

Scientific Computing Beyond CPUs:
FPGA implementations of common scientific kernels

Melissa C. Smith

Oak Ridge National
Laboratory

Oak Ridge, TN, USA 37831
smithmc@ornl.gov

Jeffery S. Vetter
Oak Ridge National

Laboratory
Oak Ridge, TN, USA 37831

vetterjs@ornl.gov

Sadaf R. Alam
Oak Ridge National

Laboratory
Oak Ridge, TN, USA 37831

alamsr@ornl.gov

Abstract
Reconfigurable Computing architectures consisting of

FPGAs or similar programmable devices have been used
in embedded systems for a number of years where integer
and fixed point arithmetic are prevalent. Recently the
logic capacity of these programmable devices has grown
dramatically making 64b floating-point operations
feasible and thus their use in scientific and high
performance computing intriguing. We are using the SRC
MAPstation to explore reconfigurable computing for
computationally demanding scientific workloads at Oak
Ridge National Laboratory. Our approach uses a high-
level programming interface to the FPGAs, namely C and
FORTRAN, which allows for straightforward porting of
legacy code to the reconfigurable computing platform. In
this paper, we present our results for some common Basic
Linear Algebra Subroutine (BLAS) kernels running on the
SRC MAPstation. These routines have very little or no
data reuse, hence their performance on standard cache
based systems is poor for large problem sizes. Due to the
inherent parallelism of FPGAs and tightly coupled
memory and computational units, the MAPstation
performance is sustainable even for large problem sizes.
We describe our algorithm analysis, programming
paradigm, code migration techniques, and performance
results. We also present our plans for a function library of
commonly used scientific kernel implementations (i.e.
BLAS, sparse matrix operations, FFTs, etc.) suitable for
use on the SRC MAPstation and in the future, other
reconfigurable computing platforms.

1. Introduction

Traditional computing paradigms are struggling to
keep pace with analysis needs and are rapidly reaching
limits on computing speed due to I/O bandwidth
limitations and the impending clock wall. Furthermore,

managing heat dissipation as devices devour more power
is becoming increasingly difficult.

Reconfigurable computing (RC) with FPGAs
potentially offers faster execution and lower power
consumption all with slower clock speeds. Figure 1.1
shows the performance trend for FPGA devices far
exceeds that of general microprocessors over the past
decade. FPGAs have the ability to exploit inherent
parallelism and match computation with application data
flow (i.e. Data Flow Graph Theory). With gate densities
now suitable for double precision operations, FPGAs can
offer the “hardware-like” speed previously only found in
custom ASICs with the “software-like” flexibility that can
adapt to the changing needs of the application or suite of
applications.

Many scientific applications at Oak Ridge National
Laboratory (ORNL) and elsewhere depend on double
precision floating-point operations. Furthermore, many of
these applications rely on common computations or
functions that limit performance. We have identified
several of these functions as being computationally
intensive and as candidates for implementation in FPGAs.
Efforts to interface to legacy code have also emphasized
the need for FORTRAN and C language tools for FPGA
development. Moreover, we are interested in using multi-
paradigm computing in our scientific applications. To do
so across a broad spectrum of applications, high level
language programming tools will be necessary to bring
these devices and their capabilities to the users of our
computing systems.

The remainder of the paper is organized as follows. In
Section 2, we cover some related material on the
RC/FPGA implementation of various kernels of interest.
In Section 3, we give a brief overview of the RC system
used in these studies. In Section 4, we discuss the details
of a BLAS routine implementation. In Section 0, we look
at the development of function libraries and their impact
on programming for RC and multi-paradigm computing
systems. Finally in Section 6, we offer some conclusions
and a look at future research.

