
Scalable System
Measurement and

Performance Analysis:
Recent Progress

Rob Fowler
RENCI

Workshop on
Performance & Productivity

of Extreme-Scale Parallel Computing
Oct. 16 2006.

(Scalable System)
Measurement and

Performance Analysis:
Recent Progress

Rob Fowler
Workshop on

Performance & Productivity
of Extreme-Scale Parallel Computing

Oct. 16 2006.

The I/O Issue and Scaling.

• Seymour Cray (1976):
– I/O has certainly been lagging the last decade.

• D. Kuck (1988):
– Also, I/O needs lots of work.

• Dave Patterson (1994):
– Terabytes >> Teraflops or Why Work on

Processors When I/O is Where the Action is?

•Seymour Cray:
–A supercomputer is a device that turns a
compute-bound problem into an I/O-bound
problem.

A “Real” WRF problem on BG/L

LEAD 27 Km data, 84 hour simulation.
32 BG/L processors(CO mode)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Time (sec)

N
um

be
r o

f I
te

ra
tio

ns

BG/L 32-CO

0

10

20

30

40

50

60

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

LEAD 27 Km data, 84 hour simulation.
32 BG/L processors(CO mode)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Time (sec)

N
um

be
r o

f I
te

ra
tio

ns

BG/L 32-CO

0

10

20

30

40

50

60

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

• WRF run for LEAD : CONUS 27km grid, 84 simulated hours,
hourly simulation output, checkpoint every 12 simulated hours.
•NetCDF used for I/O.

Speedup and efficiency of WRF on BG/L

0

2000

4000

6000

8000

10000

12000

14000

16000

0 100 200 300 400 500 600

Number of processors

Ti
m

e
(s

ec
on

ds
)

Class 1 Class 2 Class 3 Class 4

0

400

800

1200

1600

2000

440 450 460 470 480 490 500 510 520

0

2000

4000

6000

8000

10000

12000

14000

16000

0 100 200 300 400 500 600

Number of processors

Ti
m

e
(s

ec
on

ds
)

Class 1 Class 2 Class 3 Class 4

0

400

800

1200

1600

2000

440 450 460 470 480 490 500 510 520

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600

Number of processors

E
ffi

ci
en

cy

Class 1 Class 2 Class 3 Class 4

• Four classes of iterations: 1 & 2 just compute, 3 & 4 do file I/O using NetCDF.
• Computation scales reasonably well. I/O does not scale at all.
• What about weak scaling, i.e. run on a “petascale challenge input”:

• With a bigger problem, the computation will scale better on more processors.
• With a bigger problem on more data, I/O will be even more of a bottleneck.

• Procurement benchmarks: Output only once, at the end of the run.

A Simple Model of This WRF Run
• Postulate an Amdahl’s law model for each

class of iteration:

• For each class of iteration, fit the
parameters:

(lst. sq., R2>.98)

(use asymptote)

• Aggregate Model:
t(P) = 529900/P + 4100 (sec)

sequentialparallel tPtPt += /)(

90004
160003
200722802
1400 sec4576001
tsequentialtparallelClass

WRF on XT3

FIG X-2. LEAD 27 KM data, 84 hour simulation.
Cray XT3

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4

Time (sec)

N
um

be
r o

f I
te

ra
tio

ns

XT3-32 XT3-64 XT3-128 XT3-256 XT3-512 XT3-1024

0

1000

2000

3000

4000

5000

6000

0 0.2 0.4 0.6 0.8 1

FIG X-2. LEAD 27 KM data, 84 hour simulation.
Cray XT3

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4

Time (sec)

N
um

be
r o

f I
te

ra
tio

ns

XT3-32 XT3-64 XT3-128 XT3-256 XT3-512 XT3-1024

0

1000

2000

3000

4000

5000

6000

0 0.2 0.4 0.6 0.8 1

Summary of WRF Results.
FIG X-7 Time to Solution

0

5000

10000

15000

20000

25000

0 500 1000 1500 2000 2500

No. processors

Ti
m

e
(S

ec
)

BG/L -CO BG/L-CO-NOIO XT3 XT3-NOIO

Takeaway messages

I/O continues to be the elephant in the room.
Use alternatives to NetCDF, but this doesn’t make the

problem go away.

