

Energy Smart Data Center Phase II

Andrés Márquez

Pacific Northwest National Laboratory

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

Objectives of ESDC Phase II

- Promote maturation of spraycooling technology
 - Spot spraycooling technology
 - Global spraycooling technology
- Experiment with spraycooling technology in the HPC realm
- Promote adoption of spraycooling technology by HPC OEM vendors
- Investigate new technologies enabled by spraycooling
- Update and create new models (COP/TCO) originally developed in Phase I
- Promote cooperation and information sharing
- Plan Phase III



Promote Maturation of Spraycooling Technology

- Deploy novel Thermal Management Unit (Enhanced M-Series:TomCat)
 - Capable of handling higher thermal heat loads (up to 14kW/30C)
 - Uses components with established industrial reliability track record (e.g., HX Niagara Thermal Products, 13L Speck pumps)
 - Lessons learned from Phase I integrated into the TMU design
 - Currently operational at ISR; expect PNNL deployment 07/06
- Deploy novel SprayCool rack (42 U), specially configured to host the TMU, the manifold in conjunction with the compute servers
 - Manifold, inlet, outlet, and valves designed into rack
 - Better serviceability
 - Currently operational at ISR; expect PNNL deployment 07/06

Promote Maturation of Spraycooling Technology

- Upgrade an air cooled 16 HP RX1620 1U server rack with spot spraycooling technology
 - Improves densification over Phase I 2U servers
 - Currently operational at ISR; expect PNNL deployment 07/06
- Design and demonstrate a 1U server reference design targeted for spot spraycooling technology
 - Reduces the number of fans
 - Improves layout of cooling technology, including plumbing and air-flow
 - Integrates server diagnostics system with TMU (IPMI)
 - Provides industry with a reference design
 - Expect PNNL deployment 08/06
- Scale global spraycooling technology by providing 4 additional blades populated with 4GB memory per CPU to run larger applications
 - First memory module prototypes running; expect PNNL deployment 07/06
- Improve workflows for maintenance and servicing
 - Continuing process

Experiment with Spraycooling Technology

Run extensive burn-in tests on test systems Ørecent system

Execute robustness tests in periodic intervals (mostly monthly) in valid specification ranges

To be done at PNNL

Exercise test systems with benchmarks (Linpack, NPB)

To be done at PNNL

Run real applications (NWChem)

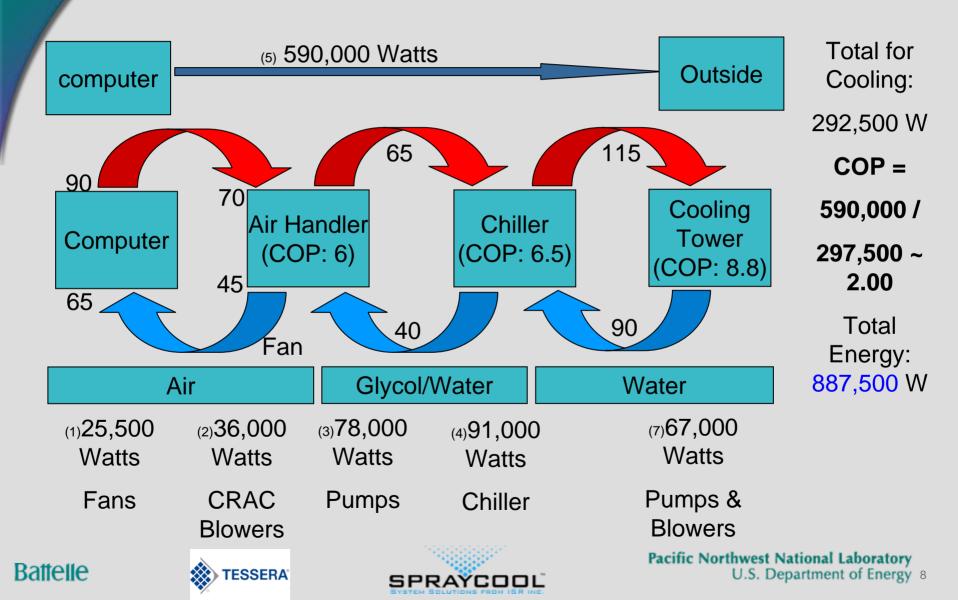
To be done at PNNL

Promote Adoption of Spraycooling Technology

- HP has already quoted twice spraycooled systems
- SGI is strongly engaged with a common reseller
- ISR/DELL cooperation making progress
- IBM is showing increased interest in spraycooling technology; also in combination with their RDHx technology

Investigate New Technologies

- Large Scale Coherent Memory Computer Study
 - Spraycooling enabling densified systems
 - First version of study completed; going through another revision
- 1U spot-spraycooled reference server design
- Trade studies:
 - Feasibility of constructing DC with reduced raised floors
 - Feasibility of spraycooling power infrastructure
 - In progress; expected report 08/06



Update Models

Promote Cooperation and Information Sharing

LLNL

- 12/05 Cader, Marquez: presentation to Mark Seger, Brent Gorda
- 04/06 Marquez: phone briefing to Brent Gorda

LBNL

- 03/06 Cader, Regimbal: presentation to Bill Tschudi
- 06/06 Marquez: phone conversation with Bill Tschudi
- NSA
 - 04/06 Marquez: Thermal and Power Aware Advanced Computing Systems: A Path to Densification
- SC'05
 - Global Chassis demonstration at PNNL booth
- Publications related to ESDC:
 - Panel on "High Density Microprocessor Cooling"
 - Cader, Regimbal, InterPACK 05
 - Air Flow Management in SprayCool Data Center
 - Cader, Westra, Regimbal, Mooney, ASHRAE 06
 - Next-Generation High Performance and Cooling Technologies
 - Regimbal, IDC 06
 - Performance of a Rack of Liquid-Cooled Servers
 - Cader, McAllister, Westra, Marquez, Regimbal, to appear ASHRAE 07
 - Total Cost of Ownership for a Liquid-Cooled Data Center
 - Cader, McAllister, Marquez, in progress, to appear in ASHRAE book

Planning Phase III

- Small scale Phase II technologies serve as a testbed for technologies deployed at large scale in Phase III
- Lessons learned during Phase I and II will be reflected in Phase III
- OEMs are on board to deploy spraycooling technology at larger scales

Summary Status Phase II

- Large Scale Coherent Memory Computer Study (first version finished, expect new version end 07/06)
- Deployment of 16 1U HP RX1620 with novel TMU in SprayCool rack (expect end 07/06)
- Demonstrate 1U server reference design (expect end 08/06)
- Scale global spraycooling technology to 8 boards with 4GB/processor (expect end 07/06)
- Feasibility Trend Studies (expect end 07/06)