Smith 1 MAPLD2005/187

mailto:smithmc@ornl.gov
mailto:vetterjs@ornl.gov
mailto:alamsr@ornl.gov

1x
97 98 99 00 01 02 03 04 05

100x

96
Year

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t FPGA

μProc

1000x

10000x

10x

100x

1000x

10000x

10x

Image courtesy of SRC

1x
97 98 99 00 01 02 03 04 05

100x

96
Year

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t FPGA

μProc

1000x

10000x

10x

100x

1000x

10000x

10x

Image courtesy of SRC
Figure 1.1 Performance trends for FPGAs and
microprocessors

2. Related Work

Recent advances in FPGA logic and capacity now
provide the means to effectively implement floating point
applications. It has been shown that current FPGAs with
abundant on-chip memory and I/O pin resources provide
peak floating-point performance surpassing that of
microprocessors [1, 15]. In [2, 3] Prasanna et al.
implemented floating-point cores and dense matrix-vector
multiplication on FPGA devices and compared the
performance with that of general purpose
microprocessors. Dou et al. [16] implement a 64-b
floating-point block matrix multiplication algorithm for
arbitrary matrix sizes. In both of these implementations, a
Hardware Description Language (HDL) is used to target
the FPGA devices. Additionally, with the exception of
[1], these implementations are not fully compatible with
the BLAS DGEMM function call.

Thus far, attempts to parallelize floating-point FFTs in
reconfigurable hardware further exhibit the
competitiveness between CPUs and FPGAs [4]. The
FPGA FFT implementation, reported in [5], is designed to
specifically target semi-empirical Car-Parrinello MD
calculations. When FPGAs are used, bandwidth
limitations—indicative of the parallel input format of an
FFT—force more effective implementations using FIFO-
based producer-consumer models. Examples of such
implementations introduce a serial collapsed version of
the FFT’s butterflies [6]. Finally, the implementation in
[7] is optimized for continuous data FFTs in FPGAs and
ASICs. This approach extensively uses a corner turn
module that was studied and benchmarked in [8].

In contrast, there has been limited work in the field of
floating-point Sparse Matrix-Vector (SpMatVec)
multiplication using application-specific designs in
FPGAs. In [9], the authors present an optimized

SpMatVec kernel implementation on a Virtex-II Pro
FPGA device and compare its performance to that of an
Itanium® 2 processor. In [10], a multi-FPGA based
implementation is explored and its performance is
compared to a general purpose multiprocessor system.
While the authors show that FPGAs can be utilized to
achieve high performance for the SpMatVec
multiplication kernel, they do not discuss issues of
implementing the kernel on a FPGA-based high
performance computing system.

3. SRC-6 Overview

The SRC-6 MAPstation [11] is a paring of general-
purpose microprocessors with a Multi-Adaptive Processor
or MAPP

®. The host is powered by dual 2.8 GHz Xeon®
microprocessors (μPs) running the Linux operating
system. The MAP® board(s) is connected via SNAP®

P
cards which plug into the DIMM slot on the
microprocessor motherboard or via a high-bar switch for
multi-MAP configurations. Each MAP®, as shown in
Figure 3.1, consists of two user-configurable Xilinx®
Virtex II XC2V6000 devices [12] running at 100 MHz, a
control processor (FPGA, pre-configured), and six 4MB
SRAM banks referred to as On Board Memory (OBM).
Code for the μPs is written in standard C or FORTRAN.
Code for the MAPP

® hardware is also written in C or
FORTRAN and compiled by an SRC-proprietary
compiler that targets the MAP®

P components. Calls to
execute on the MAP® are function/subroutine calls from
the standard C or FORTRAN modules. The CARTE®
environment [11] builds and links a unified executable
that binds the application and configuration(s) for the
MAPP

® hardware.

Figure 3.1 Hardware Architecture of the SRC MAP
Processor [11]

Smith 2 MAPLD2005/187

4. BLAS Kernel Implementation

FPGAs have long been used to improve the
performance of applications using integer and fixed-point
operations—particularly DSP applications. Unfortunately,
most scientific applications do not have these same
characteristics. However, the high degree of
configurability and dataflow nature of FPGAs can be
potentially used to overcome some of the issues that
plague CPUs with respect to dense floating point
operations.

In this section, we will analyze the BLAS routines
DGEMM and SGEMM and implement them on the SRC
MAPstation.

4.1. Definition and Analysis

The BLAS Level 3 matrix-multiply routine
SGEMM/DGEMM is defined as:

∑
−

=

⋅+⋅=
1

0

N

k
ijkjikij CBAC βα EQ. 1

where α and β are scalars, and A, B, and C are matrices (A
is an m x k, B is an k x n, and C is an m x n matrix).

