Heavy Ion Testing of the BAE Chalcogenide Nonvolatile Memory Test Chip (CTCV)

Timothy Oldham ${ }^{1}$, Hak Kim ${ }^{2}$, and John Rodgers ${ }^{3}$

1. QSS Group, Inc., Seabrook, MD 20706
2. Jackson and Tull Chartered Engineers, Washington DC 20018
3. BAE Systems, Manassas VA 20110

Test date: 2-3 Sept 2003
Revised report date: 7 June 2004

## I. Introduction

The purpose of the test was to determine the SEE response of the BAE chalcogenide (phase change) nonvolatile memory. The samples were exposed to heavy ion beams at the Texas A\&M University cyclotron.

## II. Devices Tested

The test chips were engineering samples of the CTCV (chalcogenide technology characterization vehicle) test chip, fabricated on the BAE 0.5-micron line in the Spring 2002, shortly before the line was shut down for upgrading. The samples have four arrays of 64 K cells, each. BAE has decided to concentrate on the cell designs in arrays B and D in future development, so we concentrated on those arrays in the test, too. The difference between the two arrays is in the sensing scheme-array B uses a single ended sense amp, and array D pairs two cells in a differential configuration. Therefore, array B has 64 K bits, and array D has 32 K bits. Two samples were tested, one for Array B, and one for array D. The nominal power supply was 3.3 V , but some shots were taken with the power removed, to test the non-volatility of the memory.

## III. Test Facility

The cyclotron was tuned to $15 \mathrm{MeV} /$ nucleon, and two ions ( Au and Xe ) were used. Most of the exposures used Au as the incident ion, because it had the highest LET available. Fluence was $10^{7}$ particles $/ \mathrm{cm}^{2}$ in all exposures, and average flux varied from $4.27 \times 10^{4}$ to $2.38 \times 10^{5}$ particles $/ \mathrm{cm}^{2}$-s.

| Ion | Energy $(\mathrm{MeV})$ | $\mathrm{LET}\left(\mathrm{MeV} / \mathrm{mg} / \mathrm{cm}^{2}\right)$ | Range $(? \mathrm{~m})$ |
| :--- | :--- | :--- | :--- |
| Xe | 1176 | 55 | 92 |
| Au (normal) | 1695 | 89 | 91 |
| $\mathrm{Au}(40 ?)$ | 1695 | 116 (effective) | 67 (effective) |

## IV. Test Methods

The NASA test system was built to be as similar as possible to the BAE test system. Hak Kim of NASA and Jon Maimon of Ovonyx/BAE consulted frequently, for that purpose. Patterns that could be written were all zeroes, all ones, and checkerboard. Tests were static, dynamic read, and dynamic write. In static tests a pattern was written, the sample was irradiated, and changes in the stored pattern (if any) were recorded. During dynamic read tests, a pattern was stored before the exposure, and read continuously during the exposure. During dynamic write tests, a pattern was alternately written, read, rewritten, read again, and so on during the exposure.

## V. Results

There were no unambiguous static errors observed at any point in the testing. In the first set of static tests on Array B of the first sample, no static errors were observed, with Au ions normally incident (LET =89). On Array D of the second sample, no errors were observed at the highest LET (116), where one would most expect them. There were a number of intermittent problems with the test system during this test. Three of the sixteen bits in each word either did not work initially, or malfunctioned intermittently during the test, producing large numbers of errors even with the beam blocked. Results from those three bits have been deleted in this discussion. In other cases, noise apparently caused errors to be detected with the beam blocked. A few apparent static upsets were observed, but they were probably due to this noise. For Array D, for example, all the upsets were at lower LET than the tests with no upsets. Obviously, one would not expect the error rate to increase for less stressful test conditions. These results are roughly consistent with BAE results, where no upsets were observed under any condition, with testing up to LET $=98$.

