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Major Changes to SoftwareMajor Changes to Software
• Must rethink the design of our 

softwaresoftware
Another disruptive technology
• Similar to what happened with cluster 

computing and message passing
Rethink and rewrite the applications, 
algorithms  and softwarealgorithms, and software

• Numerical libraries for example will 
changechange

For example, both LAPACK and 
ScaLAPACK will undergo major changes 
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to accommodate this



LAPACK and LAPACK and ScaLAPACKScaLAPACK

ScaLAPACK

LAPACK

PBLAS

Threaded
BLAS

parallelism
PBLAS

Global
Local

BLACS

PThreads OpenMP Mess Passing
(MPI , PVM, ...)

About 1 million lines of code



Coding for an Coding for an Abstract Abstract MMulticoreulticore

Parallel software for multicores should have 
two characteristics:two characteristics:
• Fine granularity: 

• High level of parallelism is neededHigh level of parallelism is needed
• Cores will probably be associated with relatively small local 

memories. This requires splitting an operation into tasks that 
operate on small portions of data in order to reduce bus trafficoperate on small portions of data in order to reduce bus traffic 
and improve data locality.

• Asynchronicity: 
A th d f th d l l ll li d l it• As the degree of thread level parallelism grows and granularity 
of the operations becomes smaller, the presence of 
synchronization points in a parallel execution seriously affects 
the efficiency of an algorithmthe efficiency of an algorithm.



ManyCoreManyCore -- Parallelism for the Parallelism for the 
MassesMasses

• We are looking at the following g g
concepts in designing the next 
numerical library implementationy p

Dynamic Data Driven Execution
Self Adapting / Auto Tuningp g g
Block Data Layout
Mixed Precision in the AlgorithmMixed Precision in the Algorithm
Exploit Hybrid Architectures
Fault Tolerant Methods Fault Tolerant Methods 
Communication Avoiding Algorithms 5



Steps in the LAPACK LUSteps in the LAPACK LU
DGETF2 LAPACK

(Factor a panel)

DLSWP LAPACK
(B k d )

DLSWP LAPACK

(Backward swap)

DLSWP LAPACK
(Forward swap)

DTRSM BLAS
(Triangular solve)

6
DGEMM BLAS

(Matrix multiply)



LU Timing Profile (4 LU Timing Profile (4 core core system)system)
Threads – no lookahead

Time for each component
DGETF2
DLASWP(L)
DLASWP(R)
DTRSM
DGEMM

DGETF2

DLSWP

DLSWP

DTRSM

DGEMMBulk Sync PhasesBulk Sync Phases



Adaptive Lookahead Adaptive Lookahead -- DynamicDynamic

Event DrivenEvent DrivenEvent Driven Event Driven 
MultithreadingMultithreading

Ideas not new.Ideas not new.

Many papers use theMany papers use the
DAG approach.DAG approach.
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Reorganizing 
algorithms to use 

this approach



Redesign Redesign 

• Asychronicity
• Avoid fork-join (Bulk sync design)

• Dynamic Scheduling
• Out of order execution

• Fine Granularity
• Independent block operations• Independent block operations

• Locality of Reference
D t  t  Bl k D t  L t• Data storage – Block Data Layout

33 9



Achieving Fine GranularityAchieving Fine Granularity
Fine granularity may require novel data formats to 
overcome the limitations of BLAS on small chunks 

Column-Major

o e co e e a o s o S o s a c u s
of data.



Achieving Fine GranularityAchieving Fine Granularity
Fine granularity may require novel data formats to 
overcome the limitations of BLAS on small chunks 

Column-Major Blocked

o e co e e a o s o S o s a c u s
of data.



