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Abstract

DEDICOM is a linear algebra model for analyzing intrinsically asymmetric
relationships, such as trade among nations or the exchange of emails among
individuals. DEDICOM decomposes a complex pattern of observed relations
among objects into a sum of simpler patterns of inferred relations among latent
components of the objects. Three-way DEDICOM is a higher-order extension
of the model that incorporates a third mode of the data, such as time, giving it
stronger uniqueness properties and consequently enhancing interpretability of

3

http://www.cs.sandia.gov/~bwbader
http://publish.uwo.ca/~harshman/
http://csmr.ca.sandia.gov/~tgkolda


solutions. In this paper, we present algorithms for computing these decompo-
sitions on large, sparse data as well as a variant for computing an asymmetric
nonnegative factorization. When we apply these techniques to adjacency arrays
arising from directed graphs with edges labeled by time, we obtain a smaller
graph on latent semantic dimensions and gain additional information about
their changing relationships over time. We demonstrate these techniques on
the Enron email corpus to learn about the social networks and their transient
behavior. The mixture of roles assigned to individuals by DEDICOM showed
strong correspondence with known job classifications and revealed the patterns
of communication between these roles. Changes in the communication pattern
over time, e.g., between top executives and the legal department, were also
apparent in the solutions.
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1 Introduction

Often it is useful to distill a large amount of data down to a manageable size to
facilitate interpretation, and our goal is to do this by uncovering latent profiles and
their asymmetric interrelationships. Existing data-analytic models and methods do
not generally let one seek out and describe patterns of asymmetric relationships in a
dataset. This paper shows how a family of models called DEDICOM (DEcomposition
into DIrectional COMponents) from the psychometrics literature [13] can provide in-
formation on latent components in data and the pattern of asymmetric (i.e., directed)
relationships among these components.

In this paper, DEDICOM is used to interpret directed semantic graphs (i.e., graphs
with labeled edges) arising from email communications at Enron. A contribution of
this paper is that we provide algorithmic improvements that enable DEDICOM to be
applied to large-scale data. We also present a nonnegative factorization of DEDICOM
for capturing asymmetric interrelationships.

In the general case, we consider a directed graph with n vertices whose square
adjacency matrix X contains a nonzero entry xij for each edge (i, j). The single-
domain DEDICOM model applied to X is an approximation

X ≈ ARAT , (1)

where A ∈ Rn×p is a matrix of loadings or “weights” for the n vertices on p < n
dimensions and R ∈ Rp×p is a matrix that captures the asymmetric relationships on
these latent dimensions of A; see Figure 1. The dual-domain DEDICOM model has
a different matrix on the left and right of R but is not considered in this paper.

A

R AT

Figure 1. Two-way DEDICOM model.

The DEDICOM model can be extended to three-way data, and here we use time
as the third mode. If our graph has m discrete time edge labels, then we can construct
an adjacency matrix Xk for each edge type, k = 1 . . . m, and store them as an array
X ∈ Rn×n×m. The three-way DEDICOM model for X is

Xk ≈ ADkRDkA
T for k = 1, . . . ,m, (2)

where Xk is the kth adjacency matrix in X, A ∈ Rn×p is a matrix of loadings, Dk

is a diagonal matrix that gives the weights of the columns of A for each level in the

9



D

A

D ATR

Figure 2. Three-way DEDICOM model.

third mode, and R ∈ Rp×p is the asymmetry matrix; see Figure 2. The matrix R
captures the aggregate trends over time and, when multiplied on the left and right by
Dk, within a particular time period as well. The array D is the collection of matrices
Dk. In variations of this model, the scaling array D and/or loadings matrix A may
be different on the left and right of R.

A simplified interpretation of DEDICOM is that it takes a large array and con-
denses the interrelationships into an idealized summary in the R matrix. Rows of A
correspond to nodes (i.e., individual people in a social network) and can have sub-
stantial weights in more than one of the latent components, which can be regarded
as roles. For example, an individual at a company might have characteristics that
cause their pattern of email exchanges to look like a mixture of two different idealized
patterns, such as an executive and a lawyer.

We focus on email graphs, which are useful for social network analysis. Specifically,
we consider the email corpus of the Enron corporation that was made public by
the U.S. Federal Energy Regulatory Commission (FERC) during its investigation of
Enron. Our research uses a simplified version of the database by Priebe et al. [29]
that includes only email exchanges among 184 email addresses.

To help explain the temporal patterns in social networks, this paper seeks to
analyze semantic graphs where the communications are discretized by time. In the
Enron data, we arrange the data in a three-way array such that each slice corresponds
to a particular month and year. This representation can be interpreted as a graph
where each edge is labeled by the time period. This representation has also been
called a time graph [25] or a time series of graphs [28].