In previous testing, BAE had reported two kinds of errors in dynamic read testing [1], that is, two different kinds of SET. First, with zeroes (the high resistance/low current state) written, a current transient could cause the system to sense high current (a one). Subsequent read cycles would read correctly, indicating that the contents of the cell were not changed. They called these events false reads, and false reads of ones (that is, zeroes read as ones) were strongly preferred. Second, they observed one case of a false write, where the cell contents were changed, during a read. A one was rewritten to a zero, in that case. The pulse to write a zero is much narrower than the pulse to write a one, so an ion-induced transient could simulate a write pulse for a zero, but not for a one. Our results for Array B are very similar. At LET $=89$, we observed about 200 false read errors (zeroes read as ones) for each exposure of $10^{7}$ particles $/ \mathrm{cm}^{2}$, but no false reads of ones. At LET $=55$, the number of errors was reduced by perhaps $40 \%$. That is, the SET cross-section for false reads is about $2 \mathrm{E}-5$ at $\mathrm{LET}=89$, and about $1.2 \mathrm{E}-5$ at $\mathrm{LET}=55$. The lowest LET used in this test was 55 , so the only conclusion we can draw about the threshold is that it was less than 55 . However, we did observe one bit with two read one errors at LET $=116$. We also observed one false write, of a one to a zero, very similar to the BAE result. In this case, the LET was 89 , and the total fluence at LET $=89$ or greater
was 2.2 E 8 particles, so the cross-section is about $5 \mathrm{E}-10$, and the threshold LET is 89 . We also observed some read one errors in Array D. In the differential configuration, one cell is written with the data true, and one cell is the data complement. These are normally read and compared. That is, each bit has a cell in the high resistance state, and one in the low resistance state. An error can occur when either one is misread or rewritten, so there should be no preferential tendency for errors in one direction rather than the other.

BAE conducted dynamic write testing, but concluded that the errors were due only to the dynamic read part of the cycle, which has been described above. The memory was written with the beam on, and read (also with the beam on) to see if the write was completed correctly. That is, the dynamic write test cannot be done without also doing the dynamic read. For Array B, our results are also qualitatively consistent with the dynamic read results alone, which have already been presented. No read/write one errors (that is, ones read as zeroes) were observed, regardless of LET. At LET $=89$, about 8090 read/write zero (zeroes read as ones) errors were observed for each exposure. At LET $=55$, this error rate was reduced by a factor of 2-3. Some read/write one errors were observed in array D, but (again) both logical states of the bit correspond to a high resistance cell and a low resistance cell, the same physical state.

No latch-up (SEL) was observed at any point in the testing. The highest LET used in testing was 116 , and the total number of particles, at $\mathrm{LET}=116$, was $6 \times 10^{7} / \mathrm{cm}^{2}$ for array B. Therefore, the maximum SEL cross-section is less than $2 \mathrm{E}-8$ at $\mathrm{LET}=116$.

## VI. Recommendations

Although the test samples were engineering samples, and a long way from product chips, the underlying technology seems to be very robust for space applications. All the testing was done at LET well above that of the real space environment-it had to be in order to make anything happen. BAE believes the false write problem is due to a flaw in the write circuit, which will be easily corrected in the next version of the chip. Static upsets would not be expected in space, based on these results. The false read does not change the stored information, so it should be easily handled at the system level, even if it occurs.

## Reference

1. J.D. Maimon, K.K. Hunt, L. Burcin, and J. Rodgers, Chalcogenide Memory Arrays: Characterization and Radiation Effects, IEEE Trans. Nuc. Sci., NS-50, 1878 (2003).