The BLAS routines are divided into three levels, each
of which offers increased scope for exploiting parallelism.
This subdivision corresponds to three different types of
basic linear algebra operations:

• Level 1 BLAS [18] : for vector operations, such
as y <− αx + y,

• Level 2 BLAS [19] : for matrix-vector
operations, such as y <− αΑx + βy,

• Level 3 BLAS [20]: for matrix-matrix
operations, such as C <− αΑB + βC.

Here, A, B, and C are matrices, x and y are vectors, and
α and β are scalars.

The performance potential of the three levels of BLAS
is strongly related to the ratio of floating-point operations
to memory references, as well as to the reuse of data when
it is stored in the higher levels of the memory hierarchy.
Consequently, the Level 1 BLAS cannot achieve high
efficiency on most modern supercomputers. The Level 2
BLAS can achieve near-peak performance on many
vector processors; on RISC microprocessors, however,
their performance is limited by the memory access
bandwidth bottleneck. The greatest scope for exploiting
the highest levels of the memory hierarchy as well as
other forms of parallelism is offered by the Level 3 BLAS
[21].

Thus, for dense matrices, the Level 3 BLAS require
O(N2) memory accesses and O(N3) floating-point
operations where N is the order of the largest matrix
operand.

These dense matrix operations are an interesting
component in the performance analysis of computing
systems, because they exercise the memory hierarchy and
push the computation capabilities of the hardware. In our
FPGA implementation, we will attempt to exploit data
reuse and inherent data flow of the operations to best
utilize the data flow architecture of the FPGA. We will
exploit fine grain parallelism internal to the FPGA and
operate on multiple rows of the matrices concurrently.
Finally, we will exploit coarse grain parallelism utilizing
both user FPGAs available on the SRC MAPstation to
operate on multiple blocks of the matrices concurrently.

4.2. Implementation Strategy

Our FPGA implementation of the DGEMM BLAS
routine will target the SRC MAPstation. We will attempt
to fully utilize both XC2V6000 user FPGAs.

The strategy is to divide the matrices into blocks, as
shown in Figure 4.1, and perform the matrix
multiplication in blocks. The number of blocks is
determined by the number of on-board-memory banks
available to the FPGAs; in this case, six total banks which
we will divide into four input banks (two per FPGA) and
two output banks (one per FPGA), as shown in Figure
4.2(a). The sub-block size is determined by the number of
floating point multiply-accumulate (MAC) units that will
fit per FPGA (sub-block denotes the block size or rows
that will be computed in parallel per FPGA). The design
will handle arbitrary size matrices up to 1024x1024
(larger dimensions are possible but not addressed in this
design). The methodology exploits the data flow
architecture of the FPGA and achieves the maximum data
reuse.

The computations are conducted in two stages as
shown in Figure 4.2. In the first stage, Figure 4.2(a),
FPGA0 is paired with blocks A00 and A01 of matrix A
and B00 and B10 of matrix B, which are used to partially
compute blocks C00 and C01 of matrix C. Similarly,
FPGA1 is paired with blocks A10 and A11 of matrix A
and B01 and B11 of matrix B, which are used to partially
compute blocks C10 and C11 of matrix C. Once all of the
sub-blocks have been computed in stage one, ownership
of matrix B is exchanged in stage two as shown in Figure
4.2(b). The pseudo code representation of the
computations and ownership exchange is given in Figure
4.3.

To take advantage of the data flow architecture and
fine grain parallelism of the FPGA, the number of floating
point computations (alternate FLOPS) is higher than the
theoretical optimum.

Smith 3 MAPLD2005/187

DMA matrices A, B, C
Set Stage0 Bank permissions
for stage=0; stage<2
 for i=0; i<1/2 N; i+= p
 cache p rows of A in BRAM
 if (stage==0) {start=0;stop=1/2 N}
 else {start=1/2 N; stop=N}
 for j=start, j<stop
 for k=0; k=N
 AEp = kth element of row p of A
 BE1 = column k, jth element of B
 BE1* = alpha
 sum_p = MAC(AEp, BE1)
 }
 CEp = sum_p + beta*CEp
 }
 }
 Sync user chips
 Set Stage1 Bank permissions
}