“Good” news: An ensemble of 50 WRF runs is a lot
more useful than a 50X bigger single run.

Petascale capacity vs. petascale capability?

(SC06 BOF on Petascale Performance Eval. Wed 5PM)

Scalable (System
Measurement and

Performance Analysis):
Recent Progress

Rob Fowler
Workshop on

Performance & Productivity
of Extreme-Scale Parallel Computing

Oct. 16 2006.

Performance/Productivity at the High End:
Optimization in multiple dimensions

On-node issues:
memory, ILP, CLP,
…

System-wide
parallelism

Software development,
maintenance, reliability

Power

Reliability

Algorithmic
issues

Moore's law
Circuit element count doubles every N months. (N ~18)

• Why: Features shrink, semiconductor dies grow.

• Corollaries: Gate delays decrease. Wires are relatively longer.

• In the past the focus has been making "conventional" processors
faster.
– Faster clocks
– Clever architecture and implementation instruction-level parallelism.
– Clever architecture, HW/SW Prefetching, and massive caches ease the

“memory wall” problem.
• Problems:

– Faster clocks --> more power (P ~ V2F)
– More power goes to overhead: cache, predictors, “Tomasulo”, clock, …
– Big dies --> fewer dies/wafer, lower yields, higher costs
– Together --> Power hog processors on which some signals take 6 cycles

to cross.

P4: Competing with charcoal?

Thanks to Bob Colwell

• Single thread ILP
– Instruction pipelining constraints, etc.
– Memory operation scheduling for latency, BW.

• Memory arch. Becoming a point-to-point network.

• Multi-threading CLP
– Resource contention within a core

• Memory hierarchy
• Functional units, …

• Multi-core CLP
– Chip-wide resource contention

• Shared on-chip components
of the memory system

• Shared chip-edge interfaces

The Sea Change: More On-Chip Parallelism
.

Challenge: Programmers (and
optimizing compilers) will
need to be able understand
all this. Tools needed.

Why is performance not obvious?

Hardware complexity
– Keeping up with Moore’s law with one thread.
– Instruction-level parallelism.

• Deeply pipelined, out-of-order, superscalar, threads.
– Memory-system parallelism

• Parallel processor-cache interface, limited resources.
• Need at least k concurrent memory accesses in flight.

Software complexity
– Competition/cooperation with other threads
– Dependence on (dynamic) libraries.
– Languages: “Object Orientation Considered Harmful”
– Compilers

• Aggressive (-O3+) optimization conflicts with manual
transformations.

• Incorrectly conservative analysis and optimization.

“Simple” recipe for performance.
• Simultaneously achieve (or balance)

– High ILP,
– Memory locality and parallelism,
– Chip-level parallelism,
– Concurrent I/O and communication.

• Address this throughout lifecycle.
– Algorithm design and selection.
– Implementation
– Repeat

• Translate to machine-specific code.
• Maintain algorithms, implementation, compilers.

It gets worse: Scalable HEC
All the problems of on-node efficiency, plus
• Scalable parallel algorithm design,
• Load balance,
• Communication performance,
• Competition of communication with

applications,
• External perturbations,
• Reliability issues:

– Recoverable errors performance perturbation.
– Non-recoverable error You need a plan B

• Checkpoint/restart (expensive, poorly scaled I/O)
• Robust applications

While you’re at it …

• Promote programmer productivity.
• Lower costs.
• Decrease overall time to solution.
• And protect the huge investment in

the existing code base.

Performance Tuning in Practice

The Trend in Software

At the limit of usability?

Featuritis in extremis,
a.k.a. feeping creaturism?

(Special order: $1200
from Wegner.)

All you need to know about
software engineering.

'The Hitchiker's Guide to the Galaxy, in a moment of reasoned
lucidity which is almost unique among its current tally of five
million, nine hundred and seventy-three thousand, five hundred
and nine pages, says of the Sirius Cybernetics Corporation
products that “it is very easy to be blinded to the essential
uselessness of them by the sense of achievement you get from
getting them to work at all. In other words - and this is the
rock-solid principle on which the whole of the Corporation's
galaxywide success is founded -- their fundamental design flaws
are completely hidden by their superficial design flaws.”

