Acceptance Criteria for Bioassay data HSR-12-DAC-02.01

November 12, 2002

1 General

Specifications for acceptable bioassay data to be provided by the bioassay services team of HSR-4 to the dose assessment team of HSR-12 are given in this document. These data are the results of radiochemical alpha spectroscopy (RAS), thermal ionization mass spectroscopy (TIMS), and liquid scintillation (LS) measurements.

Numerical (floating point) data shall have a precision of at least 1 in 1000 (e.g. 1.234e+10). Data shall be available in electronic form to Dose Assessment within 3 working days of the turn-around times specified in the Analytical Service Agreement (ASA) (that is, the due date plus 3 days). Because of the inevitability of error, hand entry of electronic data must be minimized.

Documentation of the analytical and quality assurance (QA) procedures used is also to be provided in electronic form identified by unique document numbers.

In Section 2 the required data field/components for each type of bioassay data are separately listed, giving the field/component #, name, a detailed description, datatype, and units. Primary (measured) and secondary (calculated) fields are distinguished by an "M" or "C" in the field #. Fields distinguished by as asterisk (*) are currently essential for basic dose assessments. Other fields provide more in-depth information that may be used in some dose assessment situations, are used for documentation, or are used to monitor quality.

Descriptions of outcome codes are given in Section 3.

2 Required data field/components

2.1 RAS and TIMS measurements

Measurements using RAS and TIMS have the field/components groups: kit data, planchette data, analysis identification (ID) data, as well as RAS and TIMS results.

2.1.1 Kit data

Kit data for RAS and TIMS shall consist of the field/components listed in Table 2. Specific Gravity is required only for urine analyses.

2.1.2 Planchette data

For samples analyzed using RAS or TIMS a chemical separation is performed and the analyte electrodeposited onto a stainless steel disk (planchette). Planchette data shall consist of the field/components listed in Table 2. Usually there is only one planchette produced from each kit, although multiple aliquots used to produce multiple planchetes may be important in the future (for example, with analysis for both plutonium americium). The excretion time period fields are required only for urine analyses.

Table 1: Kit data					
#	field name (symbol)	What is it?	datatype	units	
KM1*	Kit number	HSR kit number	integer		
$KM2^*$	Person-Z	Z# of person submitting sample	text		
$KM3^*$	Person-PID	PID# of person submitting sample	integer		
KM4	Group	Person's group at the time of the sample	text		
$KM5^*$	Matrix	urine, feces, water	text		
$\rm KM6^*$	Kit type	true 24-hr, simulated 24-hr, spot sample, timed,	text		
		500-ml sample, home drinking water			
$\rm KM7$	Schedule type	routine, prompt action, diagnostic, followup,	text		
		baseline, external request, internal study, other			
		(explained in comments)			
KM8	Scheduled date	date kit scheduled to be picked up by person	date		
		filling kit			
KM9*	Collected date	date and time of sample collection	date/time		
$KM10^*$	Mass (M)	mass of sample	number	gm	
KM11*	Specific gravity (ρ)	specific gravity of urine sample. Urine sample	number	none	
		specific gravity must exceed 1, which is the			
		specific gravity of pure water. If $\rho < 1 + \sigma_{\rho}$, ρ is			
		replaced by $1 + \sigma_{\rho}$ where σ_{ρ} is the uncertainty			
		SD of the specific gravity measurement			
$KM12^*$	Uncertainty of specific	uncertainty SD of specific gravity	number	none	
	gravity (σ_{ρ})				
KM13	Method description	documentation number text			
KM14*	Outcome	unique code identifying possible outcomes (also text			
		referred to as problem code)			
KM15	Comments	additional comments	text		