Where:
p = number of rows processed in parallel
N = dimension of matrices

A00 A01 A02 A03 A04 A05

A20 A21 A22 A23 A24 A25

A30 A31 A32 A33 A34 A35

A40 A41 A42 A43 A44 A45

A50 A51 A52 A53 A54 A55

A10 A11 A12 A13 A14 A15 A0

A1

A0

A1

Figure 4.1 Block decomposition of the Matrix

(a) Stage One

(b) Stage Two

Figure 4.2 FPGA to OBM parings

Figure 4.3 MAP pseudo code for DGEMM

4.3. Results

The SRC MAPstation implementation resulted in full
utilization of the two user FPGAs. We implemented both
a single and double precision version. In the single
precision version, SGEMM, we were able to place 25
single precision MAC units per FPGA. This enabled us
to process up to 25 rows of matrix A per FPGA in parallel
and achieve a modest FLOP rate for a 1000x1000 element
matrix of 8.14 GFLOPS compared to 7.77 GFLOPS on a
3.06GHz dual-Xeon processor. In the double precision
implementation, DGEMM, we were only able to place 12
double precision MAC units per FPGA. The increased
size of the double precision macros reduced our number
of parallel processing elements by slightly more than half.
We were still able to process up to 12 rows of matrix A
per FPGA in parallel and achieve a sustained FLOP rate
for a 1000x1000 element matrix of 3.53 GFLOPS
compared to 4.14 GFLOPS on the previously mentioned
dual-Xeon processor (and 3.91 GFLOPS on the 1.8GHz
dual-Xeon processor in the SRC MAPstation). The plots
in Figure 4.4 show the DGEMM results.

In Figure 4.4(a), if we compare the plots of
‘computation only’ and computation with data transfer,
we see that the data transfer time in and out of hardware is
significant and impacts the “time to solution”. For this
reason, we are interested in other data transfer (streaming
DMA) and memory methodologies (as found in the SGI
solution with RASC [16]) to hide or mitigate this impact

FPGA1

OBM
Bank

A

A
00,A

01

B

B
00,B

10

C

C
00,C

01

D

A
10,A

11

F

C
10,C

11

E

B
01,B

11

FPGA0

800 MB/s
Per bank

FPGA1

OBM
Bank

A

A
00,A

01

B

B
00,B

10

C
C

00,C
01

D

A
10,A

11

E

B
01,B

11

F

C
10,C

11

FPGA0

Smith 4 MAPLD2005/187

on execution time and performance. Also note, from the
dashed plots of Figure 4.4(a) & (b), that faster and/or
denser FPGAs can significantly improve both
performance and execution time. For comparison, plots of
the ATLAS implementation of DGEMM running on the

dual Xeons of the SRC system are also shown. ATLAS
(Automatically Tuned Linear Algebra Software) is a
popular package that includes BLAS and LAPACK API
[17].

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

5.00E-01

6.00E-01

0 100 200 300 400 500 600 700 800 900
Dimension [N]

tim
e

[s
ec

]

ATLAS-03 flag
cblas_dgemm()
SRC dual Xeon

hw measured
with RTDSC

hardware
measured with
counters in fpga

computation only
w/ FPGA counter

2x faster FPGA

2x faster FPGA &
data xfer

(a) Execution time

0.00E+00

1.00E+03

2.00E+03

3.00E+03

4.00E+03

5.00E+03

6.00E+03

7.00E+03

0 100 200 300 400 500 600 700 800 900
Dimension [N]

pe
rf

or
m

an
ce

 [M
flo

ps
/s

ec
]

