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Abstract 
Reconfigurable Computing architectures consisting of 

FPGAs or similar programmable devices have been used 
in embedded systems for a number of years where integer 
and fixed point arithmetic are prevalent. Recently the 
logic capacity of these programmable devices has grown 
dramatically making 64b floating-point operations 
feasible and thus their use in scientific and high 
performance computing intriguing. We are using the SRC 
MAPstation to explore reconfigurable computing for 
computationally demanding scientific workloads at Oak 
Ridge National Laboratory. Our approach uses a high-
level programming interface to the FPGAs, namely C and 
FORTRAN, which allows for straightforward porting of 
legacy code to the reconfigurable computing platform. In 
this paper, we present our results for some common Basic 
Linear Algebra Subroutine (BLAS) kernels running on the 
SRC MAPstation. These routines have very little or no 
data reuse, hence their performance on standard cache 
based systems is poor for large problem sizes. Due to the 
inherent parallelism of FPGAs and tightly coupled 
memory and computational units, the MAPstation 
performance is sustainable even for large problem sizes. 
We describe our algorithm analysis, programming 
paradigm, code migration techniques, and performance 
results. We also present our plans for a function library of 
commonly used scientific kernel implementations (i.e. 
BLAS, sparse matrix operations, FFTs, etc.) suitable for 
use on the SRC MAPstation and in the future, other 
reconfigurable computing platforms. 

 

1. Introduction 

Traditional computing paradigms are struggling to 
keep pace with analysis needs and are rapidly reaching 
limits on computing speed due to I/O bandwidth 
limitations and the impending clock wall. Furthermore, 

managing heat dissipation as devices devour more power 
is becoming increasingly difficult. 

Reconfigurable computing (RC) with FPGAs 
potentially offers faster execution and lower power 
consumption all with slower clock speeds. Figure 1.1 
shows the performance trend for FPGA devices far 
exceeds that of general microprocessors over the past 
decade. FPGAs have the ability to exploit inherent 
parallelism and match computation with application data 
flow (i.e. Data Flow Graph Theory). With gate densities 
now suitable for double precision operations, FPGAs can 
offer the “hardware-like” speed previously only found in 
custom ASICs with the “software-like” flexibility that can 
adapt to the changing needs of the application or suite of 
applications. 

Many scientific applications at Oak Ridge National 
Laboratory (ORNL) and elsewhere depend on double 
precision floating-point operations. Furthermore, many of 
these applications rely on common computations or 
functions that limit performance. We have identified 
several of these functions as being computationally 
intensive and as candidates for implementation in FPGAs. 
Efforts to interface to legacy code have also emphasized 
the need for FORTRAN and C language tools for FPGA 
development. Moreover, we are interested in using multi-
paradigm computing in our scientific applications. To do 
so across a broad spectrum of applications, high level 
language programming tools will be necessary to bring 
these devices and their capabilities to the users of our 
computing systems.   

The remainder of the paper is organized as follows. In 
Section 2, we cover some related material on the 
RC/FPGA implementation of various kernels of interest. 
In Section 3, we give a brief overview of the RC system 
used in these studies. In Section 4, we discuss the details 
of a BLAS routine implementation. In Section 0, we look 
at the development of function libraries and their impact 
on programming for RC and multi-paradigm computing 
systems. Finally in Section 6, we offer some conclusions 
and a look at future research. 
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Figure 1.1 Performance trends for FPGAs and 
microprocessors 

2. Related Work 

Recent advances in FPGA logic and capacity now 
provide the means to effectively implement floating point 
applications. It has been shown that current FPGAs with 
abundant on-chip memory and I/O pin resources provide 
peak floating-point performance surpassing that of 
microprocessors [1, 15]. In [2, 3] Prasanna et al. 
implemented floating-point cores and dense matrix-vector 
multiplication on FPGA devices and compared the 
performance with that of general purpose 
microprocessors. Dou et al. [16] implement a 64-b 
floating-point block matrix multiplication algorithm for 
arbitrary matrix sizes. In both of these implementations, a 
Hardware Description Language (HDL) is used to target 
the FPGA devices. Additionally, with the exception of 
[1], these implementations are not fully compatible with 
the BLAS DGEMM function call. 