The paper is organized as follows. In section 2, we discuss work connected with
the Enron corpus and past research on the DEDICOM models. In section 3, we
describe new algorithms for computing the two- and three-way DEDICOM models.
Section 4 describes the Enron corpus we used. We apply the algorithms to the Enron
corpus in section 5 and discuss some conclusions in section 6.
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2 Related Work

We mention relevant work from the psychometrics community for further background
on DEDICOM and multi-way models. We also outline related work in social network
analysis, mostly pertaining to the Enron data.

2.1 DEDICOM and multi-way models.

The DEDICOM family of models was first introduced in [13]. One of the earliest
applications of DEDICOM studied the asymmetries in telephone calls among cities.
Later, it was developed as a tool for analyzing asymmetric relationships that arise in
marketing research [14]. While research on the model continued in the psychometrics
and multilinear algebra communities, its influence did not spread far outside of these
communities.

There has been some research of the model and associated applications [15] fol-
lowed by a number of papers analyzing algorithms for computing the DEDICOM
model [22], including variations such as constrained DEDICOM [21, 30] and three-
way DEDICOM [20]. Most of the applications of DEDICOM in the literature have
focused on two-way (matrix) data, and there is even less research in the three-way
(tensor) case. One of the first applications involving three-way data provided asym-
metric measures of world trade (import-export matrices) among a set of nations
considered over a period of 10 years [16].

The use of multi-way models is relatively new in the context of data mining and
has appeared recently in some web applications. Sun et al. [35] apply a three-way
Tucker decomposition [37] to the analysis of (user × query term × web page) data in
order to personalize web search. In [1], various tensor decompositions of (user × key
word × time) data are used to separate different streams of conversation in chatroom
data. In [24, 23] a PARAFAC decomposition [12] (also known as CANDECOMP [6])
is applied to (web page × web page × anchor text) data, forming a sparse, three-
way tensor representing the web graph with anchor-text-labeled edges. This was the
first use of PARAFAC for analyzing semantic graphs as well as the first instance of
applying PARAFAC to sparse data. The history of tensor decompositions in general
goes back forty years [37, 12, 6], and they have been used extensively in other domains,
especially chemometrics [34].

2.2 Enron data and social network analysis.

Research on the Enron corpus falls into several broad areas, including social network
analysis, graph theoretics, and natural language processing. Initial studies on the
database itself focused on the statistical and graph theoretic properties. Shetty and
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Adibi [32] constructed a MySQL database of the corpus to facilitate a statistical
analysis of the data. Their results show the distribution of emails per user, sent
emails per user, and emails over time. They also derived a social network involving
151 employees of Enron by assigning a social contact if at least five bi-directional
messages connect two employees and categorizing each employee by their management
level.

More recently, there has been research on the database from a network analytic
perspective. This includes analyzing the social networks detectable in the email graph.
Diesner and Carley [10] show that the communication network was denser, more
centralized, and more connected during the crisis than during normal times. Their
analysis also shows that during the crisis, communication among Enron’s employees
was more likely to be exchanged between employees in different positions, except
among the top executives, who had formed a tight clique.

Chapanond, Krishnamoorthy, and Yener [7] analyzed the Enron corpus for struc-
tures within the organization. They used both graph theoretical and spectral analysis
techniques to identify communities.

McCallum, Corrada-Emmanuel, and Wang [27] proposed the Author-Recipient-
Topic (ART) model for social network analysis. ART is a Bayesian network for social
network analysis that builds on Latent Dirichlet Allocation and the Author-Topic
model. They use ART on the email corpus to learn discussion topics based on the
directed interactions and relationships between people and their communications.

Berry and Browne [5] apply nonnegative matrix factorizations to discover concepts
and topics in the Enron corpus. They discuss results of topic detection and message
clustering in the context of published Enron business practices and activities.

Keila and Skillicorn [19] have investigated structures in the Enron corpus using
singular value decomposition and semidiscrete decomposition. They present rela-
tionships among individuals based on their patterns of word use in email and word
frequency profiles. They present a case that word use among those with alleged
criminal activity may be “slightly distinctive.”

Priebe, Conroy, Marchette, and Park [28] introduced a theory of scan statistics
on graphs and applied them to the problem of anomaly detection using a time series
of Enron email graphs.

Sarkar and Moore [31] proposed a method for the dynamic analysis of social
networks. They embed an evolving friendship graph in p dimensional space using
multidimensional scaling and allow entities to move in this space over time.