Table 2: Planchette data

#	field name (symbol)	What is it?	datatype	units
PM1	Sample id	analysis lab sample number	integer	
PM2	Batch id	analysis lab batch number	integer	
$PM3^*$	Mass analyzed (M_A)	mass analyzed	number	gm
$PM4^*$	Analyte	chemical analyte: PU, U, AM text		
$PM5^*$	Tracer activity (A_T)	activity of tracer added to sample	number	dpm
$PM6^*$	Tracer uncertainty (σ_T)	uncertainty SD of tracer activity	number	dpm
PM7	Method description	documentation number	text	
$PM8^*$	Outcome	unique code identifying possible outcomes (also	text	
PM9	Comments	referred to as problem code) additional comments	text	
$PC1^*$	Urine excretion time period	calculated urine excretion time period. If kit type	number	days
101	-	is true-24hr, $\Delta t_{ex} = 1 \operatorname{day} \times M_A/M$; otherwise	number	uays
	(Δt_{ex})			
		$\Delta t_{ex} = 1 \operatorname{day} \times \frac{M_A(\rho - 1)}{C}$, where C is a constant		
		of the excretion time calculation, normally equal		
		to 1440 gm (the nominal mass excreted per day)		
		\times 0.02 (the nominal excess specific gravity of		
		urine). The measured sample activity A in urine		
		is normalized to produce urine excretion rate		
DC0*	TT · · · ·	using the formula $A = A/\Delta t_{ex}$	1	1
$PC2^*$	Urine excretion time	uncertainty SD of calculated excretion time	number	days
	uncertainty $(\sigma_{\Delta t_{ex}})$	period. If kit type is true-24hr, $\sigma_{\Delta t_{ex}} = 0$;		
		otherwise $\sigma_{\Delta t_{ex}} = \Delta t_{ex} \sqrt{(\frac{\sigma_{\rho}}{\rho})^2 + (\frac{\sigma_C}{C})^2}$. The		
		uncertainty SD of urine excretion rate is given		
		by $\sigma_{\dot{A}} = \frac{\sigma_A}{\Delta t_{ex}} \sqrt{1 + (\frac{\sigma_{\Delta t_{ex}}A}{\Delta t_{ex}\sigma_A})^2}$, where σ_A is the		
		uncertainty SD of sample activity		

2.1.3 Analyses

Analysis data shall consist of the field/components listed in Table 3. Multiple analyses may be performed on the same planchette, for example, RAS and TIMS, or RAS followed by a second RAS with a longer count time.

_	Table 3: Analysis data				
#	field name (symbol)	What is it?	datatype units		
AM1	Priority	analysis priority: normal (3) or expedited (1)	number		
AM2	Requested date	date of request for analysis	date		
AM3	Due date	the date sample results are due according to the date ASA			
AM4	Completion date	Date that results become available in the dose assessment database	date		
AM5	Method description	documentation number	text		
$AM6^*$	Outcome	unique code identifying possible outcomes (also referred to as problem code)	text		
AM7	Comments	additional comments	text		
AM8	Technique	analysis technique: RAS or TIMS text			
AM9	Analyst	Z# of person approving results text			
AM10	QA'd by	Z# of person who QA'd the data text			
AM11	QA documentation	document number of QA procedure text			

2.1.4 RAS results

Radiochemical alpha spectroscopy (RAS) measurements using a tracer detect counts in the tracer window of the alpha energy spectrum and at least one isotope energy window. Tracers and isotopes for various analytes are shown in Table 4. Field/components associated with the tracer and the various isotopes are described in Tables 5 and 6 below.

	Table 4: RAS tracers and isotopes			
analyte	tracer	isotopes		
PU	PU-242	PU-239, PU-238		
$\mathbf{A}\mathbf{M}$	AM-243	AM-241		
U	U-232	U-234, U-235, U-238		

#	field name (symbol)	Table 5: RAS data What is it?	datatype	units
RTM1*	Count time (Δt)	sample count time	number	minutes
RTM2*	Background count time ratio	background count time divided by sample count	number	none
	(R_B)	time		
RTM3	Detector number (i)	detector number	text	
$RTM4^*$	Tracer Gross counts (G_T)	tracer gross counts for detector i	number	counts
$RTM5^*$	Tracer background counts	average tracer background counts for detector i	number	counts
	(B_T)	in time Δt (background counts are measured in		
		time period $R_B \Delta t$)		
$RTM6^*$	Detector efficiency (ϵ)	efficiency of detector i	number	fraction
RTC1*	Tracer recovery (R)	per cent recovery $R = 100 \frac{G_T - B_T}{A_T \epsilon \Delta t}$	number	%
$RTC2^*$	Tracer background uncer-	uncertainty SD of tracer background, $\sigma_{B_T} =$	number	counts
	tainty (σ_{B_T})	$\sqrt{B_T/R_B}$		
RTC3*	f factor (f)	f-factor relating activity units to counts,	number	pCi/coun
		$f = \frac{1}{2.22} \frac{A_T}{G_T - B_T} f_A$. The quantity f_A , the		
		acceptance factor, corrects for loss of counts from		
		the acceptance region of the α -energy spectrum.		
		For PU-239, PU-238, AM-241, U-234, and U-238		
		the acceptance factor is 1 , and for U-235 it is		
		1.11.		
RTC4*	f factor uncertainty (σ_f)	uncertainty SD of f , σ_f =	number	pCi/coun
		$ f \sqrt{\left(rac{\sigma_T}{A_T} ight)^2 + rac{G_T + \sigma_{B_T}^2}{(G_T - B_T)^2}}$		

