
Performance Optimization of Sparse Kernels in TOPS

PIs: J. Demmel4, J. Dongarra5, J. Ding5, V. Eijkhout5, D. Keyes3, S. Li2,4, B. Smith1, R. Vuduc4

1Argonne National Lab, 2Lawrence Berkeley National Lab, 3Old Dominion U., 4U. California-Berkeley, 5U. Tennessee

Summary

To deliver as high a percentage of per-processor peak performance as is practical on the
hierarchical memory architectures on which most SciDAC scientists make their production runs,
the Terascale Optimal PDE Simulations (TOPS) Center is researching innovative strategies for
tuning the kernels that arise most often in solving sparse linear systems from DOE simulations.

TOPS is automatically tuning performance of
sparse matrix kernels that dominate many
scientific and engineering applications. Given
a sparse matrix (i.e., its sparsity pattern and
other properties like symmetry), the operation
to be performed (e.g., sparse matrix vector
multiply or SpMV, triangular solve) and the
processor architecture, it is possible to build a
custom data structure and implementation
that can substantially increase performance.
The speedups from uniprocessor tuning
depend strongly on the matrix, the operation
to be performed and architecture, but can
range up to a factor of seven or more for
sparse-matrix-multiple-vector multiplication.
Composite operations, like AT*A*x, are also
amenable to high speedups when performed
atomically.

Straightforward implementations of standard
operations on large data objects can run
slowly on contemporary hierarchical memory
processors, where the main memory latency
is 100 or more times greater than the
processor clock period. For operations with
no cache locality whatsoever, this bounds
performance at 1% of peak or less.

The Basic Linear Algebra Subroutines
(BLAS) invented for dense linear algebraic
operations are universally used, because well-
tuned BLAS break the work into cache-sized
blocks, augmenting reuse, and often achieve

80% or more of peak. Furthermore, the BLAS
can be tuned automatically using packages
like ATLAS or PHiPAC. The FFTW package
takes a similar approach for the FFT.

Local discretizations (e.g., finite elements) of
partial differential equations (PDEs) typically
give rise to sparse linear systems that are
much less amenable than dense systems to
obtaining a high percentage of peak. SpMV
is the most important kernel in iterative
methods for these PDEs. Its memory traffic
pattern is also analogous to evaluating a
differential operator on a grid function, a grid
transfer operation in a multilevel method, or
accumulating the right-hand side in a
triangular solve: each matrix element is used
only once, magnifying the importance of
tuning these operations.

Multicomponent systems of PDEs, when
ordered most rapidly by unknowns at a
gridpoint, have a sparse structure of dense
blocks. Furthermore, density increases
through fill-in in incomplete factors often
employed as preconditioners, or in exact LU
factorizations. By exploiting effects like these
through hand-tuning, researchers using the
now TOPS-supported PETSc software were
able to obtain up to 25% of peak uniprocessor
performance on hierarchical memory
machines in an implicit aerodynamics
computation en route to a Bell Prize in 1999,
for a code whose original uniprocessor

performance was less than 5%. We are
automating such optimizations in TOPS.

Whereas matrices arising in PDE simulations
are sparse, vectors representing gridfunctions
are dense. Some linear algebraic methods
operate on multiple vector columns
simultaneously, providing another source of
density to exploit. Historically, block iterative
methods of this type have not enjoyed great
favor. However, tests performed by TOPS
researchers show improved computation rates
for block algorithms due to their superior
memory locality�an effect that may
overcome convergence rate disadvantages in
many problem-architecture combinations.

TOPS researchers have identified six
common kernels arising in sparse linear
algebraic computations and have subjected
them to exhaustive performance tuning on
seven commercially important uniprocessors
(including the Power3 and Power4 systems at
NERSC and ORNL�s CCS).

R. Vuduc, in work that was honored with
�Best Student Paper� at an ICS'02 workshop,
has also done a theoretical performance
analysis for one optimization technique,
register blocking, that provides an upper
performance bound for this operation on a
given matrix and architecture obtained from
modeling the memory traffic alone. On a test
suite of 44 matrices from applications and
four architectures, we are within 20% of
optimal for many matrices, especially those
from finite element modeling. (We use PAPI
data to validate the predictions of our model.)
On non-FEM matrices, speedups of a factor
of two are still possible. In addition to register
blocking, we use �switch-to-dense�, which
recognizes that triangular matrices resulting
from (I)LU factorizations are often quite
dense in their trailing submatrix, so that a
dense BLAS implementation can be used
there. Similar speedups are obtained, as well

as agreements between actual performance
and memory-based performance modeling.
Furthermore, on the most recent Intel Itanium
2 architecture, we can achieve up to 30% of
peak machine speed on SpMV for matrices
from FEM and protein modeling codes, and
speedups of up to two on the challenging web
connectivity matrix used by the Google
search engine. This demonstrates the
relevance of our work on future architectures
and on current and new applications alike.

Figure 1. SpMV register blocking performance, 900
MHz Itanium 2 for a dense matrix stored in sparse
format. Block sizes r× c are shown up to 12×12. A
judicious choice of block size (here, 4×2) leads to 1.2
Gflop/s performance, or 33% of peak speed�a 4x
increase over the conventional (1×1) code. This
picture varies dramatically across platforms and
matrices.

TOPS researchers are also developing
automatically tuned implementations of the
smoother component of multigrid, obtaining
up to a factor of three over the simple 3-loop
implementation of a natural ordering
smoother.

The TOPS project webpage may be found at
http://www.tops-scidac.org.

For further information on this subject contact:
Prof. David E. Keyes, Project Lead
Old Dominion University
Phone: 757-683-3882
dkeyes@odu.edu