12



3 DEDICOM Models and Algorithms

3.1 Notation.

We use the following notation. Scalars are denoted by lowercase letters, e.g., a.
Vectors are denoted by boldface lowercase letters, e.g., a. The ith entry of a is
denoted by ai. Matrices are denoted by boldface capital letters, e.g., A. The jth
column of A is denoted by aj and element (i, j) by aij.

Multi-way arrays and tensors are denoted by boldface Euler script letters, e.g., X.
Element (i, j, k) of a third-order tensor X is denoted by xijk, and the kth slice of X

is denoted by Xk (i.e., a matrix formed by holding the last index of X fixed at k).

The symbol ⊗ denotes the Kronecker product, and the symbol ∗ denotes the
Hadamard (i.e., elementwise) matrix product. The Frobenius norm of a matrix,
‖Y ‖F , is the square root of the sum of squares of all its elements.

3.2 Two-way DEDICOM.

In the two-way case, a square matrix X is decomposed according to (1). The goal is
to find the best-fitting matrices A and R in the minimization problem

min
A,R

∥∥X−ARAT
∥∥2

F
(3)

subject to A having orthogonal columns.

There are two indeterminacies of scale and rotation that need to be addressed.
First, the columns of A may be scaled in a number of ways without affecting the
solution. We scale them to have unit length in the 2-norm. Other choices discussed
in [14] provide other benefits for interpreting the results. Second, the matrix A can
be transformed with any nonsingular matrix Q with no loss of fit to the data because
ARAT = (AQ)(Q−1RQ−T )(AQ)T . Thus, the solution obtained in A is not unique.
Nevertheless, it is standard practice to apply some accepted rotation to “fix” A. We
will adopt VARIMAX rotation [18] such that the variance across columns of A is
maximized.

A further practice in some applications is to ignore the diagonal entries of X in
the residual calculation. For our case, this makes sense because we wish to ignore self-
loops (i.e., sending email to yourself). We use the common technique of estimating
the diagonal values from the current approximation ARAT at each iteration and
including them in X.

The principle challenge in computing the model lies with finding A because com-
puting R is a simple least squares problem. The original algorithm proposed in [14]
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used the singular value decomposition (SVD) of X to provide an approximate mini-
mizer of (3). Subsequent research has been aimed at computing an exact minimizer;
see [2] for a brief history. Unfortunately, these algorithms are not adaptable large-
scale data. In 1990, Kiers et al. [22] proposed a modification and generalization of
Takane’s algorithm [36] that had a convergence guarantee.

While the modified Takane method [22] for finding A could work with large-scale
data, we describe an alternating least squares (ALS) algorithm to motivate our new
three-way algorithm, for which there is no good alternative for large-scale problems.
We do not yet have a proof of convergence, but we have observed good performance
in practice.

3.2.1 Alternate ALS algorithm.

We start with random initial estimates for A and R and write a model that solves
for A on both the left and right simultaneously. We consider a model for X and XT

together by stacking the data side by side:

(
X XT

)
= A

[(
R RT

)(AT 0
0 AT

)]
. (4)

The least squares update for A is found by fixing the A in the right-hand matrix
and solving for the leftmost A. For large applications, we wish to avoid forming any
large matrices or computing the pseudo-inverse of a large rectangular matrix. Hence,
we may find the least squares solution more easily by using the normal equations and
simplifying terms:

A←
(
XART + XTAR

) (
RATART + RTATAR

)−1
.

Using the most recent approximation for A, we can compute a least squares
estimate of R by multiplying both sides of X by the pseudo-inverse of A, using the
normal equations:

R← (ATA)−1ATXA(ATA)−1. (5)

Thus, with these two update rules, one may alternatingly solve for A and R to
arrive at a DEDICOM model that best fits the data in a least-squares sense.

The most expensive operations are the matrix products XA, XTA, and ATA.
The inverted matrix is p × p so it is inconsequential provided that p � n. If X is
sparse, then the computations involving X are proportional to the number of nonzeros
in X, and ATA is O(p2n).

14



3.3 Three-way DEDICOM.

Three-way DEDICOM is similar to the two-way model in that the asymmetry rela-
tionships are in a matrix R, but there are diagonal scaling matrices (represented as
frontal slices of array D) on either side that apply weights to the columns of A. In
variations of this model, the scaling arrays on the left and right of R may be different.

Three-way DEDICOM is a part of a broader family of multilinear models called
PARATUCK2 [17], which can empirically determine a unique best fitting axis orien-
tation in A without the need for a separate factor rotation. This corresponds to the
extension of factor analysis to three ways by PARAFAC [12] and the same kind of
special uniqueness property that emerges there. With a unique solution, the factors
are plausibly a valid description with greater reason to believe that they have more
explanatory meaning than a “nice” rotated two-way solution.