atlas -03 flag
cblas_dgemm()
SRC dual Xeon

hw measured with
RTDSC

hw measured with
pga counters

computation only
w/ FPGA counter

2x faster FPGA

(b) Performance

Figure 4.4 DGEMM Graphs

Smith 5 MAPLD2005/187

Our resulting design was created with SRC’s

CARTEv1.8 development suite which allows the designer
to generate hardware and software from a unified
environment using high-level languages, namely C or
FORTRAN. A similar design by Dou [13], which used
traditional hardware language to target the FPGA,
achieved a peak performance of 15.6 GFLOPS with a
larger, faster device (XC2VP125-7) running at 200MHz
(twice as fast). Their implementation contained 39 double
precision MAC units (3.25x’s our number). The
significance here is that we were able to complete a
competitive design (when device size and speed are
accounted for) using high-level languages as opposed to
the traditional hardware languages often used to target
FPGAs. This path from high-level languages such as C
and FORTRAN is significant for users which may be
unfamiliar with hardware languages. The learning curve
for hardware languages and hardware design is steep and
while they make for higher performance and more area
efficient designs when used by experienced designers,
novice designers are much less productive when using
these languages. The ability to conduct hardware/software
co-design from a unified environment can be empowering
for computer scientists and engineers.

5. Function Libraries

Determining the optimal granularity for function
libraries has been a challenge for the scientific community
for many years. The addition of alternate computing
technologies such as FPGAs adds additional complexity
to this conundrum.

Our approach has been to first identify candidate
applications that we think are suitable for RC, analyze
these applications to determine the computational
bottlenecks, and finally, determine if FPGAs can be used
to speed up these applications by accelerating these
kernels.

We have identified several application areas at ORNL
which are computationally challenging, significant to our
science research, and potential candidates for acceleration
with RC architectures: molecular dynamics, climate
modeling, life sciences, nanoscience, and bioinformatics.
During this process, we have noted that many of these
scientific applications use several common or similar
functions such as dense matrix-matrix and matrix-vector
operations (e.g. DDOT, DAXPY, DGEMM), 2D and 3D
FFTs, and sparse matrix operations. Error! Reference
source not found. shows how these applications and
kernels overlap.

The goal is to identify and assemble a library of user
friendly and familiar functions that are pertinent to
scientific applications and of the appropriate
computational complexity for use in RC architectures.

MD
Apps FFT

BLAS Iterative Solvers
SpMatVec

Figure 5.1 Candidate Kernels & Applications

5.1. Function Identification

Our analysis has identified several pertinent functions
for consideration. The initial list includes: BLAS routines,
sparse matrix vector operations, FFTs, and bioinformatics
queries.

Earlier in the paper, we discussed the implementation
of the BLAS DGEMM routine. We have also
implemented several other BLAS routines such as DDOT,
DGEMV, and DAXPY along with their single precision
counterparts. These routines are widely used in many
scientific applications and DGEMM is often used as a
point of reference in performance profiles. As discussed
in [1], commodity processors still hold a slight edge in
peak performance but current trends indicate that the peak
double precision floating-point performance of FPGAs
will reverse this in the near future. Coupled with the
memory efficiency that FPGAs achieve (can do more with
less, requiring less storage relative to commodity CPUs)
indicates that FPGAs will have an edge in performance
computing in the near future.

Sparse matrix vector operations are commonly used in
iterative solvers for linear systems. They are generally not
efficient on general purpose processors due to the poor
data locality and resulting high cache miss rate. They are
also characterized by low utilization of the floating point
unit(s) due to the high ratio of load/store to floating point
operations (by comparison, dense matrix operations such
as DGEMM typically have O(N/2) floating point
operations for each memory access). The memory
efficiency eluded to earlier allows FPGAs to avoid the
penalty of cache misses and the high density of FPGAs
allows for many processing elements to be populated
across the device. Locally distributed memory banks
keeps data vectors spatially near-by and fast host to FPGA
communication keeps these banks populated with data.

FFTs are used in a variety of applications such as
climate models, molecular dynamics, and many others.
When data is distributed across many nodes in a parallel
programming paradigm, the communication costs become
a significant impediment to performance. In FPGAs and
RC systems, we can implement these FFTs in a single or

Climate
Apps Bioinformatics

Apps

Queries

Smith 6 MAPLD2005/187

closely coupled pool of FPGAs. This inherently reduces
the overhead of communications since data does not need
to be transferred to other processors in the system; the
processing unit is often on the same chip or device (or
worst case in a closely coupled neighbor device with a
streamlined high-bandwidth communication channel
between them). This provides for much faster
computation and more efficient corner turn
implementations.

