
S i tifi Lib i S i tifi Lib i Scientific Libraries: Scientific Libraries:
MPI + MPI + ManycoreManycore Issues and PlansIssues and PlansMPI MPI ManycoreManycore Issues and PlansIssues and Plans

Dense Numerical Linear Algebra Library at ScaleDense Numerical Linear Algebra Library at ScaleDense Numerical Linear Algebra Library at ScaleDense Numerical Linear Algebra Library at Scale

kJack Dongarra
University of Tennessee

Oak Ridge National LaboratoryOak Ridge National Laboratory

6/4/2008 1

Major Changes to SoftwareMajor Changes to Software
• Must rethink the design of our

softwaresoftware
Another disruptive technology
• Similar to what happened with cluster

computing and message passing
Rethink and rewrite the applications,
algorithms and softwarealgorithms, and software

• Numerical libraries for example will
changechange

For example, both LAPACK and
ScaLAPACK will undergo major changes

2

g j g
to accommodate this

LAPACK and LAPACK and ScaLAPACKScaLAPACK

ScaLAPACK

LAPACK

PBLAS

Threaded
BLAS

parallelism
PBLAS

Global
Local

BLACS

PThreads OpenMP Mess Passing
(MPI , PVM, ...)

About 1 million lines of code

Coding for an Coding for an Abstract Abstract MMulticoreulticore

Parallel software for multicores should have
two characteristics:two characteristics:
• Fine granularity:

• High level of parallelism is neededHigh level of parallelism is needed
• Cores will probably be associated with relatively small local

memories. This requires splitting an operation into tasks that
operate on small portions of data in order to reduce bus trafficoperate on small portions of data in order to reduce bus traffic
and improve data locality.

• Asynchronicity:
A th d f th d l l ll li d l it• As the degree of thread level parallelism grows and granularity
of the operations becomes smaller, the presence of
synchronization points in a parallel execution seriously affects
the efficiency of an algorithmthe efficiency of an algorithm.

ManyCoreManyCore -- Parallelism for the Parallelism for the
MassesMasses

• We are looking at the following g g
concepts in designing the next
numerical library implementationy p

Dynamic Data Driven Execution
Self Adapting / Auto Tuningp g g
Block Data Layout
Mixed Precision in the AlgorithmMixed Precision in the Algorithm
Exploit Hybrid Architectures
Fault Tolerant Methods Fault Tolerant Methods
Communication Avoiding Algorithms 5

Steps in the LAPACK LUSteps in the LAPACK LU
DGETF2 LAPACK

(Factor a panel)

DLSWP LAPACK
(B k d)

DLSWP LAPACK

(Backward swap)

DLSWP LAPACK
(Forward swap)

DTRSM BLAS
(Triangular solve)

6
DGEMM BLAS

(Matrix multiply)

LU Timing Profile (4 LU Timing Profile (4 core core system)system)
Threads – no lookahead

Time for each component
DGETF2
DLASWP(L)
DLASWP(R)
DTRSM
DGEMM

DGETF2

DLSWP

DLSWP

DTRSM

DGEMMBulk Sync PhasesBulk Sync Phases

Adaptive Lookahead Adaptive Lookahead -- DynamicDynamic

Event DrivenEvent DrivenEvent Driven Event Driven
MultithreadingMultithreading

Ideas not new.Ideas not new.

Many papers use theMany papers use the
DAG approach.DAG approach.

8

Reorganizing
algorithms to use

this approach

Redesign Redesign

• Asychronicity
• Avoid fork-join (Bulk sync design)

• Dynamic Scheduling
• Out of order execution

• Fine Granularity
• Independent block operations• Independent block operations

• Locality of Reference
D t t Bl k D t L t• Data storage – Block Data Layout

33 9

Achieving Fine GranularityAchieving Fine Granularity
Fine granularity may require novel data formats to
overcome the limitations of BLAS on small chunks

Column-Major

o e co e e a o s o S o s a c u s
of data.

Achieving Fine GranularityAchieving Fine Granularity
Fine granularity may require novel data formats to
overcome the limitations of BLAS on small chunks

Column-Major Blocked

o e co e e a o s o S o s a c u s
of data.

Intel’s Clovertown Quad CoreIntel’s Clovertown Quad CoreQQ
1. LAPACK (BLAS Fork-Join Parallelism)

2. ScaLAPACK (Mess Pass using mem copy)
3. DAG Based (Dynamic Scheduling)

3 Implementations of LU factorization3 Implementations of LU factorization
Quad core w/2 sockets per board, w/ 8 TreadsQuad core w/2 sockets per board, w/ 8 Treads

35000

40000

45000

25000

30000

35000

p/
s

15000

20000M
flo

8 Core Experiments

0

5000

10000
8 Core Experiments

12

0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000

Problems Size

70
LU -- 8-way dual Opteron -- MKL-9.1

60 LAPACK
MKL-9.1

50

MKL 9.1
Tiled+asynch.