We wish to solve the following minimization problem

min
A,R,D

m∑
k=1

∥∥Xk −ADkRDkA
T
∥∥2

F
, (6)

where A is not required to be orthogonal. Because the A and R matrices apply across
all frontal slices of X, algorithms are more complicated than the standard DEDICOM
model.

There are few algorithms for solving (6); in addition, these algorithms are not
efficient with large, sparse datasets. Kiers [20] has presented an ALS algorithm for
three-way DEDICOM. To update A, Kiers minimizes (6) over the columns of A,
updating each column with its own ALS subproblem. Each subproblem to compute
a column of A involves an eigendecomposition of a dense n× n matrix, which makes
this procedure prohibitively expensive for large-scale data. Determining whether this
procedure can be adapted for large-scale data is a topic of future study. To update
D, Kiers solves for each element of D with an ALS procedure. The update of A and
the elementwise update of D are also not adapted for large-scale applications.

3.3.1 New ALS algorithm.

Here we propose an alternating least squares algorithm and adapt it for use on larger
applications. Our approach offers improvements over Kiers’ method for updating A
and D as well as a compression technique for dealing with large-scale data.

Once again, we start with random initializations for A, R, and now D. We update
these quantities in an alternating fashion as follows.

1. Updating A: We write a model that solves for A on both the left and the right
and for all frontal slices of D simultaneously. We consider all frontal slices of

15



X by stacking the data side by side:(
X1 XT

1 · · · Xm XT
m

)
=

A
(
D1RD1 D1R

TD1 · · ·
DmRDm DmRTDm

) (
I2m ⊗AT

)
. (7)

Here I2m is the identity matrix of size 2m× 2m. We compute the least squares
solution for the A on the left using the method of normal equations, which
simplifies to

A←

[
m∑

k=1

(
XkADkR

TDk + XT
k ADkRDk

)]
[

m∑
k=1

(Bk + Ck)

]−1

where

Bk ≡ DkRDk(A
TA)DkR

TDk, (8)

Ck ≡ DkR
TDk(A

TA)DkRDk. (9)

This least squares problem updates all columns of A simultaneously and avoids
the costly eigendecomposition of Kiers’ method.

2. Updating R: We use the closed form solution for R from Kiers [20]. It involves
vectorizing X and R and stacking them in a manner such that the objective
function in (6) changes to

f(R) =

∥∥∥∥∥∥
Vec(X1)

...
Vec(Xm)

−
 AD1 ⊗AD1

...
ADm ⊗ADm

Vec(R)

∥∥∥∥∥∥ .

Minimizing f(R) over Vec(R) is a multiple regression problem, and its solution
is

Vec(R) =

(
m∑

k=1

(DkA
TADk)⊗ (DkA

TADk)

)−1

m∑
k=1

Vec(DkA
TXkADk). (10)

Provided that the number of latent dimensions is not large (specifically that p2

is not large), then this step for updating R will suffice.
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3. Updating D: We improve upon the elementwise minimization of Kiers [20] by
considering a full-scale minimization with respect to the diagonal elements for
each slice Dk:

min
Dk

∥∥Xk −ADkRDkA
T
∥∥2

F
. (11)

Because there are only p variables for each of the m slices, Newton’s method
applied to (11) is not expensive and offers fast quadratic convergence. The
gradient g and Hessian H of (11) are provided in an earlier technical report of
this work [2]. Extra conditions are needed to ensure that the Newton step is a
descent direction, and we use a modified Cholesky decomposition of H to find
the matrix H+λI that is safely positive definite for the Newton step calculation;
see, e.g., [9].

A comment for large data sets is in order. The steps for updating R and D can
be expensive if n is large. However, we may simplify the complexity by projecting
the data in X onto a basis of A and working in this space. Specifically, we find an
orthonormal basis Q ∈ Rn×p of matrix A using, e.g., a compact QR decomposition,

A = QÃ, (12)

where Ã is upper triangular. Then we use Q to project X onto the basis of A. By
the orthogonality of Q, the minimization problem of (11) is the same as

min
Dk

∥∥∥QTXkQ− ÃDkRDkÃ
T
∥∥∥2

F
, (13)

except that QTXkQ and Ã are both of size p× p. We use these smaller matrices in
place of Xk and A, respectively, in the updates of both R and D in (10) and (11)
above.

We do not have yet a proof of convergence for this new algorithm, but this algo-
rithm was tested on synthetic data constructed to contain known structure. Arrays
of up to size 50 × 50 × 45 were constructed using p = 2 to 6 latent components in
A. An asymmetric R matrix and diagonal Dk matrices were generated randomly to
relate the patterns. When these X arrays were analyzed from a number of random
starting positions, the global optimum was found among a number of minimizers.
The global optimum always revealed the original patterns used to create the data, up
to permutation of column order and multiplication of columns by scaling constants.