Table 1: Run Data

|  |  | $\frac{\text { D }}{\Sigma}$ | $\begin{aligned} & \frac{0}{2} \\ & \text { " } \\ & \# \\ & \# \end{aligned}$ | $\frac{0}{7}$ | $\begin{aligned} & \stackrel{\ominus}{\underset{\sigma}{\circ}} \\ & \hline \end{aligned}$ | $\stackrel{\text { 흔 }}{\text { 立 }}$ |  |  | 드 | $\underset{\underset{U}{S}}{\substack{\text { S}}}$ |  | $\begin{aligned} & \stackrel{\otimes}{\otimes} \\ & \stackrel{\rightharpoonup}{\widetilde{\sim}} \\ & \text { N } \end{aligned}$ | $\frac{x}{\text { I }}$ |  | $\begin{aligned} & \frac{0}{9} \\ & \frac{1}{4} \end{aligned}$ |  | $\begin{array}{\|l} \hline 0 \\ \text { © } \\ \times \end{array}$ |  | $\stackrel{O}{F}$ |  | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | w5/mod6/B | BAE | 65536 | 3.3 | 25 | 0 | Static | CB | Au | 1695 | 88.6 | 91 | 4.63E+04 | $1.00 \mathrm{E}+07$ | 0 | 0 | 0.00E+00 | 0.00E+00 | 1.40E+04 | 1.40E+04 |  |
| 2 | w5/mod6/B | BAE | 65536 | 3.3 | 25 | 0 | Static | 0 | Au | 1695 | 88.6 | 91 | $4.27 \mathrm{E}+04$ | $2.40 \mathrm{E}+06$ | 0 | 0 | $0.00 \mathrm{E}+00$ | 0.00E+00 | 3.40E+03 | $1.74 \mathrm{E}+04$ | BAD RUN - do not use |
| 3 | w5/mod6/B | BAE | 65536 | 3.3 | 25 | 0 | Static | 0 | Au | 1695 | 88.6 | 91 | 4.40E+04 | $1.00 \mathrm{E}+07$ | 0 | 0 | 0.00E+00 | 0.00E+00 | 1.42E+04 | $3.16 \mathrm{E}+04$ |  |
| 4 | w5/mod6/B | BAE | 65536 | 3.3 | 25 | 0 | Static | 1 | Au | 1695 | 88.6 | 91 | $4.70 \mathrm{E}+04$ | $1.00 \mathrm{E}+07$ | 0 | 0 | $0.00 \mathrm{E}+00$ | 0.00E+00 | 1.42E+04 | $4.58 \mathrm{E}+04$ |  |
| 5 | w5/mod6/B | BAE | 65536 | 0 | 25 | 0 | Static | CB | Au | 1695 | 88.6 | 91 | $4.87 \mathrm{E}+04$ | $9.98 \mathrm{E}+06$ | 0 | 0 | $0.00 \mathrm{E}+00$ | 0.00E+00 | $1.42 \mathrm{E}+04$ | $6.00 \mathrm{E}+04$ |  |
| 6 | w5/mod6/D | BAE | 32768 | 3.3 | 25 | 0 | Static | CB | Au | 1695 | 88.6 | 91 | $4.75 \mathrm{E}+04$ | $9.98 \mathrm{E}+06$ | 0 | 0 | 0.00E+00 | 0.00E+00 | 1.42E+04 | $7.42 \mathrm{E}+04$ |  |
| 7 | w5/mod6/D | BAE | 32768 | 3.3 | 25 | 0 | Static | 1 | Au | 1695 | 88.6 | 91 | $5.35 \mathrm{E}+04$ | $1.00 \mathrm{E}+07$ | 0 | 0 | $0.00 \mathrm{E}+00$ | 0.00E+00 | 1.42E+04 | $8.84 \mathrm{E}+04$ |  |
| 8 | w5/mod6/D | BAE | 32768 | 3.3 | 25 | 0 | Static |  | Au | 1695 | 88.6 | 91 |  |  | 0 |  | \#DIV/0! | \#DIV/0! |  | 8.84E+04 | Part started having errors w/beam blocked |
| 9 | w5/mod6/B | BAE | 65536 | 3.3 | 25 | 625 K | Dyn. Read | 0 | Au | 1695 | 88.6 | 91 | $6.02 \mathrm{E}+04$ | 9.99E+06 | 0 | 203 | 2.03E-05 | 3.10E-10 | 1.42E+04 | $1.03 \mathrm{E}+05$ |  |
| 10 | w5/mod6/B | BAE | 65536 | 3.3 | 25 | 625 K | Dyn. Read | $1^{* * *}$ | Au | 1695 | 88.6 | 91 | 8.02E+04 | 9.97E+06 | 0 | 229 | 2.30E-05 | 3.50E-10 | 1.42E+04 | $1.17 \mathrm{E}+05$ | ***** Data has all zero's but expects all 1 's |
| 11 | w5/mod6/B | BAE | 65536 | 3.3 | 25 | 625 K | Dyn. Write | 0 | Au | 1695 | 88.6 | 91 | $8.61 \mathrm{E}+04$ | 9.98E+06 | 0 | 182 | 1.82E-05 | $2.78 \mathrm{E}-10$ | 1.42E+04 | $1.31 \mathrm{E}+05$ |  |