Thus far, attempts to parallelize floating-point FFTs in 
reconfigurable hardware further exhibit the 
competitiveness between CPUs and FPGAs [4]. The 
FPGA FFT implementation, reported in [5], is designed to 
specifically target semi-empirical Car-Parrinello MD 
calculations. When FPGAs are used, bandwidth 
limitations—indicative of the parallel input format of an 
FFT—force more effective implementations using FIFO-
based producer-consumer models. Examples of such 
implementations introduce a serial collapsed version of 
the FFT’s butterflies [6]. Finally, the implementation in 
[7] is optimized for continuous data FFTs in FPGAs and 
ASICs. This approach extensively uses a corner turn 
module that was studied and benchmarked in [8]. 

In contrast, there has been limited work in the field of 
floating-point Sparse Matrix-Vector (SpMatVec) 
multiplication using application-specific designs in 
FPGAs. In [9], the authors present an optimized 

SpMatVec kernel implementation on a Virtex-II Pro 
FPGA device and compare its performance to that of an 
Itanium® 2 processor. In [10], a multi-FPGA based 
implementation is explored and its performance is 
compared to a general purpose multiprocessor system. 
While the authors show that FPGAs can be utilized to 
achieve high performance for the SpMatVec 
multiplication kernel, they do not discuss issues of 
implementing the kernel on a FPGA-based high 
performance computing system.  

3. SRC-6 Overview 

The SRC-6 MAPstation [11] is a paring of general-
purpose microprocessors with a Multi-Adaptive Processor 
or MAPP

®. The host is powered by dual 2.8 GHz Xeon® 
microprocessors (μPs) running the Linux operating 
system. The MAP® board(s) is connected via SNAP®

P  
cards which plug into the DIMM slot on the 
microprocessor motherboard or via a high-bar switch for 
multi-MAP configurations. Each MAP®, as shown in 
Figure 3.1, consists of two user-configurable Xilinx® 
Virtex II XC2V6000 devices [12] running at 100 MHz, a 
control processor (FPGA, pre-configured), and six 4MB 
SRAM banks referred to as On Board Memory (OBM). 
Code for the μPs is written in standard C or FORTRAN.  
Code for the MAPP

® hardware is also written in C or 
FORTRAN and compiled by an SRC-proprietary 
compiler that targets the MAP®

P  components.  Calls to 
execute on the MAP® are function/subroutine calls from 
the standard C or FORTRAN modules. The CARTE® 
environment [11] builds and links a unified executable 
that binds the application and configuration(s) for the 
MAPP

® hardware. 

 
Figure 3.1 Hardware Architecture of the SRC MAP 
Processor [11] 
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4. BLAS Kernel Implementation 

FPGAs have long been used to improve the 
performance of applications using integer and fixed-point 
operations—particularly DSP applications. Unfortunately, 
most scientific applications do not have these same 
characteristics. However, the high degree of 
configurability and dataflow nature of FPGAs can be 
potentially used to overcome some of the issues that 
plague CPUs with respect to dense floating point 
operations. 

In this section, we will analyze the BLAS routines 
DGEMM and SGEMM and implement them on the SRC 
MAPstation. 

 
4.1. Definition and Analysis 

The BLAS Level 3 matrix-multiply routine 
SGEMM/DGEMM is defined as: 

∑
−

=

⋅+⋅=
1

0

N

k
ijkjikij CBAC βα  EQ. 1 

where α and β are scalars, and A, B, and C are matrices (A 
is an m x k, B is an k x n, and C is an m x n matrix).  

The BLAS routines are divided into three levels, each 
of which offers increased scope for exploiting parallelism. 
This subdivision corresponds to three different types of 
basic linear algebra operations:  

• Level 1 BLAS [18] : for vector operations, such 
as y <− αx + y,  

• Level 2 BLAS [19] : for matrix-vector 
operations, such as y <− αΑx + βy,  

• Level 3 BLAS [20]: for matrix-matrix 
operations, such as C <− αΑB + βC.  