Table 5: RAS data

#	field name (symbol)	What is it?	datatype	units
RIM1*	Isotope	Isotope corresponding to α -energy spectral window. Isotopes are shown in Table 4.	text	
$RIM2^*$	Isotope gross counts (G)	gross counts	integer	counts
RIM3*	Isotope background counts (B)	average background counts in time Δt (back- ground counts are measured in time period $R_B\Delta t$)	number	counts
$RIM4^*$	Tracer contamination (f_{TC})	fractional tracer contamination	number	none
$RIM5^*$	Tracer contamination uncertainty $(\sigma_{f_{TC}})$	uncertainty SD of f_{TC}	number	none
RIC1*	Isotope background uncertainty (σ_B)	uncertainty SD of average background, normally $\sigma_B = \sqrt{B/R_B}$ with B replaced by 1 count if $B = 0$	number	counts
$RIC2^*$	Isotope activity (A)	activity in sample, $A = f(G - B) - f_{TC}A_T$	number	pCi
RIC3*	Isotope activity uncertainty (σ)	uncertainty SD of sample activity $\sigma = \sqrt{f^2(G + \sigma_B^2) + \sigma_f^2(G - B)^2 + A_T^2 \sigma_{f_{TC}}^2 + f_{TC}^2 \sigma_{A_T}^2}$	number	pCi
RIC4	Isotope MDA (MDA)	$\dot{M}DA = 3.29\sigma_0 + 3f$ where $\sigma_0 = \sqrt{f^2(B + \sigma_B^2) + A_T^2\sigma_{f_{TC}}^2 + f_{TC}^2\sigma_{A_T}^2}$ is the uncertainty SD of blank	number	pCi

Table 6: RAS results–isotope specific

2.1.5 TIMS results

Samples analyzed using TIMS shall have the field/components listed in Tables 7 and 8. Table 7 contains measured fields and Table 8 contains calculated fields.

