4D PhaseCam Capabilities

Modal Analysis and Multiple-Wavelength Mirror Phasing

NASA Tech Days May, 2002

James Millerd, Ph.D., John Hayes, Ph.D., and Mark Schmucker

4D PhaseCam Technology

Single Frame PSI

Benefits:

- High resolution interferometric measurement
- Insensitive to vibration & turbulence
- Easy to set up and use

$$\tan \varphi = \left(\frac{B-D}{A-C}\right)$$

MODAL ANALYSIS

Modal Analysis

- Synchronous detection of periodic motion
 - Vibration induced modes
 - Resonance analysis
 - Mechanical rigidity analysis
- Asynchronous detection of impulse response
- Requirements
 - High speed data capture
 - Drive signal
 - Synchronization capability
 - PhaseCam provides everything needed!

Modal Analysis - Schematic

Basic Specifications

- Output: +/- 5V Analog sinusoid, TTL trigger, impedance: $> 100 \text{ k}\Omega$
- Camera Gating Mode
 - Min shutter time = 30 micro-second
 - Frequency: 0-3 kHz
 - Max Velocity: 2600 microns/second
- Laser Strobe Mode
 - Min shutter time = 1 micro-second
 - Frequency: 0-100 kHz
 - Max Velocity: 80,000 microns/second
- Asynchronous Capture Mode
 - 30 fps
- Controls
 - Amplitude
 - Frequency
 - Phase

Modal Analysis – Features & Benefits

- Features
 - Simple, easy to use interface
 - Temporal averaging of each data point possible
 - Standard PhaseCam can be upgraded for modal measurement
- Benefits
 - Simple measurement of frequency response
 - Simple acquisition of temporal data
 - Accurate determination of modal deflection
 - Synchronous detection allows random vibration noise to be averaged out

Measurement at the Speed of Light

Modal Movie - Disk Platter Vibration

Modal Movie – Membrane Mirror

TWO WAVELENGTH MEASUREMENTS

Multiple Wavelength PhaseCam

• 2 Wavelengths can be used to extend range

2 Frequencies beat together to form a long equivalent wavelength

• A measurement is made at each wavelength

$$\Delta opd = 2\Delta z = \frac{\Delta \phi_e}{2\pi} \lambda_e$$

$$\Delta \phi_e = \Delta \phi_1 - \Delta \phi_2$$

 $\lambda_e = \frac{\lambda_1 \lambda_2}{|\lambda - \lambda|}$

2 Wavelength Measurement Uncertainty

Two Wavelength Measurement Uncertainty with 632.8 nm Fundamental Wavelength

Phase Measurement Error = 0.000 waves

Uncertainty (OPD) due to Laser Frequency Jitter Only

Two Wavelength Measurement Uncertainty with 632.8 nm Fundamental Wavelength

Phase measurement uncertainty = 0.01 waves

2 Wavelength Conclusions

- Frequency difference must be very carefully controlled
 - Commercial tunable lasers have the required capability
 - Calibration is required to remove effects of dispersion
 - Maximum range of 40-80 microns (OPD) will give resolution below ¹/₂ the fundamental wavelength
 - Achromatic slope must be controlled to measure across gaps
- Fundamental phase measurement accuracy drives the measurement accuracy.
 - Sources of error must be minimized
 - This is a two-measurement process so maximum speed is required
 - Sensitivity to vibration is increased
- Multiple ranges at different wavelengths may be used to "zoom in". This will require precise calibration.

Two Wavelength Breadboard Demo

2 Wavelength Fiber Feed Source

Split Mirror on Stage

Accuracy at 11.4 mm Synthetic Wavelength

This agrees reasonably well with our estimated accuracy! (Around 150 microns)

2 Measurement Vibration Sensitivity

Frequency Response (0.01 wave max change)

Measurement at the Speed of Light

2 Measurement Vibration Sensitivity

Frequency Response (45 micro-sec acquisition)

Measurement at the Speed of Light

CONTACT INFORMATION

4D Technology Corporation

3280 E. Hemisphere Loop, Suite 112Tucson, Arizona 85716520-294-5600www.4dtechnology.com

