
Over 30 years of mathematical excellence

The Numerical Algorithms Group
Combining mathematics and technology for
enhanced performance

Numerical Algorithms for Posterity

Brian Ford, Director of NAG Limited and
Mike Dewar, Senior Technical Consultant

Over 30 years of mathematical excellence

NAG Numerical Libraries

§Re-usable, application-neutral code

§Each piece of algorithmic code supported by:
§examples
§test material
§user-level documentation
§programmer-level documentation

§Different language implementations of same
algorithm
§Ada, Algol-68, C, Fortran-77, Fortran-90, Pascal, …

Over 30 years of mathematical excellence

Advantages

§Interfaces exploit strengths of host language
§Fortran-77: arrays, no dynamic memory allocation
§C: arrays, structs, dynamic memory allocation
§Fortran-90: arrays, derived types, generic interfaces,

dynamic memory allocation
§…

§Documentation and examples oriented towards
host language

Over 30 years of mathematical excellence

Disadvantages

§Developers waste time re-inventing wheels
§Support effort spread across multiple versions

§testing, bug-fixing, documentation etc.

§Not all languages can make efficient use of
performance-enhancing technology such as
BLAS, vendor maths libraries etc.
§e.g. BLAS 2-D arrays in column order so C

programmes must transpose before calling them

§Not all languages optimise well for numerical
computation

Over 30 years of mathematical excellence

The New NAG Library Architecture

Language/Environment
Interfaces

NAG
Library
Engine

BLAS etc.

Software:
§ Language-independent

algorithmic core
§ Interfaces customised to host

environment
§Ability to make efficient use of

BLAS etc.
Documentation:
§Customised to host

environment
QA Material:
§Separate testing of different

components

Over 30 years of mathematical excellence

The NAG Library Engine

§Base material written in extended Fortran-77
§Simple language which is relatively easy to

§ interface with other languages
§ transform into other languages
§ process with software tools

§Highly optimisable, very efficient for numerical
computation

§Extensions allow for dynamic memory allocation
§ mechanism works with all modern Fortran compilers

§Substantial body of existing, tested material which can
be adopted (e.g. NAG Fortran Library Mark 20)

Over 30 years of mathematical excellence

The NAG Library Engine contd.

§Engine code can be automatically translated to other
languages as necessary
§ to remove Fortran run-time dependencies
§ in principle, to provide platform independent code (Java, C#)

§Clear software guidelines for authors
§Enforced by tools and by peer review
§Emphasis on clarity and efficiency of code

§ e.g. dynamic memory allocation only used in engine when it is more
efficient

§Routine interfaces designed to simplify interfacing to other
languages

§While the engine is derived from the old NAG Library, it is
fundamentally different!

Over 30 years of mathematical excellence

Customising the Engine for a Language
or Environment
§For each routine we need to create

§ an interface or wrapper
§ end-user documentation
§ examples

§As far as possible, this is an automatic process
§Wrappers are non-trivial. In general they:

§ transform between interface data-structures and engine data-
structures

§ ensure that all arrays are in engine-order (column-major to allow
for efficient use of BLAS)

§ allocate and de-allocate memory for workspace (and sometimes
output parameters)

§ check constraints on all parameters they use
§ construct error messages to be returned to the user

Over 30 years of mathematical excellence

Simple Example: Engine, Fortran-77 & C

SUBROUTINE C06PFFN(IEMODE,DIRECT,NDIM,L,ND,N,X,WORK,LWORK,ERRBUF,IFAIL)

INTEGER IEMODE, IFAIL, L, LWORK, N, NDIM

CHARACTER DIRECT

CHARACTER*200 ERRBUF

COMPLEX *16 WORK(LWORK), X(N)

INTEGER ND(NDIM)

SUBROUTINE C06PFF(DIRECT,NDIM,L,ND,N,X,WORK,LWORK,IFAIL)

INTEGER IFAIL, L, LWORK, N, NDIM

CHARACTER DIRECT

COMPLEX *16 WORK(LWORK), X(N)

INTEGER ND(NDIM)

void c06pfc(Nag_TransformDirection direct, Integer ndim, Integer l,

const Integer nd[], Integer n, Complex x[], NagError *fail)

Over 30 years of mathematical excellence

Engine Interface

§IEMODE

§determines whether the routine is being asked to check
constraints and calculate workspace required or to
perform the algorithm

§ERRBUF

§ is used to return diagnostic information (type of error,
point where algorithm failed etc.)