| 12 | w5/mod6/B | BAE | 65536 | 3.3 | 25 | 625K | Dyn. Write | 1 | Au | 1695 | 88.6 | 91 | $8.40 \mathrm{E}+04$ | $9.97 \mathrm{E}+00$ | 0 | ??? | \#VALUE! | \#VALUE! | 1.42E+04 | $1.45 \mathrm{E}+05$ | Errors after beam blocked |
| 13 | w5/mod6/B | BAE | 65536 | 3.3 | 25 | 625 K | Dyn. Write | 1 | Au | 1695 | 88.6 | 91 | 1.69E+05 | 9.96E+06 | 0 | 0 | 0.00E+00 | 0.00E+00 | 1.42E+04 | 1.59E+05 |  |
| 14 | w5/mod6/B | BAE | 65536 | 3.3 | 25 | 625 K | Dyn. Write | 1 | Au | 1695 | 88.6 | 91 | $1.97 \mathrm{E}+05$ | $1.01 \mathrm{E}+07$ | 0 | 753 | 7.46E-05 | 1.14E-09 | 1.43E+04 | $1.74 \mathrm{E}+05$ |  |
| 15 | w5/mod6/B | BAE | 65536 | 3.3 | 25 | 625 K | Dyn. Write | 0 | Au | 1695 | 88.6 | 91 | $8.80 \mathrm{E}+04$ | $1.00 \mathrm{E}+07$ | 0 | 208 | 2.08E-05 | 3.17E-10 | 1.42E+04 | $1.88 \mathrm{E}+05$ |  |
| 16 | w5/mod6/B | BAE | 65536 | 3.3 | 25 | 625 K | Dyn. Write | 0 | Au | 1695 | 88.6 | 91 | $1.28 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 0 | 199 | 1.99E-05 | 3.04E-10 | 1.42E+04 | $2.02 \mathrm{E}+05$ |  |
| 17 | w5/mod6/B | BAE | 65536 | 3.3 | 25 | 0 | Static | 0 | Au | 1695 | 116 | 67 | $9.33 \mathrm{E}+04$ | $1.00 \mathrm{E}+07$ | 40 | 0 | $0.00 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ | 1.86E+04 | $2.21 \mathrm{E}+05$ |  |
| 18 | w5/mod6/B | BAE | 65536 | 3.3 | 25 | 0 | Static | 1 | Au | 1695 | 116 | 67 | $2.25 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 40 | 2 | 2.00E-07 | 3.05E-12 | $1.88 \mathrm{E}+04$ | $2.40 \mathrm{E}+05$ |  |
| 19 | w5/mod6/B | BAE | 65536 | 3.3 | 25 | 0 | Static | CB | Au | 1695 | 116 | 67 | $1.58 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 40 | 1 | $1.00 \mathrm{E}-07$ | 1.53E-12 | $1.86 \mathrm{E}+04$ | $2.58 \mathrm{E}+05$ |  |
| 20 | w5/mod6/B | BAE | 65536 | 0 | 25 | 0 | Static | CB | Au | 1695 | 116 | 67 | $1.08 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 40 | 0 | 0.00E+00 | 0.00E+00 | 1.85E+04 | $2.77 \mathrm{E}+05$ |  |
| 21 | w5/mod6/B | BAE | 65536 | 3.3 | 25 | 625 K | Dyn. Read | 0 | Au | 1695 | 116 | 67 | $1.18 \mathrm{E}+05$ | $1.01 \mathrm{E}+07$ | 40 | 247 | $2.45 \mathrm{E}-05$ | 3.73E-10 | 1.85E+04 | $2.96 \mathrm{E}+05$ |  |
| 22 | w5/mod6/B | BAE | 65536 | 3.3 | 25 | 625 K | Dyn. Read | 1 | Au | 1695 | 116 | 67 | $2.38 \mathrm{E}+05$ | $1.01 \mathrm{E}+07$ | 40 | 1e4? | \#VALUE! | \#VALUE! | 1.86E+05 | $3.14 \mathrm{E}+05$ | errors after beam blocked |
| 23 | 11461 | BAE | 32768 | 3.3 | 25 | 0 | Static | 0 | Au | 1695 | 88.6 | 91 | $1.90 \mathrm{E}+05$ | 9.92E+06 | 0 | 3 | 3.02E-07 | 9.23E-12 | $1.41 \mathrm{E}+04$ | 1.41E+04 |  |
| 24 | 11461 | BAE | 32768 | 3.3 | 25 | 0 | Static | 0 | Au | 1695 | 88.6 | 91 | 7.03E+04 | $1.00 \mathrm{E}+07$ | 0 | 0 | 0.00E+00 | 0.00E+00 | 1.42E+04 | $2.83 \mathrm{E}+04$ |  |
| 25 | 11461 | BAE | 32768 | 3.3 | 25 | 0 | Static | 0 | Au | 1695 | 88.6 | 91 | 6.99E+04 | 9.98E+06 | 0 | 2 | $2.00 \mathrm{E}-07$ | 6.12E-12 | 1.42E+04 | $4.25 \mathrm{E}+04$ |  |
| 26 | 11461 | BAE | 32768 | 3.3 | 25 |  |  |  | Au | 1695 | 88.6 | 91 | $6.77 \mathrm{E}+04$ | 2.91E+06 | 0 |  | 0.00E+00 | 0.00E+00 | 4.13E+03 | 4.66E+04 | Bad Run |