Note that the accurate recovery of built-in structure occurred without rotation,
and was more exact than would typically be obtained by rotation methods. This is
because the three-way solution is essentially fully identified without side conditions,
i.e., is “essentially unique” [17]. Thus, when the systematic structure in the data
is reasonably well approximated by the DEDICOM model, the uniqueness property
increases the probable correspondence between the recovered patterns and the original
empirical source patterns.
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Figure 3. Number of emails per month in our Enron email
graph.

The dominant costs of this ALS algorithm are linear in the number of nonzeros
of Xk and/or O(p2n) and come from the following steps: ATA, QR factorization of
A, XkART , XT

k AR, and QTXkQ.

3.3.2 Nonnegative algorithm.

We also considered a DEDICOM model with non-negativity constraints on A, R,
and D. Because we are dealing with nonnegative data in X, it often helps to examine
decompositions that retain the nonnegative characteristics of the original data. Mod-
ifications to the least squares steps above are needed, and we use the multiplicative
update introduced in [26] as implemented in [5]. Specifically, we modify the step to
solve for the A appearing on the left in (7):

aic ← aic

[∑m
k=1

(
XkADkR

TDk + XT
k ADkRDk

)]
ic

[A
∑m

k=1(Bk + Ck)]ic + ε
.

where Bk and Ck are the same as in (8)-(9) above and ε is a small number like 10−9.
The solution for R is given by:

Vec(R)i ←
Vec(R)i

[∑m
k=1 Vec(DkA

TXkADk)
]
i

[
∑m

k=1(DkATADk)⊗ (DkATADk)Vec(R)]
i
+ ε

.

We used the same procedure for updating D as above, using the same nonnegativity
constraints.

A nonnegative two-way DEDICOM algorithm follows directly from this algorithm
when one considers a matrix X as an array X having a single slice (m = 1) and the
D array is just the identity matrix.
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4 Enron Corpus

For a relevant application, we consider the email graph of the Enron corporation that
was made public during the federal investigation.

The whole collection is available online [8] and contains 517,431 emails stored in
the mail directories of 150 users. We use a smaller graph of the Enron email corpus
prepared by Priebe et al. [29] that consists of messages solely among 184 Enron email
addresses. We considered messages only in the interval 13-Nov-1998 through 21-Jun-
2002, which resulted in a total of 34,427 messages over 44 months. Figure 3 shows a
histogram of the number of messages in our data for each month.

We constructed an email graph and labeled the edges by month and year of the
message. Our final graph corresponds to a sparse adjacency array X of size 184 ×
184 × 44 with 9838 nonzeros and, when ignoring edge labels, to a sparse adjacency
matrix X of size 184 × 184 with 3960 nonzeros. We scaled the nonzeros entries by
log2(w) + 1, where w is the number of messages. This simple weighting reduces the
biasing from prolific emailers; other weightings produced similar results.

An obvious difficulty in dealing with the Enron corpus is the lack of information
regarding the former employees. Without access to a corporate directory or orga-
nizational chart at Enron at the time of these emails, it is difficult to ascertain the
validity of our results and assess the performance of the DEDICOM model. Other
researchers using the Enron corpus have had this same problem, and information on
the participants has been collected slowly and made available.

The Priebe data set [29] provided partial information on the 184 employees of the
small Enron network, which appears to be based largely on information collected by
Shetty and Adibi [33]. It provides most employees’ position and business unit. To fa-
cilitate a better analysis of the DEDICOM results, we collected extra information on
the participants from the email messages themselves and found some relevant infor-
mation posted on the FERC website [11]. We searched for corroborating information
of the preexisting data or for new identification information, such as title, business
unit, or manager to help assess our results.

We labeled each of the 184 individuals according to the following five categories:
executive (56), legal (15), pipeline (13), energy trader (29), and unaffiliated (71).
Executives were considered as director level and higher. Legal employees were from
the legal department in Enron North America (ENA). Pipeline employees were mainly
those from the Transwestern Pipeline Company, a division of Enron Transportation
Services (ETS). Energy traders were those individuals who traded gas or electricity
in energy markets. The unaffiliated category were those employees for whom we
had very little information and were largely unknown. The executive label took
precedence over any of the others (e.g., the VP of Legal would be an “executive”).
We will see that DEDICOM is able to align employees according to their business
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Figure 4. Two-way DEDICOM: plots of the first and sec-
ond columns of A (left plot) and third and fourth columns of
A (right plot) .

unit and identify many of these dual roles.
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5 Experimental Results

In this section we summarize our findings of applying two-way and three-way DEDI-
COM on the Enron email network. Our algorithms were written in MATLAB, using
sparse extensions of the Tensor Toolbox [3, 4]. All tests were performed on a dual
3GHz Pentium Xeon desktop computer with 2GB of RAM.