Bioinformatics queries are inherently suitable for RC
implementation: pattern matching and highly parallel.
Recent work in the area has determined that FPGAs and
RC architectures are a good fit for this application
problem [14]. Our current work focuses on finding the
most suitable problem structure and domain for candidate
RC architectures. We are working to analyze data streams
and memory capacities to determine the most appropriate
problem domains and algorithms for implementation.

5.2. Implementation Issues

The main issue with forming a library of functions for
RC architectures is finding the appropriate computational
complexity to make the implementation a “win” for the
architecture. While the bandwidth on/off the FPGA
device is considered sufficient in most cases, it is still an
overhead cost as is the time to configure the FPGA.
Configuration time can often be hidden behind other
computations, while the time to transfer data to and from
the FPGA device must still be taken into account even
when using streaming data. If the implementation does
not provide a performance advantage that outweighs this
cost, then it is not desirable. Techniques such as “function
fusing” can be used to form more complex library
functions and gain this necessary advantage. The ultimate
goal is to perform the maximum amount of computations
or processing on the data while it resides at the FPGA; not
very different from the goal for commodity CPUs but the
cost for not accomplishing this goal is more evident.

Finding appropriate functions to “fuse” is more
application dependent and thus the hindrance to forming a
vast library of familiar functions. While some of the
functions we have mentioned are for large problems
computationally dense, more work is needed, possibly in
the form of performance models and analysis, to
determine how best to manage these libraries and assist
the user in determining when they should be used to
replace the default library.

6. Conclusions and Future Work

We successfully used a High Level Language (HLL)
tool (CARTEv1.8) to design for FPGAs. While
implementation of the DGEMM routine on the SRC
MAPstation still required some hardware knowledge to be

efficient and take advantage of all the FPGA and RC
architecture has to offer, the use of the HLL tool is more
efficient for the programmer than using a Hardware
Descriptive Language (HDL) tool and generates code that
performs well compared to other HDL implementations.
The programmer must be aware of memory limitations,
FPGA limitations, and some of the ‘tricks’ to take
advantage of the FPGA and architecture strengths.

The development of function libraries for FPGAs and
RC architectures requires analysis to determine candidate
functions for FPGA implementation. We determined in
this process that the traditional breakout level of the
library functions (e.g. BLAS and VSIPL) may not always
be appropriate for RC implementation. Further analysis is
needed in “function fusing” to determine if adding
computational weight can provide a “win” for these
functions. Also, the floating point performance of FPGAs
is growing faster than that of commodity CPUs and may
soon make this a moot point. Additionally, faster FPGAs
and higher bandwidth RC architectures (to reduce data
transfer costs dramatically) could also void this
conclusion.

FPGA growth rates are exceeding commodity CPUs
and future implementations will ultimately provide some
interesting platforms for exploration of scientific codes.
The use of HLL to target these platforms will be
necessary for making them usable in the scientific
community with its stockpile of legacy code. Other tools
are needed to identify candidate codes or regions in the
application for RC implementation. Additionally, tools
are needed for resource management for multi-paradigm
platforms.

Our future work will focus on some of these issues.
We will continue to work towards the maximum
utilization of the FPGA resources via these HLL
programming tools and look toward additional
function/kernel library development. We also plan to
focus on the idea of resource management for devices
existing in multi-paradigm platforms (FPGAs, GPUs, and
other alternative devices). The decision on what
accelerator to use for a given application can be
complicated due to function availability, performance
metrics, device availability, and other factors. Finally,
tools to assist in kernel identification would significantly
aid the programmer in determining where to focus for
implementation. The ability to identify regions of the code
which are appropriate for implementation on a particular
RC platform given its memory capacity, memory
architecture, FPGA size and density, and other factors
would be a significant step towards more efficient use of
these devices.

7. References

[1] K. D. Underwood, and K. S. Hemmert, “Closing the GAP:

Smith 7 MAPLD2005/187

CPU and FPGA Trends in Sustainable Floating-Point
BLAS Performance,” In Proceedings of 2004 IEEE
Symposium on Field-Programmable Custom Computing
Machines (FCCM04), 2004.

[2] G. Govindu, et al., “Analysis of High-Performance Floating-
Point Arithmetic on FPGAs,” In Proceedings of the 11th
Reconfigurable Architectures Workshop (RAW04), 2004.