(Douglas Adams, "So Long, and Thanks for all the Fish")

Dealing with Featuritis

• Use specialized, interoperating tools.
– Encourage fusion of data from multiple

sources
– E.g., performance measurement on your

favorite accelerator, NIC, …
• Drive workflows with scripts.

– Integrate with cluster runtime
management

• Integrate with the development
process.
– Eclipse/PTP

Rice HPCToolkit: A Review

• Use Event Based Sampling (EBS)
– Low, controllable overhead (<2%)
– No instrumentation needed/wanted
– Collect multiple metrics, compute others.

• Hierarchical correlation with source
– Attribution to source line granularity

• Flat or call stack attribution
• Time-varying behavior - epochs
• Driven from scripts
• Top-down analysis encouraged

Issue: EBS on Petascale Systems

• Hardware on BG/L and XT3 both support
event based sampling.

• Current OS kernels from vendors do not
have EBS drivers.

• This needs to be fixed!
– Linux/Zeptos?

• Issue: Does event-based sampling
introduce “jitter”?
– Much less impact than using fine-grain calipers.
– Not unless you have much worse performance

problems.

Problem: Profiling Parallel Programs
• Sampled profiles can be collected for about 1%

overhead.
• How can one productively use profiling on large parallel

systems?
– Understand the performance characteristics of the

application.
– Study node-to-node variation.

• Model and understand systematic variation.
– Characterize intrinsic, systemic effects in app.

• Identify anomalies: app. bugs, system effects.
– Automate everything.

• Do little “glorified manual labor” in front of a GUI.
• Find/diagnose unexpected problems, not just the expected

ones.
• Avoid the “10,000 windows” problem.

Statistical Analysis: Bi-clustering
• Data Input: an M by P dense matrix of non-negative

values.
– P columns, one for each process(or).
– M rows, one for each measure at each source construct.

• Problem: Identify bi-clusters.
– Identify a group of processors that are different from the

others because they are “different” w.r.t. some set of
metrics. Identify the set of metrics.

– Identify multiple bi-clusters until satisfied.
• The “Cancer Gene Expression Problem”

– The columns represent patients/subjects
• Some are controls, others have different, but related cancers.

– The rows represent data from DNA micro-array chips.
– Which (groups of) genes correlate (+ or -) with which

diseases?
– There’s a lot of published work on this problem.
– So, use the bio-statisticians’ code as our starting point.

• “Gene shaving” algorithm by M.D. Anderson and Rice
researchers applied to profiles collected using HPCToolkit.

(See Adam Bordelon, Rice student.)

0 1 2 3 4 5
0
1
2
3
4
5

Cluster #1 (raw)

Cluster 1: 62% of variance in Sweep3D

Weight Clone ID
-6.39088 sweep.f,sweep:260
-7.43749 sweep.f,sweep:432
-7.88323 sweep.f,sweep:435
-7.97361 sweep.f,sweep:438
-8.03567 sweep.f,sweep:437
-8.46543 sweep.f,sweep:543
-10.08360 sweep.f,sweep:538
-10.11630 sweep.f,sweep:242
-12.53010 sweep.f,sweep:536
-13.15990 sweep.f,sweep:243
-15.10340 sweep.f,sweep:537
-17.26090 sweep.f,sweep:535

if (ew_snd .ne. 0) then
call snd_real(ew_snd, phiib, nib, ew_tag, info)

c nmess = nmess + 1
c mess = mess + nib

else
if (i2.lt.0 .and. ibc.ne.0) then

leak = 0.0
do mi = 1, mmi

m = mi + mio
do lk = 1, nk

k = k0 + sign(lk-1,k2)
do j = 1, jt

phiibc(j,k,m,k3,j3) = phiib(j,lk,mi)
leak = leak

& + wmu(m)*phiib(j,lk,mi)*dj(j)*dk(k)
end do
end do
end do
leakage(1+i3) = leakage(1+i3) + leak

else
leak = 0.0
do mi = 1, mmi
m = mi + mio

do lk = 1, nk
k = k0 + sign(lk-1,k2)