5.1 Two-way DEDICOM.

We computed a four-component (p = 4) decomposition of X using two-way DEDI-
COM. An iteration of two-way DEDICOM took about 0.06 seconds, and each run
was 6–100 iterations. The apparent global minimizer was found in roughly 1 out of
4 runs from random initializations, and the relative norm of the difference was 0.768
(excluding diagonal).

Figure 4 shows the four columns of the A matrix in two plots: a2 versus a1 and
a4 versus a3. DEDICOM clearly separates the employees by their roles within the
organization without knowledge of the labels we have assigned the employees. The
clustering of blue circles (executives) in the left plot of Figure 4 shows that the first
factor (a1) describes an “executive” role that fits many of the top executives, and the
second factor (a2) describes a “legal” role by the clustering of green squares. Some
employees are described by both of these roles because they lie somewhere inbetween
the two axes. For example, M. Haedicke was the managing director of ENA Legal, and
M. Sanders was the VP of Enron Wholesale Services. Both of these individuals fall
on a 45◦ line between the two roles, indicating that they shared a legal and executive
role in their job, based on their communications.

In the right plot, the third factor (a3) describes employees in the pipeline business,
and the fourth factor (a4) describes employees who are energy traders. We will call
them “pipeline” and “trading” roles, respectively. One pipeline employee (S. Scott)
stands out as having a partial role as an energy trader, which is information that is
not apparent from his job title.

A key feature of the DEDICOM model that is not present in other models, such
as PCA or MDS, is that the R matrix provides asymmetric relationships (i.e., di-
rectional information) between the latent roles in A. The large adjacency matrix
X, showing nonsymmetric relations among employees at Enron, related by flows of
email, is condensed into a smaller matrix R giving the same kind of asymmetric rela-
tions but among “types” or abstract idealized individuals. In this case, the relations
among elements in R are exchanges of email. The latent components are patterns of
the same kind of flow as among the surface objects, just abstracted into a “higher
level” summary of patterns.

Figure 5 shows the R matrix and its corresponding graph representation for the
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#1 #2 #3 #4
#1 (Executive) 70.1 11.1 4.8 17.4
#2 (Legal) 10.8 55.9 0.6 4.8
#3 (Pipeline) 6.8 1.3 52.2 0.9
#4 (Trading) 6.4 2.4 1.7 51.8

Executive
role
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  Pipeline
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Trading
role

4.8
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17.4

6.4

11.1 10.8

70.1

55.9

51.8

52.2

Figure 5. Two-way DEDICOM: R matrix and associated
graph showing aggregate communication patterns. Entries
less than 4 are represented as a dotted line, and dominant
communications have thicker edges.

four-component solution. The R matrix shows that most of the communication is
among employees who share the same role, as evidenced by the large diagonal values
in R. We do see some asymmetric communication. The entries in the R matrix are
mostly symmetric, with the exception of roles 1 and 4. The large value of r1,4 = 17.4
and smaller value r4,1 = 6.4 suggests that more information is flowing from the
executive management to the energy traders than in the reverse direction.

5.2 Three-way DEDICOM.

We computed a four-component (p = 4) decomposition of the adjacency array X

using three-way DEDICOM. An iteration of three-way DEDICOM took about 0.85
seconds, requiring an average of 184 iterations to satisfy a tolerance of 10−7 in the
change of fit. This was a more difficult optimization problem, and an apparent global
minimizer was not revealed. We chose the smallest minimizer from among 40 runs
starting from random initializations. The relative norm of the difference was 0.885
(excluding diagonal).

Figure 6 plots the four columns of the A matrix. The three-way solution has less
scatter in A than two-way DEDICOM, and the employees tend to line up on a single
latent dimension corresponding to their role. This is due to the fact that each latent
dimension in three-way DEDICOM is associated with a profile over time, so the roles
it identifies tend to be more specific with less dual participation.

The first column is the legal role, and the second column identifies executives who
deal with government and regulatory affairs. The third role is the top executives, and
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Figure 6. Three-way DEDICOM: scatter plots of the first
and second columns of A (left plot) and third and fourth
columns of A (right plot) .
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Figure 7. Scales in D indicate the strength of participation
of each role’s communication over time.

the fourth role is the pipeline employees. The energy traders, who were identified
in the two-way DEDICOM model, are missing from this analysis but are included
partially in the third role (and higher dimensional solutions; see below). The gov-
ernment affairs node is a subgroup of the executive role and has different temporal
communications, which is why it is identified as a separate role.