Here, A, B, and C are matrices, x and y are vectors, and 
α and β are scalars.  

The performance potential of the three levels of BLAS 
is strongly related to the ratio of floating-point operations 
to memory references, as well as to the reuse of data when 
it is stored in the higher levels of the memory hierarchy. 
Consequently, the Level 1 BLAS cannot achieve high 
efficiency on most modern supercomputers. The Level 2 
BLAS can achieve near-peak performance on many 
vector processors; on RISC microprocessors, however, 
their performance is limited by the memory access 
bandwidth bottleneck. The greatest scope for exploiting 
the highest levels of the memory hierarchy as well as 
other forms of parallelism is offered by the Level 3 BLAS 
[21].  

Thus, for dense matrices, the Level 3 BLAS require 
O(N2) memory accesses and O(N3) floating-point 
operations where N is the order of the largest matrix 
operand.   

These dense matrix operations are an interesting 
component in the performance analysis of computing 
systems, because they exercise the memory hierarchy and 
push the computation capabilities of the hardware. In our 
FPGA implementation, we will attempt to exploit data 
reuse and inherent data flow of the operations to best 
utilize the data flow architecture of the FPGA. We will 
exploit fine grain parallelism internal to the FPGA and 
operate on multiple rows of the matrices concurrently. 
Finally, we will exploit coarse grain parallelism utilizing 
both user FPGAs available on the SRC MAPstation to 
operate on multiple blocks of the matrices concurrently. 

4.2. Implementation Strategy 

Our FPGA implementation of the DGEMM BLAS 
routine will target the SRC MAPstation. We will attempt 
to fully utilize both XC2V6000 user FPGAs. 

The strategy is to divide the matrices into blocks, as 
shown in Figure 4.1, and perform the matrix 
multiplication in blocks. The number of blocks is 
determined by the number of on-board-memory banks 
available to the FPGAs; in this case, six total banks which 
we will divide into four input banks (two per FPGA) and 
two output banks (one per FPGA), as shown in Figure 
4.2(a). The sub-block size is determined by the number of 
floating point multiply-accumulate (MAC) units that will 
fit per FPGA (sub-block denotes the block size or rows 
that will be computed in parallel per FPGA). The design 
will handle arbitrary size matrices up to 1024x1024 
(larger dimensions are possible but not addressed in this 
design). The methodology exploits the data flow 
architecture of the FPGA and achieves the maximum data 
reuse. 

The computations are conducted in two stages as 
shown in Figure 4.2. In the first stage, Figure 4.2(a), 
FPGA0 is paired with blocks A00 and A01 of matrix A 
and B00 and B10 of matrix B, which are used to partially 
compute blocks C00 and C01 of matrix C. Similarly, 
FPGA1 is paired with blocks A10 and A11 of matrix A 
and B01 and B11 of matrix B, which are used to partially 
compute blocks C10 and C11 of matrix C. Once all of the 
sub-blocks have been computed in stage one, ownership 
of matrix B is exchanged in stage two as shown in Figure 
4.2(b). The pseudo code representation of the 
computations and ownership exchange is given in Figure 
4.3. 

To take advantage of the data flow architecture and 
fine grain parallelism of the FPGA, the number of floating 
point computations (alternate FLOPS) is higher than the 
theoretical optimum. 
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DMA matrices A, B, C 
Set Stage0 Bank permissions 
for stage=0; stage<2 
 for i=0; i<1/2 N; i+= p 
     cache p rows of A in BRAM 
     if (stage==0) {start=0;stop=1/2 N} 
     else {start=1/2 N; stop=N} 
     for j=start, j<stop 
        for k=0; k=N 
         AEp = kth element of row p of A 
         BE1 = column k, jth element of B 
    BE1* = alpha 
    sum_p = MAC(AEp, BE1)   
        } 
        CEp = sum_p + beta*CEp 
     } 
 } 
 Sync user chips 
 Set Stage1 Bank permissions    
} 
 