do j = 1, jt
leak =leak+ wmu(m)*phiib(j,lk,mi)*dj(j)*dk(k)
end do
end do
end do

leakage(1+i3) = leakage(1+i3) + leak
endif

endif

if (ew_rcv .ne. 0) then

call rcv_real(ew_rcv, phiib, nib, ew_tag, info)
else

if (i2.lt.0 .or. ibc.eq.0) then
do mi = 1, mmi
do lk = 1, nk
do j = 1, jt

phiib(j,lk,mi) = 0.0d+0
end do
end do
end do

Cluster 2: 36% of variance

Weight Clone ID
-6.31558 sweep.f,sweep:580
-7.68893 sweep.f,sweep:447
-7.79114 sweep.f,sweep:445
-7.91192 sweep.f,sweep:449
-8.04818 sweep.f,sweep:573
-10.45910 sweep.f,sweep:284
-10.74500 sweep.f,sweep:285
-12.49870 sweep.f,sweep:572
-13.55950 sweep.f,sweep:575
-13.66430 sweep.f,sweep:286
-14.79200 sweep.f,sweep:574

if (ns_snd .ne. 0) then
call snd_real(ns_snd, phijb, njb, ns_tag, info)

c nmess = nmess + 1
c mess = mess + njb

else
if (j2.lt.0 .and. jbc.ne.0) then
leak = 0.0
do mi = 1, mmi

m = mi + mio
do lk = 1, nk

k = k0 + sign(lk-1,k2)
do i = 1, it

phijbc(i,k,m,k3) = phijb(i,lk,mi)
leak = leak + weta(m)*phijb(i,lk,mi)*di(i)*dk(k)

end do
end do
end do

leakage(3+j3) = leakage(3+j3) + leak
else
leak = 0.0
do mi = 1, mmi

m = mi + mio
do lk = 1, nk

k = k0 + sign(lk-1,k2)
do i = 1, it

leak = leak + weta(m)*phijb(i,lk,mi)*di(i)*dk(k)
end do
end do
end do

leakage(3+j3) = leakage(3+j3) + leak
endif

endif

0 1 2 3 4 5
0
1
2
3
4
5

Cluster #2 (raw)

c J-inflows for block (j=j0 boundary)
c

if (ns_rcv .ne. 0) then
call rcv_real(ns_rcv, phijb, njb, ns_tag, info)

else
if (j2.lt.0 .or. jbc.eq.0) then

do mi = 1, mmi
do lk = 1, nk
do i = 1, it

phijb(i,lk,mi) = 0.0d+0
end do
end do
end do

Further Issues with Scalable
Performance Monitoring

• Scalable performance monitoring
– Profiles/summaries: space efficient but lack temporal

detail
– event traces: temporal detail but space demanding

• Even collecting profiles/summaries is challenging
– exorbitant data volume (100K nodes)
– high extraction costs, with perturbation risk

• Tunable detail and data volume
– application signatures (tasks)

• Dynamic filtering of time series.
– 1st try: Polyline fit using least squares
– In progress: Wavelet-based filtering

– stratified sampling (system)
• adaptive node subset

“… a wealth of information creates a poverty of
attention, and a need to allocate that attention
efficiently among the overabundance of information
sources that might consume it.” Herbert Simon

Sampling Theory: Exploiting Software
• SPMD models create behavioral equivalence classes

– domain and functional decomposition

• By construction, …
– most tasks perform similar functions
– most tasks have similar performance

• Sampling theory and measurement
– extract data from “representative” nodes
– compute metrics across representatives
– balance volume and statistical accuracy

• Estimate mean with confidence 1-α and error bound d
– select a random sample of size n from population of size N

– approaches for large populations

Sampling Must Be Unbiased!

Source: Todd Gamblin

12

1
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≥

Sz
dNNn
α

d
Szα

Adaptive Performance Data Sampling
• Simple case

– select subset n of N nodes
– collect data from the n

• Stratified sampling
– identify low variance subpopulations
– sample subpopulations independently
– reduced overhead for same confidence

• Metrics vary over time
– samples must track changing variance
– number of subpopulations also vary

• Sampling options
– fixed subpopulations (time series)
– random subpopulations (independence)

Source: Todd Gamblin

(See Todd Gamblin, UNC student.

Contact Information

Rob Fowler
rjf@renci.org, rjf@unc.edu
919 445 9670

RENCI
http://www.renci.org/