[3] L. Zhuo, V. K. Prasanna, “Scalable and Modular Algorithms
for Floating-Point Matrix Multiplication on FPGAs,” In
Proceedings of the 18th International Parallel &
Distributed Processing Symposium (IPDPS04), 2004.

[4] K. Scott Hemmert, and Keith D. Underwood, “An Analysis
of the Double-Precision Floating-Point FFT on FPGAs,”
IEEE Symposium on Field Programmable Custom
Computing Machines (FCCM05), Apr. 2005.

[5] K. Araki, T. Sasaki, D. Mizoguchi, U. Nagashima, I.
Miyoshi, and T. Tanahashi, “Development of a special
purpose circuit for 3D-FFT using FPGA,” The Japanese
Society of Fluid Mechanics: 18th Aeromechanics
Symposium, Dec. 2004.

[6] P. A. Jackson, C. P. Chan, J. E. Scalera, C. M. Reader, and
M. M. Vai, “A systolic FFT architecture for real time
FPGA systems,” High Performance Embedded Computing
Conference (HPEC04), Sept. 2004.

[7] T. Dillon, “An efficient architecture for ultra long FFTs in
FPGAs and ASICs,” High Performance Embedded
Computing Conference (HPEC04), Sept. 2004.

[8] S. Akella, D. A. Buell, L. E. Cordova, J. Hammes, “The
DARPA Data Transposition Benchmark on a
Reconfigurable Computer,” 8th International Conference
on Military and Aerospace Programmable Logic Devices
(MAPLD05), Sept. 2005.

[9] L. Zhuo, V. K. Prasanna, “Sparse Matrix-Vector
Multiplication on FPGAs,” In Proceedings of the 13th
International Symposium on Field Programmable Gate
Arrays (FPGA05), 2005.

[10] M. deLorimier, A. DeHon, “Floating-point Sparse Matrix-
Vector Multiply for FPGAs,” In Proceedings of the 13th
International Symposium on Field Programmable Gate
Arrays (FPGA05), 2005.

[11] SRC Computers, Inc., http://www.srccomp.com.

[12] Xilinx, Inc., Virtex-II Platform FPGAs: Complete Data
Sheet, June 2004.

[13] Yong Dou, S. Vassiliadis, G.K. Kuzmanov, G.N.
Gaydadjiev, “64-bit floating point FPGA matrix
multiplication,” In Proceedings of the 13th International
Symposium on Field Programmable Gate Arrays
(FPGA05), 2005.

[14] Krishna Muriki, Keith D. Underwood, Ron Sass, “RC-
BLAST: Towards a Portable, Cost-Effective Open Source
Hardware Implementation,” 19th International Parallel and
Distributed Processing Symposium (IPDPS05), 2005.

[15] Keith Underwood, “FPGAs vs. CPUs: Trends in Peak

Floating-Point Performance,” In Proceedings of the 12th
International Symposium on Field Programmable Gate
Arrays (FPGA04), 2004.

[16] SGI, http://www.sgi.com.

[17] ATLAS, http://www.netlib.org/atlas/.

[18] C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh,
“Basic linear algebra subprograms for Fortran usage,” ACM
Trans. Math. Soft., 5 (1979), pp. 308-323.

[19] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J.
Hanson, “Algorithm 656: An extended set of FORTRAN
Basic Linear Algebra Subroutines,” ACM Trans. Math.
Soft., 14 (1988), pp. 18-32.

[20] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling,
“Algorithm 679: A set of Level 3 Basic Linear Algebra
Subprograms,” ACM Trans. Math. Soft., 16 (1990), pp. 18-
28.

[21] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
S. Ostrouchov, and D. Sorensen, “LAPACK Users' Guide,”
Society for Industrial and Applied Mathematics,
Philadelphia, PA, second ed., 1995.

Smith 8 MAPLD2005/187

http://www.srccomp.com/
http://www.netlib.org/atlas/

	Abstract
	1. Introduction
	2. Related Work
	3. SRC-6 Overview
	4. BLAS Kernel Implementation
	4.1. Definition and Analysis
	4.2. Implementation Strategy
	4.3. Results
	5. Function Libraries
	5.1. Function Identification
	5.2. Implementation Issues

	6. Conclusions and Future Work
	7. References

