Workload Characterization Project Checklist

Meta Information

Name of code:
V2D
Data collector:

Richard Gerber
Interview history (include user names, affiliation, username, contact info):

	Name
	Affiliation
	Project(s)
	Username
	Contact info (phone, email)

	Doug Swesty
	SUNY-Stonybrook
	Terascale Supernova Initiative SciDAC Project
	swesty
	Douglas.Swesty@sunysb.edu, 631-632-8055

	     
	     
	     
	     
	     

	Project
	PI
	Project Allocation (hours)
	% Project
	Notes

	TSI - MP124
	Anthony Mezzacappa
	300000
	40
	     

	     
	     
	     
	     
	     

Total estimated code hours (allocated):      
Office/Program:
 FORMDROPDOWN

Office 2:

 FORMDROPDOWN

Science Category:
 FORMDROPDOWN
 (     )

Information sources (put links to docs here):

     
Code information

What is the purpose of this code:
To solve the integro-partial

differential equations of either Newtonian or relativistic radiation-hydrodynamics as simulations of the convective epoch of post-bounce supernovae.

High level code features (check all that apply)

	Algorithm

 FORMCHECKBOX
Structured mesh

 FORMCHECKBOX
Unstructured mesh

 FORMCHECKBOX
Adaptive mesh refinement

 FORMCHECKBOX
No mesh

 FORMCHECKBOX
Iterative solver

 FORMCHECKBOX
Particle methods

	 FORMCHECKBOX
Direct solver

 FORMCHECKBOX
Dense linear algebra

 FORMCHECKBOX
Sparse linear algebra

 FORMCHECKBOX
Heavy use of integer/logical arithmetic

 FORMCHECKBOX
Monte Carlo

 FORMCHECKBOX
FFT

 FORMCHECKBOX
Multigrid

Algorithm notes:

     
Planned additions/changes to code over next several years:

AMR, more microphysics (may not affect code much)
Relationship (if any) to other codes:

interralated suite of 1D, 2D and 3D codes
Other notes on the code including version number:

2.53
Name of executable (how can we identify this job in LL logs?): v2d
Code Performance

Performance data

	Machine
	Problem
Type/Size
	# procs
	Mflop/s/proc
	Gflop/s total
	Mem/proc (MB)
	Wall hours (typical)
	Method

	Seaborg
	     
	256
	177
	45.39
	74
	48
	 FORMDROPDOWN

	Seaborg
	     
	512
	177
	90.72
	69
	48
	 FORMDROPDOWN

	Seaborg
	     
	1024
	136
	139.34
	73
	48
	 FORMDROPDOWN

	     
	     
	     
	     
	     
	     
	     
	 FORMDROPDOWN

	     
	     
	     
	     
	     
	     
	     
	 FORMDROPDOWN

	     
	     
	     
	     
	     
	     
	     
	 FORMDROPDOWN

	     
	     
	     
	     
	     
	     
	     
	 FORMDROPDOWN

	     
	     
	     
	     
	     
	     
	     
	 FORMDROPDOWN

	     
	     
	     
	     
	     
	     
	     
	 FORMDROPDOWN

Measurement includes: FORMDROPDOWN

Other measurement info:      
What is the code’s “sweet spot”, namely the number of processors that maximizes science productivity? Why is this the sweet spot?

1024, optimal throughput while still maintaining high efficiency, relevant problem size
If not all runs are at the sweet spot, what is the primary reason for changing the number of processors? effectively all runs are at "sweet spot"
 FORMCHECKBOX
Solving a different problem

 FORMCHECKBOX
Solving a bigger problem

 FORMCHECKBOX
Faster turnaround because of faster processing

 FORMCHECKBOX
Faster turnaround because of smaller queue wait times

 FORMCHECKBOX
Ability to get extra time (i.e. reimbursement program)

 FORMCHECKBOX
Other (Describe:      )

Limits to performance

What factors limit code performance/scaling (beyond raw processor performance)

Check all that apply.

	Factor
	How known
	Explanation

	Application based
	
	

	 FORMCHECKBOX
Algorithm scaling
	 FORMDROPDOWN

	inner product bottleneck

	 FORMCHECKBOX
Load imbalance
	 FORMDROPDOWN

	     

	 FORMCHECKBOX
Small problem size

(Larger problem not needed for Science goals)
	 FORMDROPDOWN

	     

	 FORMCHECKBOX
Small problem size
(Limited by allocation from doing larger problems)
	 FORMDROPDOWN

	     

	 FORMCHECKBOX
Other
	 FORMDROPDOWN

	     

	Machine based
	
	

	 FORMCHECKBOX
Point-to-point latency
	 FORMDROPDOWN

	     

	 FORMCHECKBOX
Point-to-point bandwidth
	 FORMDROPDOWN

	     

	 FORMCHECKBOX
All-to-all performance
(large messages)
	 FORMDROPDOWN

	     

	 FORMCHECKBOX
Allreduce performance
(small messages)
	 FORMDROPDOWN

	inner product bottleneck, ie. latency

	 FORMCHECKBOX
Broadcast performance
	 FORMDROPDOWN

	     

	 FORMCHECKBOX
Barrier performance
	 FORMDROPDOWN

	     

	 FORMCHECKBOX
Available memory
	 FORMDROPDOWN

	     

	 FORMCHECKBOX
MPI-IO I/O
	 FORMDROPDOWN

	via parallel hdf5 (at greater than 1024)

	 FORMCHECKBOX
Posix I/O (one file for several processes)
	 FORMDROPDOWN

	     

	 FORMCHECKBOX
Posix I/O (multiple files)
	 FORMDROPDOWN

	     

	 FORMCHECKBOX
External Network
	 FORMDROPDOWN

	     