Intel’s Clovertown Quad CoreIntel’s Clovertown Quad CoreQQ
1. LAPACK (BLAS Fork-Join Parallelism)

2. ScaLAPACK (Mess Pass using mem copy)
3. DAG Based (Dynamic Scheduling)

3 Implementations of LU factorization3 Implementations of LU factorization
Quad core w/2 sockets per board, w/ 8 TreadsQuad core w/2 sockets per board, w/ 8 Treads
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CholeskyCholesky on the CELLon the CELL

• 1 CELL (8 SPEs)
186 Gflop/s• 186 Gflop/s

• 91 % peak
• 97 % SGEMM peak

2 CELL  (16 SPE )• 2 CELLs (16 SPEs)
• 365 Gflop/s
• 89 % peak

k• 95 % SGEMM peak

Single precision results on the Cell
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If We Had A Small Matrix ProblemIf We Had A Small Matrix Problem

• We would generate the DAG, 
find the critical path and p
execute it.

• DAG too large to generate ahead 
of timeof time

Not explicitly generate
Dynamically generate  the DAG as 
we go

• Machines will have large 
number of cores in a distributed number of cores in a distributed 
fashion

Will have to engage in message 
passingpassing
Distributed management
Locally have a run time system



The DAGs are LargeThe DAGs are Large
• Here is the DAG for a factorization on a                 

20 x 20 matrix20 x 20 matrix

For a large matrix say O(106) the DAG is huge• For a large matrix say O(106) the DAG is huge
• Many challenges for the software 20



Each Node or Core Will Have A Run Time Each Node or Core Will Have A Run Time 
System System 

some dependencies 
satisfied
waiting for all dependencies

BIN 1

all dependencies 
satisfied
some data deliveredsome data delivered
waiting for all dataBIN 2

all data delivered
waiting for execution

21

waiting for execution

BIN 3



DAG and SchedulingDAG and Scheduling

• DAG is 
dynamically 

• Run time
• Bin 1dynamically 

generated and 
implicit

• See if new data has 
arrived  

• Bin 2implicit
• Everything 

d i d f  

• Bin 2
• See if new dependences 

are satisfied
If   t k t  Bi  3designed for 

distributed 
 

• If so move task to Bin 3

• Bin 3
• Exec a task that’s ready

memory systems
• Runtime system 

y
• Notify children of 

completion
• Send data to children

on each node or 
core

• Send data to children
• If no work do work 

stealing 22



Some QuestionsSome Questions
• What’s the best way to represent the DAG?
• What’s the best approach to dynamically generating pp y y g g

the DAG?
• What run time system should we use?

W  ill b bl  b ild thi  th t  ld t t t  th  We will probably build something that we would target to the 
underlying system’s RTS.

• What about work stealing?
Can we do better than nearest neighbor work stealing?

• What does the program look like?
Experimenting with Cilk  Charm++  UPC  Intel ThreadsExperimenting with Cilk, Charm++, UPC, Intel Threads
I would like to reuse as much of the existing software as 
possible
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PLASMA CollaboratorsPLASMA Collaborators
• U Tennessee, Knoxville

Jack Dongarra, Julie Langou, Stan Tomov, Jakub 
Kurzak, Hatem Ltaief, Alfredo Buttari, Julien Langou, Kurzak, Hatem Ltaief, Alfredo Buttari, Julien Langou, 
Piotr Luszczek, Marc Baboulin

• UC Berkeley
Jim Demmel  Ming Gu  W  Kahan  Beresford Parlett  Jim Demmel, Ming Gu, W. Kahan, Beresford Parlett, 
Xiaoye Li, Osni Marques, Yozo Hida, Jason Riedy, 
Vasily Volkov, Christof Voemel, David Bindel

• Other Academic Institutions
UC Davis, CU Denver, Florida IT, Georgia Tech, U Maryland, North 
Carolina SU, UC Santa Barbara, UT Austin, LBNL
TU Berlin, ETH, U Electrocomm. (Japan), FU Hagen,                       
U Carlos III Madrid   U Manchester  U Umeå  U Wuppertal  U U Carlos III Madrid,  U Manchester, U Umeå, U Wuppertal, U 
Zagreb, UPC Barcelona, ENS Lyon, INRIA

• Industrial Partners
Cray, HP, Intel, Interactive Supercomputing, MathWorks, NAG, y, , , p p g, , ,
NVIDIA, Microsoft