| 27 | 11461 | BAE | 32768 | 3.3 | 25 | 0 | Static | 0 | Au | 1695 | 88.6 | 91 | 7.18E+04 | $1.00 \mathrm{E}+07$ | 0 | 0 | 0.00E+00 | 0.00E+00 | 1.42E+04 | 6.08E+04 |  |
| 28 | 11461 | BAE | 32768 | 3.3 | 25 | 0 | Static | 0 | Au | 1695 | 88.6 | 91 | $7.08 \mathrm{E}+04$ | 9.99E+06 | 0 |  | $1.00 \mathrm{E}-07$ | 3.05E-12 | 1.42E+04 | $7.50 \mathrm{E}+04$ |  |
| 29 | 11461 | BAE | 32768 | 3.3 | 25 | 0 | Static | 1 | Au | 1695 | 88.6 | 91 | 8.11E+04 | 9.97E+06 | 0 | 1 | $1.00 \mathrm{E}-07$ | 3.06E-12 | 1.42E+04 | 8.92E+04 |  |
| 30 | 11461 | BAE | 32768 | 3.3 | 25 | 625 K | Dyn. Read | 1 | Au | 1695 | 88.6 | 91 | $6.10 \mathrm{E}+04$ | $1.00 \mathrm{E}+07$ | 0 | 27 | 2.70E-06 | 8.24E-11 | $1.42 \mathrm{E}+04$ | $1.03 \mathrm{E}+05$ |  |
| 31 | 11461 | BAE | 32768 | 3.3 | 25 |  | Dyn. Read |  | Au | 1695 | 88.6 | 91 | $6.33 \mathrm{E}+04$ | $9.99 \mathrm{E}+06$ | 0 | 0 | 0.00E+00 | $0.00 \mathrm{E}+00$ | 1.42E+04 | $1.18 \mathrm{E}+05$ |  |
| 32 | 11461 | BAE | 32768 | 3.3 | 25 | 625 K | Dyn. Write | 1 | Au | 1695 | 88.6 | 91 | $6.51 \mathrm{E}+04$ | 9.99E+06 | 0 | 7000 | 7.01E-04 | $2.14 \mathrm{E}-08$ | 1.42E+04 | $1.32 \mathrm{E}+05$ |  |
| 33 | 11461 | BAE | 32768 | 3.3 | 25 |  |  |  | Au | 1695 | 88.6 | 91 | $6.78 \mathrm{E}+04$ | $9.98 \mathrm{E}+06$ | 0 |  | $0.00 \mathrm{E}+00$ | 0.00E+00 | $1.42 \mathrm{E}+04$ | $1.46 \mathrm{E}+05$ | Data File Missing |
| 34 | 11461 | BAE | 32768 | 3.3 | 25 | 0 | Static | 1 | Au | 1695 | 116 | 67 | $6.61 \mathrm{E}+04$ | 9.97E+06 | 40 | 0 | $0.00 \mathrm{E}+00$ | 0.00E+00 | 1.86E+04 | $1.65 \mathrm{E}+05$ |  |
| 35 | 11461 | BAE | 32768 | 3.3 | 25 | 0 | Static | 1 | Au | 1695 | 116 | 67 | $6.90 \mathrm{E}+04$ | 9.99E+06 | 40 | 0 | $0.00 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ | 1.86E+04 | $1.83 \mathrm{E}+05$ |  |
| 36 | w5/mod6/B | BAE | 65536 | 3.3 | 25 | 625 K | Dyn. Read | 0 | Xe | 1176 | 54.9 | 92 | 7.47E+04 | 9.99E+06 | 0 | 144 | 1.44E-05 | $2.20 \mathrm{E}-10$ | 8.78E+03 | $3.23 \mathrm{E}+05$ |  |
| 37 | w5/mod6/B | BAE | 65536 | 3.3 | 25 | 625 K | Dyn. Read | 1 | Xe | 1176 | 54.9 | 92 | 6.97E+04 | $1.00 \mathrm{E}+07$ | 0 | 18 | 1.80E-06 | $2.75 \mathrm{E}-11$ | $8.80 \mathrm{E}+03$ | $3.32 \mathrm{E}+05$ |  |
| 38 | w5/mod6/B | BAE | 65536 | 3.3 | 25 | 625 K | Dyn. Read | 0 **** | Xe | 1176 | 54.9 | 92 | $1.64 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 0 | 17 | 1.70E-06 | $2.59 \mathrm{E}-11$ | 8.83E+03 | $3.40 \mathrm{E}+05$ |  |
| 39 | w5/mod6/B | BAE | 65536 | 3.3 | 25 | 625 K | Dyn. Read | 1 | Xe | 1176 | 54.9 | 92 | $7.61 \mathrm{E}+04$ | $1.00 \mathrm{E}+07$ | 0 | 22 | 2.20E-06 | 3.36E-11 | 8.79E+03 | $3.49 \mathrm{E}+05$ |  |
| 40 | w5/mod6/B | BAE | 65536 | 3.3 | 25 | 625 K | Dyn. Write | 0 | Xe | 1176 | 54.9 | 92 | $1.18 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 0 | 148 | 1.48E-05 | $2.26 \mathrm{E}-10$ | 8.85E+03 | $3.58 \mathrm{E}+05$ |  |
| 41 | w5/mod6/B | BAE | 65536 | 3.3 | 25 | 625 K | Dyn. Write | 1 | Xe | 1176 | 54.9 | 92 | $1.69 \mathrm{E}+05$ | $9.98 \mathrm{E}+06$ | 0 | $\begin{gathered} 2749 \\ 6 \end{gathered}$ | 2.76E-03 | $4.20 \mathrm{E}-08$ | 8.79E+03 | 3.67E+05 |  |