Where: 
p = number of rows processed in parallel 
N = dimension of matrices 

A00 A01 A02 A03 A04 A05 

A20 A21 A22 A23 A24 A25 

A30 A31 A32 A33 A34 A35 

A40 A41 A42 A43 A44 A45 

A50 A51 A52 A53 A54 A55 

A10 A11 A12 A13 A14 A15 A0

A1

A0

A1

 
Figure 4.1 Block decomposition of the Matrix 

 

 
(a) Stage One 

 
(b) Stage Two 

Figure 4.2 FPGA to OBM parings 
 

 
Figure 4.3 MAP pseudo code for DGEMM 

 
4.3. Results 

The SRC MAPstation implementation resulted in full 
utilization of the two user FPGAs. We implemented both 
a single and double precision version. In the single 
precision version, SGEMM, we were able to place 25 
single precision MAC units per FPGA.  This enabled us 
to process up to 25 rows of matrix A per FPGA in parallel 
and achieve a modest FLOP rate for a 1000x1000 element 
matrix of 8.14 GFLOPS compared to 7.77 GFLOPS on a 
3.06GHz dual-Xeon processor. In the double precision 
implementation, DGEMM, we were only able to place 12 
double precision MAC units per FPGA. The increased 
size of the double precision macros reduced our number 
of parallel processing elements by slightly more than half. 
We were still able to process up to 12 rows of matrix A 
per FPGA in parallel and achieve a sustained FLOP rate 
for a 1000x1000 element matrix of 3.53 GFLOPS 
compared to 4.14 GFLOPS on the previously mentioned 
dual-Xeon processor (and 3.91 GFLOPS on the 1.8GHz 
dual-Xeon processor in the SRC MAPstation). The plots 
in Figure 4.4 show the DGEMM results. 

In Figure 4.4(a), if we compare the plots of 
‘computation only’ and computation with data transfer, 
we see that the data transfer time in and out of hardware is 
significant and impacts the “time to solution”. For this 
reason, we are interested in other data transfer (streaming 
DMA) and memory methodologies (as found in the SGI 
solution with RASC [16]) to hide or mitigate this impact 
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on execution time and performance. Also note, from the 
dashed plots of Figure 4.4(a) & (b), that faster and/or 
denser FPGAs can significantly improve both 
performance and execution time. For comparison, plots of 
the ATLAS implementation of DGEMM running on the 

dual Xeons of the SRC system are also shown. ATLAS 
(Automatically Tuned Linear Algebra Software) is a 
popular package that includes BLAS and LAPACK API 
[17]. 
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Figure 4.4 DGEMM Graphs 
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Our resulting design was created with SRC’s 

CARTEv1.8 development suite which allows the designer 
to generate hardware and software from a unified 
environment using high-level languages, namely C or 
FORTRAN. A similar design by Dou [13], which used 
traditional hardware language to target the FPGA, 
achieved a peak performance of 15.6 GFLOPS with a 
larger, faster device (XC2VP125-7) running at 200MHz 
(twice as fast). Their implementation contained 39 double 
precision MAC units (3.25x’s our number). The 
significance here is that we were able to complete a 
competitive design (when device size and speed are 
accounted for) using high-level languages as opposed to 
the traditional hardware languages often used to target 
FPGAs. This path from high-level languages such as C 
and FORTRAN is significant for users which may be 
unfamiliar with hardware languages. The learning curve 
for hardware languages and hardware design is steep and 
while they make for higher performance and more area 
efficient designs when used by experienced designers, 
novice designers are much less productive when using 
these languages. The ability to conduct hardware/software 
co-design from a unified environment can be empowering 
for computer scientists and engineers. 

5. Function Libraries 

Determining the optimal granularity for function 
libraries has been a challenge for the scientific community 
for many years. The addition of alternate computing 
technologies such as FPGAs adds additional complexity 
to this conundrum. 

Our approach has been to first identify candidate 
applications that we think are suitable for RC, analyze 
these applications to determine the computational 
bottlenecks, and finally, determine if FPGAs can be used 
to speed up these applications by accelerating these 
kernels.  

