/***************************************************************************** Major portions of this software are copyrighted by the Medical College of Wisconsin, 1994-2000, and are released under the Gnu General Public License, Version 2. See the file README.Copyright for details. ******************************************************************************/ /* This file contains routines to initialize and implement the sine wave (amplitude, phase, and frequency parameters) signal model. File: model_sinewave_apf.c Author: B. Douglas Ward Date: 29 May 1997 */ /*---------------------------------------------------------------------------*/ #include #include "NLfit_model.h" void signal_model ( float * gs, /* parameters for signal model */ int ts_length, /* length of time series data */ float ** x_array, /* independent variable matrix */ float * ts_array /* estimated signal model time series */ ); /*---------------------------------------------------------------------------*/ /* Routine to initialize the signal model by defining the number of parameters in the signal model, the name of the signal model, and the default values for the minimum and maximum parameter constraints. */ DEFINE_MODEL_PROTOTYPE MODEL_interface * initialize_model () { MODEL_interface * mi = NULL; /*----- allocate memory space for model interface -----*/ mi = (MODEL_interface *) XtMalloc (sizeof(MODEL_interface)); /*----- define interface for the sine wave model -----*/ /*----- name of this model -----*/ strcpy (mi->label, "SineWave_APF"); /*----- this is a signal model -----*/ mi->model_type = MODEL_SIGNAL_TYPE; /*----- number of parameters in the model -----*/ mi->params = 3; /*----- parameter labels -----*/ strcpy (mi->plabel[0], "amplitude"); strcpy (mi->plabel[1], "phase"); strcpy (mi->plabel[2], "frequency"); /*----- minimum and maximum parameter constraints -----*/ mi->min_constr[0] = -100.0; mi->max_constr[0] = 100.0; mi->min_constr[1] = -90.0; mi->max_constr[1] = 0.00; mi->min_constr[2] = 0.1; mi->max_constr[2] = 0.15; /*----- function which implements the model -----*/ mi->call_func = &signal_model; /*----- return pointer to the model interface -----*/ return (mi); } /*---------------------------------------------------------------------------*/ /* Routine to calculate the time series which results from using the sine wave model with specified amplitude, phase, and frequency model parameters. Definition of model parameters: gs[0] = amplitude of sinusoid gs[1] = phase angle of sinusoid (degrees) gs[2] = frequency */ void signal_model ( float * gs, /* parameters for signal model */ int ts_length, /* length of time series data */ float ** x_array, /* independent variable matrix */ float * ts_array /* estimated signal model time series */ ) { int it; /* time index */ float t; /* time */ float fval; /* time series value at time t */ int ib = ts_length % 4 , nt = ts_length ; float g0=gs[0] , g1=(PI/180.0)*gs[1] , g2=(2.0*PI)*gs[2] ; #ifdef SOLARIS # define sinf sin #endif #if 0 /*----- calculate time series corresponding to the given parameters -----*/ for (it = 0; it < ts_length; it++) { t = x_array[it][1]; fval = gs[0] * sinf( 2.0f*PI*gs[2]*t + (PI/180.0f)*gs[1] ); ts_array[it] = fval; } #else switch( ib ){ case 3: ts_array[2] = g0*sinf(g2*x_array[2][1]+g1) ; /* fall thru */ case 2: ts_array[1] = g0*sinf(g2*x_array[1][1]+g1) ; /* fall thru */ case 1: ts_array[0] = g0*sinf(g2*x_array[0][1]+g1) ; break ; } for( it=ib ; it < nt ; it+=4 ){ ts_array[it ] = g0*sinf(g2*x_array[it ][1]+g1) ; ts_array[it+1] = g0*sinf(g2*x_array[it+1][1]+g1) ; ts_array[it+2] = g0*sinf(g2*x_array[it+2][1]+g1) ; ts_array[it+3] = g0*sinf(g2*x_array[it+3][1]+g1) ; } #endif }