Table 1: Bit Errors:

| Exposure | Bit 0 | Bit 1 | Bit 2 | Bit 3 | Bit 4 | Bit 5 | Bit 6 | Bit 7 | Bit 8 | Bit 9 | Bit 10 | Bit 11 | Bit 12 | Bit 13 | Bit 14 | Bit 15 | $\begin{gathered} \hline \text { Bit } \\ 5+1 \\ \text { other } \end{gathered}$ | $\begin{gathered} \hline \text { Bit } \\ 9+1 \\ \text { other } \end{gathered}$ | Raw Data run \# |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 9 | 40 | 26 | 16 | 14 | 22 | 25 | 32 | 28 |  | 16 |  |  |  |  |  |  |  | 16 | 8 |
| 10 | 36 | 33 | 19 | 29 | 19 | 26 | 35 | 32 |  | 15 |  |  |  |  |  |  |  | 15 | 9 |
| 11 | 8 | 15 | 16 | 11 | 11 | 11 | 11 | 14 |  | 19 |  |  |  |  |  |  |  | 10 | 10 |
| 12 |  |  |  |  |  | 18202 |  |  |  |  |  |  | 34111 |  |  |  |  |  | 11 |
| 13 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 14 |  |  |  |  |  | 377 |  |  |  |  |  |  | 753 |  |  |  |  |  | 14 |
| 15 | 12 | 18 | 10 | 16 | 13 | 13 | 13 | 13 |  | 20 |  |  |  |  |  |  |  | 10 | 15 |
| 16 | 22 | 11 | 10 | 11 | 9 | 12 | 17 | 10 |  | 8 |  |  |  |  |  |  |  | 4 | 16 |
| 17 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  | 2 |  |  | 2 |  |  | 3 |  |  |  |  |  | 18 |
| 19 |  |  |  |  |  |  | 1 |  |  |  |  |  | 1 |  |  |  |  |  | 19 |
| 20 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 21 | 6 | 3 | 6 | 5 | 6 | 6 | 4 | 4 |  | 4 |  |  |  |  |  |  |  | 2 | 21 |
| 22 |  |  |  |  |  | 18880 | 2 |  |  |  |  |  | 18882 |  |  |  |  |  | 22 |
| 23 |  |  | 1 | 1 |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  | 23 |
| 24 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 24 |
| 25 |  |  | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 25 |
| 26 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 27 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 27 |
| 28 |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  | 28 |
| 29 |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 29 |
| 30 | 2 | 4 | 1 | 5 | 7 | 27 | 2 |  |  |  |  |  |  |  |  |  | 21 |  | 30 |
| 31 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 32 | 13 | 1 | 1 |  |  | 2282 | 3 | 1 |  |  |  |  |  |  |  |  | 5 |  | 32 |
| 33 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 34 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 35 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 36 | 17 | 15 | 16 | 15 | 23 | 19 | 21 | 17 |  | 15 |  |  |  |  |  |  |  | 15 | 37 |
| 37 |  |  |  |  |  |  |  |  |  | 16 |  |  |  |  |  |  |  |  | 38 |
| 38 |  |  |  |  |  |  |  |  |  | 14 |  |  |  |  |  |  |  |  | 39 |
| 39 |  |  |  |  |  |  |  |  |  | 19 |  |  |  |  |  |  |  |  | 40 |
| 40 | 3 | 4 | 3 | 4 | 6 | 3 | 4 | 10 |  | 12 |  |  |  |  |  |  |  | 6 | 41 |
| 41 |  |  |  |  |  | 13741 |  |  |  |  |  |  | 27496 |  |  |  |  |  | 42 |