We have identified several application areas at ORNL 
which are computationally challenging, significant to our 
science research, and potential candidates for acceleration 
with RC architectures: molecular dynamics, climate 
modeling, life sciences, nanoscience, and bioinformatics. 
During this process, we have noted that many of these 
scientific applications use several common or similar 
functions such as dense matrix-matrix and matrix-vector 
operations (e.g. DDOT, DAXPY, DGEMM), 2D and 3D 
FFTs, and sparse matrix operations. Error! Reference 
source not found. shows how these applications and 
kernels overlap.  

The goal is to identify and assemble a library of user 
friendly and familiar functions that are pertinent to 
scientific applications and of the appropriate 
computational complexity for use in RC architectures. 

 

MD
Apps FFT

BLAS Iterative Solvers 
SpMatVec 

 
 

Figure 5.1 Candidate Kernels & Applications 
 

5.1. Function Identification 

Our analysis has identified several pertinent functions 
for consideration. The initial list includes: BLAS routines, 
sparse matrix vector operations, FFTs, and bioinformatics 
queries. 

Earlier in the paper, we discussed the implementation 
of the BLAS DGEMM routine. We have also 
implemented several other BLAS routines such as DDOT, 
DGEMV, and DAXPY along with their single precision 
counterparts. These routines are widely used in many 
scientific applications and DGEMM is often used as a 
point of reference in performance profiles. As discussed 
in [1], commodity processors still hold a slight edge in 
peak performance but current trends indicate that the peak 
double precision floating-point performance of FPGAs 
will reverse this in the near future. Coupled with the 
memory efficiency that FPGAs achieve (can do more with 
less, requiring less storage relative to commodity CPUs) 
indicates that FPGAs will have an edge in performance 
computing in the near future. 

Sparse matrix vector operations are commonly used in 
iterative solvers for linear systems. They are generally not 
efficient on general purpose processors due to the poor 
data locality and resulting high cache miss rate. They are 
also characterized by low utilization of the floating point 
unit(s) due to the high ratio of load/store to floating point 
operations (by comparison, dense matrix operations such 
as DGEMM typically have O(N/2) floating point 
operations for each memory access). The memory 
efficiency eluded to earlier allows FPGAs to avoid the 
penalty of cache misses and the high density of FPGAs 
allows for many processing elements to be populated 
across the device. Locally distributed memory banks 
keeps data vectors spatially near-by and fast host to FPGA 
communication keeps these banks populated with data. 

FFTs are used in a variety of applications such as 
climate models, molecular dynamics, and many others. 
When data is distributed across many nodes in a parallel 
programming paradigm, the communication costs become 
a significant impediment to performance. In FPGAs and 
RC systems, we can implement these FFTs in a single or 

Climate 
Apps Bioinformatics

Apps 

Queries
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closely coupled pool of FPGAs. This inherently reduces 
the overhead of communications since data does not need 
to be transferred to other processors in the system; the 
processing unit is often on the same chip or device (or 
worst case in a closely coupled neighbor device with a 
streamlined high-bandwidth communication channel 
between them). This provides for much faster 
computation and more efficient corner turn 
implementations. 

Bioinformatics queries are inherently suitable for RC 
implementation: pattern matching and highly parallel. 
Recent work in the area has determined that FPGAs and 
RC architectures are a good fit for this application 
problem [14]. Our current work focuses on finding the 
most suitable problem structure and domain for candidate 
RC architectures. We are working to analyze data streams 
and memory capacities to determine the most appropriate 
problem domains and algorithms for implementation. 

5.2. Implementation Issues 

The main issue with forming a library of functions for 
RC architectures is finding the appropriate computational 
complexity to make the implementation a “win” for the 
architecture. While the bandwidth on/off the FPGA 
device is considered sufficient in most cases, it is still an 
overhead cost as is the time to configure the FPGA. 
Configuration time can often be hidden behind other 
computations, while the time to transfer data to and from 
the FPGA device must still be taken into account even 
when using streaming data. If the implementation does 
not provide a performance advantage that outweighs this 
cost, then it is not desirable. Techniques such as “function 
fusing” can be used to form more complex library 
functions and gain this necessary advantage. The ultimate 
goal is to perform the maximum amount of computations 
or processing on the data while it resides at the FPGA; not 
very different from the goal for commodity CPUs but the 
cost for not accomplishing this goal is more evident.  