§Helper Routines
§are used to mediate between user-supplied call-back

functions and the engine

Over 30 years of mathematical excellence

Call-backs

§Algorithms often ask the user to supply part of the
problem data as a subroutine

§In our architecture this will naturally follow the
semantics of the host environment and cannot
necessarily be called directly from the engine,
which uses Fortran-77 semantics

§A helper function is provided in the wrapper to
mediate between the two

§For example, C naturally uses call-by-value and
Fortran uses call-by-reference

Over 30 years of mathematical excellence

Example of call-back and helper

double f(double x) {

return(x^2);

}

double helper_f(

double(*f)(double),

double *x) {

/* De-reference pointer */

return f(*x);

}

Wrapper

helper_f

Engine

f, ...

f,
helper_f,
...

f,
pointer to x

f

x

f, ...

Over 30 years of mathematical excellence

NAG Routine Specifications
§Source from which wrappers and documentation (and

eventually examples) are generated
§XML documents which include

§ user documentation
§ abstract specifications of each routine parameter
§ information about array dimensions, constraints, parameter

dependencies …
§ information about error conditions including type of error, text to be

displayed when error occurs etc.

§All text is environment-neutral
§Parameters which are created in the wrappers are

distinguished from engine parameters
§ relationships between interface parameters and engine

parameters can be specified

Over 30 years of mathematical excellence

Parameter Descriptions

§Every parameter may have the following information
associated with it:
§ name (generic, language specific)
§ concrete engine type (integer, real, …)
§ abstract type (structured matrix, enumeration …)
§ intent (in, out, …)
§ purpose (data, algorithm, workspace, dimension …)
§ relationship to other parameters (leading dimension of M)
§ optional or required
§ constraints/recommended values
§ generic documentation
§ environment-specific documentation

Over 30 years of mathematical excellence

Documentation

§Generic documentation can be processed to produce
environment-specific version.

§Example: Fortran
X(M) – real array Input

On entry: X(i) must be set to the value of xi, for i=1,2,…,m. The X(i)
need not be ordered.

Constraint: XMIN

�

 X(i)

�

 XMAX, and the X(i) must be distinct.

§Example: C
x[m] – const double Input

On entry: x[i-1] must be set to the value of xi, for i=1,2,…,m. The x[i]
need not be ordered.

Constraint: XMIN

�

 x[i]
�

 XMAX, and the x[i] must be distinct.

Over 30 years of mathematical excellence

Example 1: NAG C Library Mark 7
§The first product to be based on the engine

§Over 400 fully-documented new routines introduced
§ Interface customisations include

§Use of existing NAG C structs and enumerated types
§ Introduction of new structs and enumerated types where necessary
§Arrays may be provided in either row- or column-major order
§Elimination of workspace arrays
§Elimination of flags which determine whether an optional parameter is

being used (in C they are set to NULL)
§Error messages using C terminology
§…

Over 30 years of mathematical excellence

Production Process

§Engine delivered to users as C code
§ generated using NAG’s f95 compiler technology
§ no dependencies on third-party compiler run-times

§Wrappers and documentation generated using XSLT
§ declarative information stored in specification files so can be re-

used in other products
§ transformation to C material encoded as style sheets

§Test and QA material currently written by hand, although
some tools were written to semi-automate the process

Over 30 years of mathematical excellence

Creating The NAG C Library

C Library

The Engine

Routine
Specifications

(XML)

Base Engine
(Fortran)

XSLT NAG f95

Consistency Checkers

User
Documentation
(HTML, PDF, ...)

C
Engine

Engine
Wrappers

(C)

Over 30 years of mathematical excellence

Example 2: The NAG-Maple Connector
Product
§Overview:

§The Connector Product is a bridge between two
existing products

§Allow access to all NAG C routines from within Maple

§Support prototyping
§ develop program calling NAG inside Maple
§ generate stand-alone C code for use outside Maple

§Document all routines inside the Maple environment
using Maple conventions and terminology

Over 30 years of mathematical excellence

Connector Product Architecture

Maple Kernel

Maple Libraries

N
A

G

M
o

d
u

les

Glue Code

NAG C Library

Maple
Help

N
A

G
 D

ocs

Over 30 years of mathematical excellence

Conclusions

§New architecture is extremely flexible
§major productivity gains for full-scale products such as

C Library Mark 7
§ability to produce lightweight interfaces such as Visual

Basic very rapidly
§opportunity to embed NAG products in other

environments (such as Maple)

§Continued focus on correctness and efficiency
§Simplified, more effective maintenance
§A better service for our users