Table 7: TIMS data-measured fields

#	field name (symbol)	What is it?	datatype	units
TM1	PU-239 (A_{239})	activity of PU-239 in sample, given by 2.4622 $10^{-11} \times N_{239}$, where N_{239} is the measured number of atoms of PU-239 in the sample	number	pCi
$\begin{array}{c} {\rm TM2} \\ {\rm TM3} \end{array}$	PU-239 uncertainty (σ_{239}) PU-240 (A_{240})	uncertainty SD of PU-239 activity activity of PU-240 in sample, given if PU-240 is measurable by 9.0440 $10^{-11} \times N_{240}$, where N_{240}	number number	pCi pCi
TM4	PU-240 uncertainty (σ_{240})	is the measured "number of atoms of PU-240 in the sample, blank otherwise. uncertainty SD of PU-240 activity, if measurable,	number	pCi
TM5	Number of blank mea- surements for PU-239	blank otherwise. Number of PU-239 blank measurements used in making blank correction	integer	none
TM6	(M_{239}) Average value of blank for PU-239 (B_{239})	Average of PU-239 blank measurements in pCi, $B_{239} = \sum B_i / M_{239}$, where B_i is the <i>i</i> th blank	number	pCi
TM7	Uncertainty of blank for PU-239 ($\sigma_{B_{239}}$)	measurement, for $i = 1, M_{239}$ Standard deviation of PU-239 blank measure-	number	pCi
TM8	Matrix code for PU-239	ments, $\sigma_{B_{239}} = \sqrt{\frac{\sum (B_i - B_{239})^2}{M_{239} - 1}}$. The MDA for PU-239 is given by $MDA_{239} = 3.29 \sigma_{B_{239}}$ Unique code identifying the matrix for the	text	
		PU-239 blank measurements, for example, U30 stands for 30 urine blanks (the rest of the M_{239} blanks, if any, being water)		
TM9	Number of blank mea- surements for PU-240 (M_{240})	Number of PU-240 blank measurements used in making blank correction	integer	none
TM10	Average value of blank for PU-240 (B_{240})	Average of PU-240 blank measurements, $B_{240} = \sum B_i / M_{240}$, where B_i is the <i>i</i> th blank measurement, for $i = 1, M_{240}$	number	pCi
TM11	Uncertainty of blank for PU-240 $(\sigma_{B_{240}})$	Standard deviation of PU-240 blank measure- ments, $\sigma_{B_{240}} = \sqrt{\frac{\sum (B_i - B_{240})^2}{M_{240} - 1}}$. The MDA for PU-240 is given by $MDA_{240} = 3.29 \sigma_{B_{240}}$.	number	pCi
		The MDA for PU-239 plus PU-240 is $MDA_{239+240} = \sqrt{MDA_{239}^2 + MDA_{240}^2}$ if PU-240 is measurable. If PU-240 is not measurable, $MDA_{239+240} = 1.221 MDA_{239}$		
TM12	Matrix code for PU-240	Unique code identifying the matrix for the PU-240 blank measurements, for example, U30 stands for 30 urine blanks (the rest of the M_{240} blanks, if any, being water)	text	

Table 8: TIMS data–calculated fields

#	field name (symbol)	What is it?	datatype	
TC1	PU-239+PU-240 $(A_{239+240})$	activity of PU-239 plus PU-240, $A_{239+240} = A_{239} + A_{240}$. If PU-240 is not measurable, a PU-240/239 atom ratio of 0.06 ± 0.01 is assumed, and $A_{444} = 1.221 A_{444}$.	number	pCi
TC2	PU-239+PU-240 uncertainty $(\sigma_{239+240})$	and $A_{239+240} = 1.221A_{239}$ uncertainty SD of PU-239 plus PU-240 activity, $\sigma_{239+240} = \sqrt{\sigma_{239}^2 + \sigma_{240}^2}$. If PU-240 is not measurable, $\sigma_{239+240}$ is calculated assuming a PU-240/PU-239 atom ratio of 0.06 ± 0.01 , $\sigma_{239+240} = \sqrt{(1221\sigma_{23})^2 + (0.0268 A_{23})^2}$	number	pCi
TC3	PU-240/239 AR $\left(r\right)$	$\sigma_{239+240} = \sqrt{(1.221\sigma_{239})^2 + (0.0368A_{239})^2}$ atom ratio PU-240/PU-239 $r = N_{240}/N_{239}$, blank otherwise	number	atom ratio
TC4	PU-240/239 AR uncertainty (σ_r)	if PU-240 is measurable, uncertainty SD of atom ratio PU-240/PU-239, $\sigma_r = r \sqrt{(\sigma_{239}/A_{239})^2 + (\sigma_{240}/A_{240})^2}$, blank otherwise	number	atom ratio
TC5	Blank-corrected PU-239 (\hat{A}_{239})	blank-corrected activity of PU-239 in sample in pCi, $\hat{A}_{239} = A_{239} - B_{239}$	number	pCi
TC6	Blank-corrected PU-239 uncertainty $(\hat{\sigma}_{239})$	blank-corrected uncertainty SD of PU-239 activity, $\hat{\sigma}_{239} = \sqrt{\sigma_{239}^2 + \sigma_{B_{239}}^2}$	number	pCi
TC7	Blank-corrected PU-240 (\hat{A}_{240})	blank-corrected activity of PU-240 in sample in pCi, $\hat{A}_{240} = A_{240} - B_{240}$	number	pCi
TC8	Blank-corrected PU-240 uncertainty $(\hat{\sigma}_{240})$	blank-corrected uncertainty SD of PU-240 activity in pCi, $\hat{\sigma}_{240} = \sqrt{\sigma_{240}^2 + \sigma_{B_{240}}^2}$	number	pCi
TC9*	Blank-corrected PU- 239+PU-240 $(\hat{A}_{239+240})$	blank-corrected activity of PU-239 plus activity of PU-240 in sample in pCi, $\hat{A}_{239+240} =$ $A_{239+240} - B_{239} - B_{240}$. If PU-240 is not measurable, $\hat{A}_{239+240}$ is calculated assuming a PU-240/PU-239 atom ratio of 0.06 ± 0.01,	number	pCi
TC10*	Blank-corrected PU- 239+PU-240 uncertainty $(\hat{\sigma}_{239+240})$	$A_{239+240} = 1.221A_{239}$ blank-corrected uncertainty SD of PU- 239 plus PU-240 activity, $\hat{\sigma}_{239+240} =$ $\sqrt{\sigma_{239+240}^2 + \sigma_{B_{239}}^2 + \sigma_{B_{240}}^2}$. If PU-240 is not measurable, $\hat{\sigma}_{239+240}$ is calculated assuming a PU-240/PU-239 atom ratio of 0.06 \pm 0.01,	number	pCi
TC11	Blank-corrected PU-240/239 AR (\hat{r})	$\hat{\sigma}_{239+240} = \sqrt{(1.221\hat{\sigma}_{239})^2 + (0.0368\hat{A}_{239})^2}$ blank-corrected atom ratio PU-240/PU-239, $\hat{r} = \frac{\hat{A}_{240}}{\hat{A}_{239}} \times \frac{2.0714 \times 10^{11} \text{sec}}{7.6084 \times 10^{11} \text{sec}}$	number	atom ratio
TC12	Blank-corrected PU-240/239 AR uncertainty $(\hat{\sigma}_r)$	$\frac{\hat{A}_{239}}{\hat{A}_{239}} \sim \frac{7.6084 \times 10^{11} \text{sec}}{1000}$ blank-corrected uncertainty SD of atom ratio PU-240/PU-239, $\hat{\sigma}_r =$ $ \hat{r} \sqrt{(\hat{\sigma}_{239}/\hat{A}_{239})^2 + (\hat{\sigma}_{240}/\hat{A}_{240})^2}$	number	atom ratio