Finding appropriate functions to “fuse” is more 
application dependent and thus the hindrance to forming a 
vast library of familiar functions. While some of the 
functions we have mentioned are for large problems 
computationally dense, more work is needed, possibly in 
the form of performance models and analysis, to 
determine how best to manage these libraries and assist 
the user in determining when they should be used to 
replace the default library. 

6. Conclusions and Future Work 

We successfully used a High Level Language (HLL) 
tool (CARTEv1.8) to design for FPGAs. While 
implementation of the DGEMM routine on the SRC 
MAPstation still required some hardware knowledge to be 

efficient and take advantage of all the FPGA and RC 
architecture has to offer, the use of the HLL tool is more 
efficient for the programmer than using a Hardware 
Descriptive Language (HDL) tool and generates code that 
performs well compared to other HDL implementations. 
The programmer must be aware of memory limitations, 
FPGA limitations, and some of the ‘tricks’ to take 
advantage of the FPGA and architecture strengths.  

The development of function libraries for FPGAs and 
RC architectures requires analysis to determine candidate 
functions for FPGA implementation. We determined in 
this process that the traditional breakout level of the 
library functions (e.g. BLAS and VSIPL) may not always 
be appropriate for RC implementation. Further analysis is 
needed in “function fusing” to determine if adding 
computational weight can provide a “win” for these 
functions. Also, the floating point performance of FPGAs 
is growing faster than that of commodity CPUs and may 
soon make this a moot point. Additionally, faster FPGAs 
and higher bandwidth RC architectures (to reduce data 
transfer costs dramatically) could also void this 
conclusion. 

FPGA growth rates are exceeding commodity CPUs 
and future implementations will ultimately provide some 
interesting platforms for exploration of scientific codes. 
The use of HLL to target these platforms will be 
necessary for making them usable in the scientific 
community with its stockpile of legacy code. Other tools 
are needed to identify candidate codes or regions in the 
application for RC implementation. Additionally, tools 
are needed for resource management for multi-paradigm 
platforms. 

Our future work will focus on some of these issues. 
We will continue to work towards the maximum 
utilization of the FPGA resources via these HLL 
programming tools and look toward additional 
function/kernel library development. We also plan to 
focus on the idea of resource management for devices 
existing in multi-paradigm platforms (FPGAs, GPUs, and 
other alternative devices). The decision on what 
accelerator to use for a given application can be 
complicated due to function availability, performance 
metrics, device availability, and other factors. Finally, 
tools to assist in kernel identification would significantly 
aid the programmer in determining where to focus for 
implementation. The ability to identify regions of the code 
which are appropriate for implementation on a particular 
RC platform given its memory capacity, memory 
architecture, FPGA size and density, and other factors 
would be a significant step towards more efficient use of 
these devices. 

7. References 

[1] K. D. Underwood, and K. S. Hemmert, “Closing the GAP: 

Smith 7 MAPLD2005/187 



CPU and FPGA Trends in Sustainable Floating-Point 
BLAS Performance,” In Proceedings of 2004 IEEE 
Symposium on Field-Programmable Custom Computing 
Machines (FCCM04), 2004. 

[2] G. Govindu, et al., “Analysis of High-Performance Floating-
Point Arithmetic on FPGAs,” In Proceedings of the 11th 
Reconfigurable Architectures Workshop (RAW04), 2004. 

[3] L. Zhuo, V. K. Prasanna, “Scalable and Modular Algorithms 
for Floating-Point Matrix Multiplication on FPGAs,” In 
Proceedings of the 18th International Parallel & 
Distributed Processing Symposium (IPDPS04), 2004. 

[4] K. Scott Hemmert, and Keith D. Underwood, “An Analysis 
of the Double-Precision Floating-Point FFT on FPGAs,” 
IEEE Symposium on Field Programmable Custom 
Computing Machines (FCCM05), Apr. 2005. 

