Activity #1: Understanding Sinusoids Worksheet (Teacher version) Math

Note to students: Lab teams of three or four students are required for this activity.

National Standards addressed:

Content Standards:

Algebra Expectations: Students will understand and perform transformations such as combining, composing, and inverting commonly used functions, using technology to perform such operations on more complicated symbolic expressions; students will use symbolic algebra to represent and explain mathematical relationships; students will judge the meaning, utility and reasonableness of the results of symbolic manipulations, including those carried out by technology; students will identify essential quantitative relationships in a situation and determine the class or classes of functions that might model the relationships; students will draw reasonable conclusions about the situation being modeled.

Process Standards:

Measurement Expectation: Students will make decisions about units and scales that are appropriate for problem situations involving measurement.

Problem Solving Expectation: Students will reflect on the process of mathematical problem solving.

Communication Expectation: Students will communicate their mathematical thinking coherently and clearly to peers, teachers, and others.

Connection Expectation: Students will recognize and apply mathematics in contexts outside of mathematics.

Representation Expectation: Students will use representations to model and interpret physical, social, and mathematical phenomena.

Purpose: To understand the definition of sinusoidal curve

To recognize a possible sinusoidal curve

To express a curve in sinusoidal form

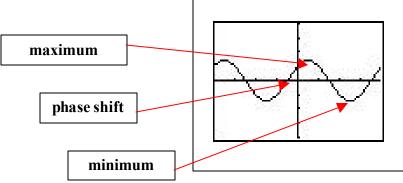
To generate, using technology, a sine curve and find its mathematical representation

To recognize phenomena that might generate these curves and discuss advantages of the sine representation

Understanding Sinusoids \rightarrow y = a sin (bx - c) + d

Definition: A sinusoid is the name given to any curve that can be written in the form, $y = a \sin (bx - c) + d$.

To investigate, you will look at several curves, determine whether or not these curves are representative of the sine curve, and, if so, rewite in sine form. Consider the curve with equation $y = \sin x + \cos x$. Using radian mode, the curve has the following graph.



This graph does look like a sine curve. You will need to identify some points and do some calculations before you can make your sinusoidal representation (if possible).

1. Identify the coordinates of the maximum point, (x_1, y_1) . Give coordinates correct to three decimal places.

 $(x_1 = _, y_1 = _)$ For best results, store this x-value in A and this y-value in B. $(x_1 = .785, y_1 = 1.414)$ Hopefully, students will recognize these two values as $\frac{p}{4}$ and $\frac{p}{2}\sqrt{2}$, respectively.

2. Identify the coordinates of the minimum point, (x_2, y_2) . Give coordinates correct to three decimal places.

 $(x_2 = _, y_2 = _)$ For best results, store this x-value in C and this y-value in D.

(x₂ = 3.927, y₂ = -1.414) Hopefully, students will recognize these two values as $\frac{5p}{4}$

and $-\sqrt{2}$, respectively.

3. Identify the coordinates of the phase shift point, (x_3, y_3) . Give coordinates correct to three decimal places.

 $(x_3 = \underline{\qquad}, y_3 = \underline{\qquad})$ For best results, store this x-value in E and this y-value in F.

 $(x_3 = -.785, y_3 = 0)$ Students should easily recognize x_3 as $-\frac{p}{4}$.

You are now ready to decide on values for a, b, c, and d in the sinusoidal representation. Be sure to be as accurate as possible, i.e., use the values you have stored in your calculator.

4. The value of a represents the amplitude and opening direction of the curve. Write your value for a, correct to three decimal places. ______ For best results, store this value in your calculator. What variable did you select to store a?

a = 1.414, which is the v-value stored in B.

5. The value for b affects the period of the graph. Determine the period from the points found in steps 1 and 2. Remember that b is a positive real number. What period did you find, correct to three decimal places? _____ Remember,

the period is the length of one complete cycle and is given by, period = $\frac{2p}{h}$.

For best results, store this value in your calculator. What variable did you select to store b? _____

period = $\overline{6.283}$, which is 2**p**. 1 is the value for b and does not need to be stored.

6. The value of c affects the phase shift. Remember, the phase shift is given by $\frac{c}{b}$.

If c is negative, the phase shift is left and if c is positive, the phase shift is right. Determine the value for c. What was your value for c, correct to three deciamal places? _____ For best results, store this value in your calculator. What variable did you select to store c? ____

c = -.785, which is - $\frac{p}{4}$. This value is already stored in E.