The aggregate communication patterns over the 44 months among these four roles
is summarized in the R matrix and its corresponding directed graph in Figure 8.
Most of the communication is within each role as evidenced by the large magnitude
diagonal elements and small off-diagonal elements. There is some communication be-
tween the government/regulatory affairs executives and other senior executives (roles
2 and 3, respectively). However, the communication is substantially asymmetric in
that the r2,3 element is larger than r3,2. This indicates that the top executives were
mostly recipients of messages while the government/regulatory affairs executives were
senders. The small off-diagonal elements in the fourth row and column indicate that
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#1 #2 #3 #4
#1 (Legal) 440.2 13.4 -7.9 -5.6
#2 (Exec/Gov’t Affairs) 13.8 286.7 157.8 0.4
#3 (Executive) -23.6 93.5 211.6 -4.8
#4 (Pipeline) -4.8 -5.9 -6.5 172.4
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Figure 8. Three-way DEDICOM: R matrix and associated
graph showing aggregate communication patterns. Entries
less than 4 are represented as a dotted line, and dominant
communications have thicker edges.

the pipeline employees interacted almost exclusively with themselves. We interpret
the negative off-diagonal elements as having less communication than would expect
from a typical null hypothesis, which indicates that the executive role avoided com-
municating with the legal role.

The scales in D indicate the strength of each role’s participation in the commu-
nication over time. Figure 7 shows these scales of the four-component model. It is
here where one sees the temporal nature of each cluster’s communications. The legal
department has relatively sustained communication over the whole time period as
shown by the broad hump in the plot. On the other hand, the government affairs
executives have frequent communications from October 2000 through October 2001,
after which there is a dropoff. The top executives and pipeline employees have simi-
lar communications pattern, where they have frequent communications after October
2001. We believe these results are consistent with findings in [10].

To see the communication patterns within a particular year, we multiply R on the
left and right by the slices of tensor D. For example, Figure 9 shows the communica-
tion patterns among the four roles in A in October, 2000 and October, 2001. These
two time periods were analyzed in [10] and correspond to times before and during the
crisis at Enron. We see that the intra-role communication in the government affairs
and legal roles decreases over this time period while it increases in the executive and
pipeline roles, precisely those being investigated.

The communication patterns in Figure 9 do not exhibit any additional asymmetry
than the original R matrix because the multiplication by Dk on the left and right is a
symmetric update. To see differences in asymmetry, one may compute a DEDICOM
model with two or more R matrices covering the time periods of interest while still
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Figure 9. Graphs of DkRDk showing communication pat-
terns for k = October 2000 (pre-crisis, left) and k = October
2001 (during crisis, right).

retaining the same A matrix over the whole data set. For example, we may be
interested in three R matrices for the Enron data: before, during, and after the
crisis.

Last, we comment on the DEDICOM results for different values of p. Proceed-
ing from lower- to higher-component solutions, DEDICOM partitions the employees
into increasing specific roles, so we can establish a loose hierarchical clustering of the
employees. For example, the first four dimensional solutions are represented by the
four-component model described above: The 2-component model groups the employ-
ees largely from the legal department and those executives dealing with government
and regulatory affairs. The 3-component model adds another role of top executives,
and the 4-component model includes those from the pipeline business as a fourth
role. The 5-component model includes another executive role that is similar to the
government and regulatory affairs role, but it has a different temporal communication
pattern. The 6-component model adds the energy traders seen in the two-DEDICOM
model.

5.3 Non-negative three-way DEDICOM.

We computed a four-component (p = 4) nonnegative decomposition of the adjacency
array X. An iteration took about 1 second, and a run required an average of 74
iterations to satisfy a tolerance of 10−7 in the relative change of fit. We chose the
smallest minimizer from among 40 runs from random starting points, and the relative
norm of the difference was 0.885 (excluding diagonal).

Qualitatively, the results of the non-negative decomposition are the same as the
standard three-way results above. The scatter plots of the columns of A are sim-
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#1 #2 #3 #4
#1 (Legal) 437.4 0 1.7 0
#2 (Exec/Gov’t Affairs) 0 269.7 57.9 3.6
#3 (Executive) 0 0 181.0 0
#4 (Pipeline) 0 0 0 171.9
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Figure 10. Non-negative three-way DEDICOM: R ma-
trix and associated graph showing aggregate communication
patterns.

ilar to Figure 6 and are not shown here. The scales in D indicating the strength
of participation of each role’s communication over time are also nearly identical to
Figure 7.

The benefit of the non-negativity constraints is that the R matrix is more easily
interpreted. Figure 10 shows the corresponding R matrix and its graph ignoring
self-links. It is clear from the asymmetry of the matrix that more communication
“flows up” the management chain to the top executives. Also, the government affairs
executives are passing information to the pipeline employees.