Table 2: Summary of Bit Fails:

| Bit Fails: | Bit 0 | Bit 1 | Bit 2 | Bit 3 | Bit 4 | Bit 5 | Bit 6 | Bit 7 | Bit 8 | Bit 9 | Bit 10 | Bit 11 | Bit 12 | Bit 13 | Bit 14 | Bit 15 | $\begin{gathered} \hline \text { Bit } \\ 5+1 \\ \text { other } \end{gathered}$ | $\begin{gathered} \hline \text { Bit } \\ 9+1 \\ \text { other } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Array B, Dyn Read 0 \& R/W 0 | 144 | 125 | 96 | 105 | 109 | 115 | 137 | 128 | 0 | 109 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 78 |
| Array B, Dyn Read 1 \& R/W 1 | 0 | 0 | 0 | 0 | 0 | 51200 | 2 | 0 | 0 | 49 | 0 | 0 | 81242 | 0 | 0 | 0 | 0 | 0 |
| Array D, Dyn Read 0 \& R/W 0 | None performed |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Array D, Dyn Read 1 \& R/W 1 | 15 | 5 | 2 | 5 | 7 | 2309 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 26 | 0 |
| Without bits 5,9,12: | Without bits 5,9, \& 12: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Array B, Dyn Read 0 \& R/W 0 | 144 | 125 | 96 | 105 | 109 |  | 137 | 128 | 0 |  | 0 | 0 |  | 0 | 0 | 0 |  | 2 |
| Array B, Dyn Read 1 \& R/W 1 | 0 | 0 | 0 | 0 | 0 |  | 2 | 0 | 0 |  | 0 | 0 |  | 0 | 0 | 0 |  |  |
| Array D, Dyn Read 0 \& R/W 0 | None performed |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Array D, Dyn Read 1 \& R/W 1 | 15 | 5 | 2 | 5 | 7 |  | 5 | 1 | 0 |  | 0 | 0 |  | 0 | 0 | 0 |  | 6 |