[5] K. Araki, T. Sasaki, D. Mizoguchi, U. Nagashima, I. 
Miyoshi, and T. Tanahashi, “Development of a special 
purpose circuit for 3D-FFT using FPGA,” The Japanese 
Society of Fluid Mechanics: 18th Aeromechanics 
Symposium, Dec. 2004. 

[6] P. A. Jackson, C. P. Chan, J. E. Scalera, C. M. Reader, and 
M. M. Vai, “A systolic FFT architecture for real time 
FPGA systems,” High Performance Embedded Computing 
Conference (HPEC04), Sept. 2004. 

[7] T. Dillon, “An efficient architecture for ultra long FFTs in 
FPGAs and ASICs,” High Performance Embedded 
Computing Conference (HPEC04), Sept. 2004. 

[8] S. Akella, D. A. Buell, L. E. Cordova, J. Hammes, “The 
DARPA Data Transposition Benchmark on a 
Reconfigurable Computer,” 8th International Conference 
on Military and Aerospace Programmable Logic Devices 
(MAPLD05), Sept. 2005. 

[9] L. Zhuo, V. K. Prasanna, “Sparse Matrix-Vector 
Multiplication on FPGAs,” In Proceedings of the 13th 
International Symposium on Field Programmable Gate 
Arrays (FPGA05), 2005. 

[10] M. deLorimier, A. DeHon, “Floating-point Sparse Matrix-
Vector Multiply for FPGAs,” In Proceedings of the 13th 
International Symposium on Field Programmable Gate 
Arrays (FPGA05), 2005. 

[11] SRC Computers, Inc., http://www.srccomp.com. 

[12] Xilinx, Inc., Virtex-II Platform FPGAs: Complete Data 
Sheet, June 2004. 

[13] Yong Dou, S. Vassiliadis, G.K. Kuzmanov, G.N. 
Gaydadjiev, “64-bit floating point FPGA matrix 
multiplication,” In Proceedings of the 13th International 
Symposium on Field Programmable Gate Arrays 
(FPGA05), 2005. 

[14] Krishna Muriki, Keith D. Underwood, Ron Sass, “RC-
BLAST: Towards a Portable, Cost-Effective Open Source 
Hardware Implementation,” 19th International Parallel and 
Distributed Processing Symposium (IPDPS05), 2005. 

[15] Keith Underwood, “FPGAs vs. CPUs: Trends in Peak 

Floating-Point Performance,” In Proceedings of the 12th 
International Symposium on Field Programmable Gate 
Arrays (FPGA04), 2004. 

[16] SGI, http://www.sgi.com. 

[17] ATLAS, http://www.netlib.org/atlas/. 

[18] C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh, 
“Basic linear algebra subprograms for Fortran usage,” ACM 
Trans. Math. Soft., 5 (1979), pp. 308-323. 

[19] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. 
Hanson, “Algorithm 656: An extended set of FORTRAN 
Basic Linear Algebra Subroutines,” ACM Trans. Math. 
Soft., 14 (1988), pp. 18-32. 

[20] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling, 
“Algorithm 679: A set of Level 3 Basic Linear Algebra 
Subprograms,” ACM Trans. Math. Soft., 16 (1990), pp. 18-
28. 

[21] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, 
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, 
S. Ostrouchov, and D. Sorensen, “LAPACK Users' Guide,” 
Society for Industrial and Applied Mathematics, 
Philadelphia, PA, second ed., 1995. 

Smith 8 MAPLD2005/187 

http://www.srccomp.com/
http://www.netlib.org/atlas/

	Abstract 
	1. Introduction 
	2. Related Work 
	3. SRC-6 Overview 
	4. BLAS Kernel Implementation 
	4.1. Definition and Analysis 
	4.2. Implementation Strategy 
	4.3. Results 
	5. Function Libraries 
	5.1. Function Identification 
	5.2. Implementation Issues 

	6. Conclusions and Future Work 
	7. References 