	 FORMCHECKBOX
Pre/post processing
	 FORMDROPDOWN

	     

	 FORMCHECKBOX
Available disk space
	 FORMDROPDOWN

	would like more scratch space for long runs

	 FORMCHECKBOX
Bug
	 FORMDROPDOWN

	     

	 FORMCHECKBOX
Other
	 FORMDROPDOWN

	     

What machine features not currently available on the SP would the code be able to take good advantage of if they were available

	Feature
	State
	Notes

	 FORMCHECKBOX
Vector procesors
	 FORMDROPDOWN

	     

	 FORMCHECKBOX
Global shared memory
(OpenMP or threads)
	 FORMDROPDOWN

	     

	 FORMCHECKBOX
Fast shmem and barrier
	 FORMDROPDOWN

	via turboMPI; for latency reduction

	 FORMCHECKBOX
Other
	 FORMDROPDOWN

	high memory bandwidth, low-latency inner products

Communication requirements

[This information will be collected separately, through instrumentation of code]

I/O requirements

	type

(in/out)
	total # of files in typical run
	I/O library
	Mode
	typical size in GB of each file
	type of data
	notes

	 FORMDROPDOWN

	10000
	 FORMDROPDOWN

	 FORMDROPDOWN

	0.1
	 FORMDROPDOWN

	     

	 FORMDROPDOWN

	     
	 FORMDROPDOWN

	 FORMDROPDOWN

	     
	 FORMDROPDOWN

	     

	 FORMDROPDOWN

	     
	 FORMDROPDOWN

	 FORMDROPDOWN

	     
	 FORMDROPDOWN

	     

	 FORMDROPDOWN

	     
	 FORMDROPDOWN

	 FORMDROPDOWN

	     
	 FORMDROPDOWN

	     

	 FORMDROPDOWN

	     
	 FORMDROPDOWN

	 FORMDROPDOWN

	     
	 FORMDROPDOWN

	     

Definitions for mode column:

collector: one process collects data and writes a file or one process reads data and broadcasts

multi-collector: as collector, but for several application subgroups

embarassingly parallel: every process writes or reads its own file

cooperative: several processes write/read cooperatively to/from a single file

As you scale problem size, where do you expect I/O bottlenecks to appear (if anywhere): 1024
 FORMCHECKBOX
Code is self-checkpointing

 FORMCHECKBOX
Code requires global filesystem

Memory requirements

How much memory is used per processor (not per node) for typical production runs

	number of processors
	memory/processor(GB)

	1024
	75

	     
	     

Code base

	Feature
	required
	optional
	notes

	C
	 FORMCHECKBOX

	 FORMCHECKBOX

	     

	Fortran 90
	 FORMCHECKBOX

	 FORMCHECKBOX

	     

	C++
	 FORMCHECKBOX

	 FORMCHECKBOX

	     

	MPI
	 FORMCHECKBOX

	 FORMCHECKBOX

	     

	LAPI
	 FORMCHECKBOX

	 FORMCHECKBOX

	     

	OpenMP
	 FORMCHECKBOX

	 FORMCHECKBOX

	     

	Other (Describe:      )
	 FORMCHECKBOX

	 FORMCHECKBOX

	     

Year current code base originally started:      
Number of lines of code (excluding 3rd party packages):      
Number of man-years spent developing code:      
Who is responsible for maintaining/improving code: Doug Swesty/Eric Myra
Who uses the code (outside of the projects listed above):      
External library/package/software requirements (everything beyond a compiler and MPI-1)

(Don’t forget MPI-I/O, BLAS)

	Library/package name/software
	Required?
	Used if available
	Pre/post processing
only
	Notes

	HDF5
	 FORMCHECKBOX

	 FORMCHECKBOX

	 FORMCHECKBOX

	v1.4 compatibilty needed

	MASS
	 FORMCHECKBOX

	 FORMCHECKBOX

	 FORMCHECKBOX

	     

	     
	 FORMCHECKBOX

	 FORMCHECKBOX

	 FORMCHECKBOX

	     

	     
	 FORMCHECKBOX

	 FORMCHECKBOX

	 FORMCHECKBOX

	     

Pre/post processing capabilities of machine

	Feature
	required
	desired
	notes

	Serial pre/post-processing on compute machine
	 FORMCHECKBOX

	 FORMCHECKBOX

	     

	Parallel pre/post-processing on compute machine
	 FORMCHECKBOX

	 FORMCHECKBOX

	     

	Ability to run Perl/Shell on compute nodes
	 FORMCHECKBOX

	 FORMCHECKBOX

	     

What types of systems has code been recently run on?

 FORMCHECKBOX
IBM SP

 FORMCHECKBOX
Linux Cluster

 FORMCHECKBOX
SGI Origin/Altix

 FORMCHECKBOX
Cray X1 or other vector-based machine

 FORMCHECKBOX
Other (Describe: Will be running on X1 (cf John Shalf))

Other requirements:      
Information on filling out the form.

How to use this checklist

· One checklist per code

· Fill in as much information as possible from ERCAP requests before contacting user

· Include links to original source material. Filename of this doc is CODE.doc; source material in folder CODE.files

”% Project” means the fraction of project allocation used by this code. ERCAP is unreliable here, so you may need to ask the PI. Sometimes a particular code is run by a particular user, so you may be able to look just at that user’s usage.

Revision History:

	Version
	Date
	By
	Comments

	1.0
	01/02/2004
	Bill Saphir
	Initial version

	1.1
	01/01/2005
	Bill Saphir
	comments from Francesca

	1.2
	01/06/2004
	Bill Saphir
	meeting comments

	1.3
	01/16/2004
	All
	fixes to form

	1.4
	1/28/2004
	Bill
	fixed second science category drop down

	1.5
	2/3/2004
	Bill
	changes from 2/2 meeting