2.2 LS data

Samples analyzed using LS shall contain the field/components listed in Table 9.

#	field name (symbol)	Table 9: LS data What is it?	datatype	units
# LM1	Kit number	HSR kit number	integer	
LM1 $LM2*$	Person-Z	Z# of person submitting sample text		
LM2*	Person-PID	PID # of person submitting sample	integer	
LM3 LM4	Group	Person's group at the time of the sample	text	
LM4 $LM5*$	Matrix	urine, water	text	
$LM6^*$	Kit type	true 24-hr, simulated 24-hr, spot sample, timed,	text	
	Kit type	500-ml sample, home drinking water	text	
LM7	Schedule type	routine, prompt action, diagnostic, followup,	text	
	Schedule type	baseline, external request, internal study, other	UCAU	
		(explained in comments)		
LM8	Scheduled date	date kit scheduled to be picked up by person	date	
	Scheduled date	filling kit	date	
LM9*	Collected date	date and time of sample collection	date/time	
LM10	Completion date	Date that results become available in the dose	date	
-	- 1	assessment database		
LM11	Method description	documentation number	text	
LM12*	Outcome	unique code identifying possible outcomes	text	
LM13	Comments	additional comments	text	
LM14	Analyst	Z# of person approving results	text	
LM15	QA'd by	Z# of person who QA'd the data	text	
LM16	QA documentation	document number of QA procedure	text	
LM17*	Aliquot volume (V)	volume of measured aliquot	number	mL
LM18*	Count time (Δt)	count time	number	minutes
LM19*	Efficiency (ϵ)	detector efficiency	number	none
LM20*	Efficiency uncertainty (σ_{ϵ})	uncertainty SD of ϵ	number	none
LM21*	Gross counts (G)	gross counts	number	counts
LM22*	Background counts (B)	average background counts	number	counts
LC1*	f factor (f)	$f = \frac{1 \times 10^{-3}}{2.22} \frac{1}{V \epsilon \Delta t}$	number	uCi/(L-co
$LC2^*$	f factor uncertainty (σ_f)	$\sigma_f = f \frac{\sigma_e}{c}$	number	uCi/(L-co
$LC3^*$	Background uncertainty	uncertainty SD of average background (depends	number	counts
	(σ_B)	on procedure)		
$LC4^*$	Sample activity (A)	sample activity in μ Ci/L, $A = f(G - B)$	number	$\mathrm{uCi/L}$
$LC5^*$	Sample uncertainty (σ_A)	uncertainty SD of sample activity $\sigma_A =$	number	$\mathrm{uCi/L}$
		$\sqrt{f^2(G+\sigma_B^2)+\sigma_f^2(G-B)^2}$		
LC6	MDA (MDA)	$^{\vee}MDA = 3.29\sigma_0 + 3f$ where $\sigma_0 = f\sqrt{B + \sigma_B^2}$ is	number	$\mathrm{uCi/L}$
		the uncertainty SD of blank \mathcal{F}_{B}		/

