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< Major Changes to Software

e Must rethink the design of our
software

= Another disruptive technology

e Similar to what happened with cluster
computing and message passing

» Rethink and rewrite the applications,
algorithms, and software

e Numerical libraries for example will
change

* For example, both LAPACK and
ScaLAPACK will undergo major changes
to accommodate this
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< LAPACK and ScaLAPACK

ScalLAPACK

‘ parallelism ’ Global

Local

parallelism

PThreads

Mess Passing
(MPI', PVM, ...)

About 1 million lines of code
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“* Coding for an Abstract Multicore

Parallel software for multicores should have

two characteristics:

* Fine granularity:
* High level of parallelism is needed

« Cores will probably be associated with relatively small local
memories. This requires splitting an operation into tasks that
operate on small portions of data in order to reduce bus traffic
and improve data locality.

* Asynchronicity:
« As the degree of thread level parallelism grows and granularity
of the operations becomes smaller, the presence of

synchronization points in a parallel execution seriously affects
the efficiency of an algorithm.



¢. ManyCore - Parallelism for the

IcLOr"

Masses

 We are looking at the following
concepts in designing the next
numerical library implementation

» Dynamic Data Driven Execution

= Self Adapting / Auto Tuning

» Block Data Layout

= Mixed Precision in the Algorithm

= Exploit Hybrid Architectures

* Fault Tolerant Methods

» Communication Avoiding Algorithms



< Steps In the LAPACK LU

DGETF2 LAPACK
(Factor a panel)

DLSWP l LAPACK
(Backward swap) ‘

DLSWP ﬂ LAPACK
(Forward swap) /\

. DTRSM l l l l BLAS
(Triangular solve)
s

DGEMM | l l l l BLAS
(Matrix multiply)
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£ LU Timing Profile (4 core system

Threads — no lookahead
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£ e\daetive Lookahead - Dznamic
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Event Driven
Multithreading

Ideas not new.

Many papers use the
DAG approach.
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while (1)

fetch_task();
switch (task.type) {
case PANEL:
dgetf2 () ;
update_progress () ;
case COLUMN:

dlaswp () ;

dgemm () ;
update_progress () ;

case END:

for ()

dlaswp();
return;

Reorganizing
algorithms to use
this approach
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Redesign

e Asychronicity

e Avoid fork-join (Bulk sync design)
e Dynamic Scheduling

e Qut of order execution

e Fine Granularity
e Independent block operations

e Locality of Reference
e Data storage - Block Data Layout

33
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< Achieving Fine Granularity

Fine granularity may require novel data formats to
overcome the limitations of BLAS on small chunks

of data.
Column-Major
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< Achieving Fine Granularity

Fine granularity may require novel data formats to
overcome the limitations of BLAS on small chunks

of data.
Column-Major Blocked
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ICL

Intel’s Clovertown Quad Core

3 Implementations of LU factorization 1. LAPACK (BLAS Fork-Join Parallelism)

Quad core w/2 sockets per board, w/ 8 Treads 2 SCaLAPACK (Mess Pass using mem copy)
3. DAG Based (Dynamic Scheduling)
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T LU -- 8-way dual Opteron -- MKL-9.1
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~ Chulesky —— quad socket, dual-core Opteron
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o C!R —= quad socket, dual—core Optermn
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e Cholesky on the CELL

Cholesky —— CELL Processor
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e Cholesky on the CELL

e 1 CELL (8 SPEs)

e 186 Gflop/s

e 91 % peak

e 97 % SGEMM peak
e 2 CELLs (16 SPEs)

e 365 Gflop/s

e 89 % peak

e 95 % SGEMM peak

4 CELL Cholesky — 16 cores

Single precision results on the Cell
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Cholesky on the CELL
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“* If We Had A Small Matrix Problem

 We would generate the DAG,
find the critical path and
execute It.

 DAG too large to generate ahead
of time
= Not explicitly generate
= Dynamically generate the DAG as
we go
 Machines will have large
number of cores in a distributed
fashion

= Will have to engage in message
passing

= Distributed management

» Locally have a run time system



<~ The DAGs are Large

e Here iIs the DAG for a factorization on a
20 X 20 matrix

* For a large matrix say 0O(10°) the DAG is huge
 Many challenges for the software 20



£. Each Node or Core Will Have A Run Time
- System

4 some dependencies
satisfied

¢ waiting for all dependencies
BIN 1

0000 .... 000000000
0000:0000 00000:0000
00006 000 00000:0000

¢ all dependencies 3355 22230008 000 431101

satisfied Sisarsenssesanses SSEimsssutacses
¢ some data delivered m"mﬁﬁo:o:sﬁ ses §§§§§§
00-°00000-00000000

00:00000-00

BIN 2 4 waiting for all data 000 600000 ©

09°9000° 0
¢ all data delivered
& waiting for execution

BIN 3
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< DAG and Scheduling

e DAG is . R}Jn time
dynamicall - Bint
y y e See if new data has
generated and arrived
implicit = Bin2
) e See If new dependences
e Eve rythlng are satisfied
designed for e |f so move task to Bin 3
distributed - Bin3
e Exec a task that’s ready
memory SyStemS e Notify children of
- completion
* Runtime SyStem e Send data to children

on each node or  If no work do work
core stealing
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< Some Questions

 What’s the best way to represent the DAG?

 What’s the best approach to dynamically generating
the DAG?

 What run time system should we use?

= We will probably build something that we would target to the
underlying system’s RTS.

 What about work stealing?
= Can we do better than nearest neighbor work stealing?

« What does the program look like?
= Experimenting with Cilk, Charm++, UPC, Intel Threads

= | would like to reuse as much of the existing software as
possible
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