Higher component solutions of the non-negative model yields similar roles as iden-
tified in the standard three-way DEDICOM model.

5.4 Classification results.

In the DEDICOM model, the ith row of A can be considered as scores of how strongly
the ith employee is associated with each role. In other words, aij is the strength of
the association between employee i and role j. Here we quantify how accurate the
assignments are. For two-way DEDICOM, we labeled the four roles as executive,
legal, trading, and pipeline. For each employee for which we have a true label, we
compared this against the prediction made by DEDICOM. As shown in Table 1, the
executive role scored highest for 45% of the true executives and in the top two for a
total of 84%. We did not consider the “unaffiliated” employees.

In the three-way model, DEDICOM identified a “government affairs” role, which
did not directly correspond to the job titles we had. Since there is no longer a “trader”
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True label Highest score 1st and 2nd highest score
Two-way DEDICOM

Executive 45% 84%
Legal 67% 87%
Pipeline 77% 77%
Trader 86% 97%
Overall 62% 87%
Three-way DEDICOM

Executive 75% 95%
Legal 73% 80%
Pipeline 62% 77%
Overall 73% 89%
Nonnegative three-way DEDICOM

Executive 73% 93%
Legal 73% 87%
Pipeline 62% 85%
Overall 71% 90%

Table 1. Percent of employees matching their actual busi-
ness unit and job title label based on their primary and pri-
mary/secondary latent role assignments by DEDICOM.

role, we omit those employees from the tables for the three-way models. Once again,
we computed the percentage of each true job type that was correctly predicted by
top or top two predictions from DEDICOM.

Note that many people had dual roles and so we arbitrarily labeled VPs and
directors as “executives” irrespective of their business unit. Of course, it is then
the case that some executives instead load on their business unit. For example,
DEDICOM may identify the VP of Legal in a “legal” role, but our label is “executive.”
However, in most cases, the other role (e.g., “executive”) is then picked up as the next
highest scoring role, resulting in an overall classification of 87–90% if the two highest
scoring roles are considered.
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6 Conclusions and Discussion

We have shown in the Enron email graphs that the two-way and three-way DEDICOM
models identify roles of employees that share some idealized role or attribute. The
components or patterns of asymmetric relationships that DEDICOM identifies have
loadings in A that are continuously valued, like factor loadings, rather than discrete
cluster membership assignments.

When each row of A contains only one substantial loading, the employees belong
to a single role. Our analysis identified some people who were purely in a single role
and other people who had mixed roles. For example, a given person might “load” on
both an executive and a lawyer component, and thus show email exchanges resembling
each of these two roles to some extent.

The entries in matrix R describe the communication patterns between roles of the
same and different type. They show how a particular person’s combination of roles
influences the pattern of messages he/she exchanges with other employees given their
roles. The R matrix is asymmetric and offers an idealized version of a directed graph
involving the latent components identified in A.

In addition, three-way DEDICOM shows the associated communication patterns
over time in the array D. The scales in each slice Dk show the strength of participation
of a particular role for time period k.

In the present study, we investigated a semantic graph with edges labeled by
time. As an alternative to time, we point out that our semantic graph could have
incorporated different types of communication media (e.g., email, phone, and mail
communications) instead of time in the third mode. Then an analysis with three-
way DEDICOM would represent information about the vertices across all forms of
communication (appropriately scaled by slices of D) in the A and R matrices.

Moreover, DEDICOM is not limited to the analysis of sociometric and intercom-
munication data; DEDICOM may derive useful information from any directed graph.
New possibilities include analyzing a network of web traffic between servers over time
or a web/citation graph, where edges convey authority among vertices. A third mode
enters when the two-way data are categorized by time, demographic, click number,
or some other feature of the data.

Finally, we suggest two extensions to the DEDICOM model and its application
in data mining that we intend to pursue. First, constrained DEDICOM [21] is an
extension of DEDICOM that has been suggested in the 90’s and pursued more re-
cently. The idea is to put constraints on the A factors themselves so that the columns
of A lie in a prescribed column space. For example, in the email graph, one might
want to impose a constraint on the first column of A so that it contains only the top
executives. Many other variations are possible. This procedure allows for including
domain knowledge or incorporating human understanding into the problem. Kiers
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and Takane [21] offered an algorithm for handling different subspace constraints on
A. More recently, Rocci [30] proposed a new algorithm for fitting any constrained
DEDICOM model. Second, DEDICOM has been applied to skew-symmetric data
[15] and has yielded some benefits. There might be ways to apply this technique to
semantic graphs as well.
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