30

40

G
flo

p/
s

20

30

10

33 13
2000 4000 6000 8000 10000 12000

0

problem size

9.1
4.0.0

33 14

9.1
4.0.0

33 15

CholeskyCholesky on the CELLon the CELL

• 1 CELL (8 SPEs)
186 Gflop/s• 186 Gflop/s

• 91 % peak
• 97 % SGEMM peak

2 CELL (16 SPE)• 2 CELLs (16 SPEs)
• 365 Gflop/s
• 89 % peak

k• 95 % SGEMM peak

Single precision results on the Cell

CholeskyCholesky on the CELLon the CELL

• 1 CELL (8 SPEs)
186 Gflop/s• 186 Gflop/s

• 91 % peak
• 97 % SGEMM peak

2 CELL (16 SPE)• 2 CELLs (16 SPEs)
• 365 Gflop/s
• 89 % peak

k• 95 % SGEMM peak

Single precision results on the Cell

CholeskyCholesky on the CELLon the CELL

• 1 CELL (8 SPEs)
186 Gflop/s• 186 Gflop/s

• 91 % peak
• 97 % SGEMM peak

2 CELL (16 SPE)• 2 CELLs (16 SPEs)
• 365 Gflop/s
• 89 % peak

k• 95 % SGEMM peak

Single precision results on the Cell

If We Had A Small Matrix ProblemIf We Had A Small Matrix Problem

• We would generate the DAG,
find the critical path and p
execute it.

• DAG too large to generate ahead
of timeof time

Not explicitly generate
Dynamically generate the DAG as
we go

• Machines will have large
number of cores in a distributed number of cores in a distributed
fashion

Will have to engage in message
passingpassing
Distributed management
Locally have a run time system

The DAGs are LargeThe DAGs are Large
• Here is the DAG for a factorization on a

20 x 20 matrix20 x 20 matrix

For a large matrix say O(106) the DAG is huge• For a large matrix say O(106) the DAG is huge
• Many challenges for the software 20

Each Node or Core Will Have A Run Time Each Node or Core Will Have A Run Time
System System

some dependencies
satisfied
waiting for all dependencies

BIN 1

all dependencies
satisfied
some data deliveredsome data delivered
waiting for all dataBIN 2

all data delivered
waiting for execution

21

waiting for execution

BIN 3

DAG and SchedulingDAG and Scheduling

• DAG is
dynamically

• Run time
• Bin 1dynamically

generated and
implicit

• See if new data has
arrived

• Bin 2implicit
• Everything

d i d f

• Bin 2
• See if new dependences

are satisfied
If t k t Bi 3designed for

distributed

• If so move task to Bin 3

• Bin 3
• Exec a task that’s ready

memory systems
• Runtime system

y
• Notify children of

completion
• Send data to children

on each node or
core

• Send data to children
• If no work do work

stealing 22

Some QuestionsSome Questions
• What’s the best way to represent the DAG?
• What’s the best approach to dynamically generating pp y y g g

the DAG?
• What run time system should we use?

W ill b bl b ild thi th t ld t t t th We will probably build something that we would target to the
underlying system’s RTS.

• What about work stealing?
Can we do better than nearest neighbor work stealing?

• What does the program look like?
Experimenting with Cilk Charm++ UPC Intel ThreadsExperimenting with Cilk, Charm++, UPC, Intel Threads
I would like to reuse as much of the existing software as
possible

23

PLASMA CollaboratorsPLASMA Collaborators
• U Tennessee, Knoxville

Jack Dongarra, Julie Langou, Stan Tomov, Jakub
Kurzak, Hatem Ltaief, Alfredo Buttari, Julien Langou, Kurzak, Hatem Ltaief, Alfredo Buttari, Julien Langou,
Piotr Luszczek, Marc Baboulin

• UC Berkeley
Jim Demmel Ming Gu W Kahan Beresford Parlett Jim Demmel, Ming Gu, W. Kahan, Beresford Parlett,
Xiaoye Li, Osni Marques, Yozo Hida, Jason Riedy,
Vasily Volkov, Christof Voemel, David Bindel

• Other Academic Institutions
UC Davis, CU Denver, Florida IT, Georgia Tech, U Maryland, North
Carolina SU, UC Santa Barbara, UT Austin, LBNL
TU Berlin, ETH, U Electrocomm. (Japan), FU Hagen,
U Carlos III Madrid U Manchester U Umeå U Wuppertal U U Carlos III Madrid, U Manchester, U Umeå, U Wuppertal, U
Zagreb, UPC Barcelona, ENS Lyon, INRIA

• Industrial Partners
Cray, HP, Intel, Interactive Supercomputing, MathWorks, NAG, y, , , p p g, , ,
NVIDIA, Microsoft

