data Publisher on disc 1. Persons who do have ArcView 3.1 may utilize the full functionality of the software by accessing the data that reside on disc 2. An explanation of the ArcView project and data library—and how to get started using them—is given by Biewick and Mercier (chap. D, this CD-ROM). Metadata for all digital files are also accessible through the ArcView project.

Click here to return to Disc 1 Volume Table of Contents