7. Lastly, you need to calculate the value for d. Remember that d describes the vertical shift in the graph. What value did you calculate for d, correct to three decimal places?

Since the maximum is $\sqrt{2}$ and the minimum is - $\sqrt{2}$, the graph has no vertical shift. The central axis remains the horizontal line described as $y = (\sqrt{2} + \sqrt{2})/2 = 0$.

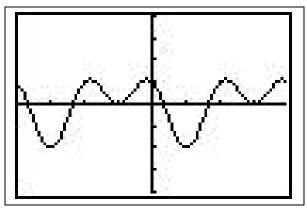
8. You are now ready to compare the curve given by y = sin x + cos x to the sinusoidal representation you have just found. Substitute the exact values for a, b, c, and d in the sinusoidal model, y = a sin (bx - c) + d, and compare the two graphs. Write your sinusoidal equation.
Do you think you have rewritten y = sin x + cos x in sinusoidal form?

Do you think you have rewritten y = sin x + cos x in sinusoidal form? _ Why or why not?

$$\mathbf{y} = \sqrt{2} \sin\left(1\mathbf{x} - \frac{\mathbf{p}}{4}\right) + \mathbf{0}$$

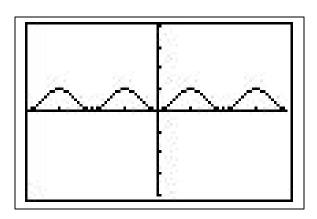
Determine if any of the following curves might be represented in sinusoidal form. Rewrite in sine form, those you have selected.

This curve is the graph of a periodic function. However, it is not a sine curve.

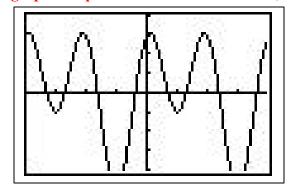


This curve appears to be the sine curve given by the equation,

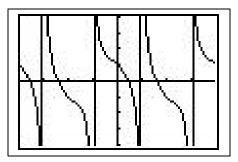
 $y = .5 \sin (2x - \frac{p}{2}) + .5.$



3. $y = 3 \cos 2x + 2 \sin x$ This curve is the graph of a periodic function. However, it is not a sine curve.



4. y = cos x – tan x This curve is the graph of a periodic function. However, it is not a sine curve.

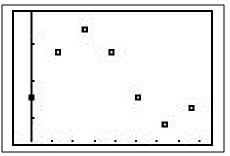


5. Throughout the day, the depth of water at the end of a dock varies with the tides. The table shows the depths (in meters) at various times during the morning.

t (time)	Midnight	2 A.M.	4 A.M.	6 A.M.	8 A.M.	10 A.M.	Noon
d (depth)	2.55	3.80	4.40	3.80	2.55	1.80	2.27

Use a sine curve to model this data. During what times in the afternoon can a boat safely dock if it needs at least 3 meters of water to moor at the dock? (Problem from page 359 of Precalculus with Limits, by Larson, Hostetler, Edwards, and Heyd from Houghton Mifflin **Ó** 1997)

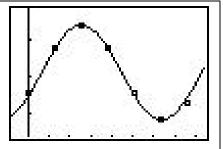
Create stat plot using t-values (the x's) in list 1 and depths (the y's) in list 2.



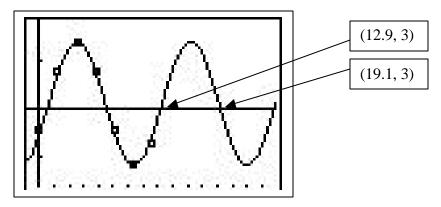
The maximum point occurs at (4, 4.4) and the minimum point occurs at (10, 1.8). From these two points, amplitude is (4.4 - 1.8)/2 = 1.3; the vertical shift is .5 (4.4 +

1.8) = 3.1. The period is 2 (10 – 4) = 12, making the value for b = $\frac{p}{6}$ and c = $\frac{p}{6}$.

This gives the equation $y = 1.3 \sin \left(\frac{P}{6}x - \frac{P}{6}\right) + 3.11.3 \sin \left(\frac{P}{6}x - \frac{P}{6}\right) + 3.1$. Now, the two graphs appear as follows.



Graphing the line y = 3 and changing the window so that the afternoon hours are represented by the sinusoidal curve, the depth is at least 3 meters in the afternoon between 12.9 P.M. and 19.1 P.M. or 12:51 P.M. and 7:09 P.M.



Link to Activity #1, Title: An Investigation into Transverse Waves, from the science component.