Table 9: LS data

3 Outcome Codes

Outcome codes are associated with each bioassay task: KIT, PLANCHETTE, RAS, TIMS, and LS. The outcome codes shown in Table 25 and 26 shall be used. The outcome code shall not be left blank; if no problems occur, the outcome code "OK" is used.

task	code	What does it mean?
KIT	OK	no problems. Results reported.
	LIA	lost in analysis–the sample was lost and
		not available for complete analysis. No
		results reported.
	ABORT	sample analysis aborted by customer
		request. No results reported.
	ISV	insufficient volume for analysis–the
		sample volume was less than required,
		and water was added to the required
		volume level. Specific gravity and mass
		reported after addition of water.
	NSS	No sample in container. No results
		reported.
	OTHER	an outcome that doesn't fit into the
		above categories. Outcome description in
		comments field
PLANCHETTE	OK	no problems. Results reported.
	LIA	lost in analysis–the sample was lost and
		not available for complete analysis. No
		results reported.
	ABORT	sample analysis aborted by customer
		request. No results reported.
	OTHER	an outcome that doesn't fit into the
		above categories. Outcome description in
		comments field

Table 25: Outcome codes for KIT and PLANCHETTE

task	code	What does it mean?
RAS	OK	no problems. Results reported.
	\mathbf{PR}	poor recovery-less than 40% tracer
		recovery but greater than 15% tracer
		recovery. Will continue for TIMS analysis
		(for plutonium only). Results reported.
	LR	low recovery-less than 15% tracer
		recovery. Results reported.
	LIA	lost in analysis-the sample was lost and
	2	not available for complete analysis. No
		results reported.
	ABORT	sample analysis aborted by customer
	ADOILI	
	\mathbf{PS}	request. No results reported.
	PS	poor spectra-the spectral output was of
		poor quality, and the results are suspect.
		Results are reported.
	OTHER	an outcome that doesn't fit into the
		above categories. Outcome description in
		comments field
TIMS	OK	no problems. Results reported.
	LIA	lost in analysis–the sample was lost and
		not available for complete analysis. No
		results reported.
	ABORT	sample analysis aborted by customer
		request. No results reported
	TNN	"TIMS Not Needed", TIMS mea-
		surement not carried out because
		RAS result/uncertainty > 5 . RAS
		measurement by itself is sufficient
	PR	poor recovery-less than 40% tracer
	1 10	recovery but greater than 15% tracer
		recovery. Results reported
	PC	
	FC	poor mass-spec count rate. Results
	OTHER	reported
	OTHER	an outcome that doesn't fit into the
		above categories. Outcome description in
TO	0.11	comments field
LS	OK	no problems. Results reported.
	LIA	lost in analysis–the sample was lost and
		not available for complete analysis. No
		results reported
	ABORT	sample analysis aborted by customer
		request. No results reported
	ISV	insufficient volume for analysis–the
		sample volume was less than required,
		and water was added to the required
		volume level. Results reported and actual
		sample volume recorded
	OTHER	an outcome that doesn't fit into the
		above categories. Outcome description in
		comments field

Table 26: Outcome codes for RAS, TIMS, and LS

4 Signatures

Dawn Lewis (bioassay services) date

Ray Guilmette (dose assessment) date