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[1] The size, shape, and spacing of small-scale topographic features found on the
boundaries of natural streams, rivers, and floodplains can be quite variable. Consequently,
a procedure for determining the form drag on irregular sequences of different-sized
topographic features is essential for calculating near-boundary flows and sediment
transport. A method for carrying out such calculations is developed in this paper. This
method builds on the work of Kean and Smith (2006), which describes the flow field for
the simpler case of a regular sequence of identical topographic features. Both approaches
model topographic features as two-dimensional elements with Gaussian-shaped cross
sections defined in terms of three parameters. Field measurements of bank topography are
used to show that (1) the magnitude of these shape parameters can vary greatly between
adjacent topographic features and (2) the variability of these shape parameters follows a
lognormal distribution. Simulations using an irregular set of topographic roughness
elements show that the drag on an individual element is primarily controlled by the size
and shape of the feature immediately upstream and that the spatial average of the boundary
shear stress over a large set of randomly ordered elements is relatively insensitive to
the sequence of the elements. In addition, a method to transform the topography of
irregular surfaces into an equivalently rough surface of regularly spaced, identical
topographic elements also is given. The methods described in this paper can be used to
improve predictions of flow resistance in rivers as well as quantify bank roughness.

Citation: Kean, J. W., and J. D. Smith (2006), Form drag in rivers due to small-scale natural topographic features: 2. Irregular

sequences, J. Geophys. Res., 111, F04010, doi:10.1029/2006JF000490.

1. Introduction

[2] In our companion paper [Kean and Smith, 2006], we
describe a simple method to quantify the flow effects of
regular sequences of small-scale natural topographic fea-
tures characteristic of stream banks. There it is shown that a
wide variety of natural bank topographic features can be
well approximated by shapes with Gaussian cross sections.
This shape is parameterized in terms of a protrusion height,
H; a streamwise length scale, s, (equivalent to the standard
deviation of a Gaussian probability distribution); and a
spacing between crests, l. The method of Kean and Smith
[2006] uses an approach similar to that of Smith and
McLean [1977] for flow over dunes to describe the spatially
averaged flow over a sequence of identical Gaussian-shaped
topographic elements. The measurements of Hopson [1999]
were used to demonstrate that the form drag on a roughness
element embedded in a series of identical elements can be
determined using the drag coefficient of the individual
element and a reference velocity that includes the effects
of roughness elements further upstream.
[3] While the method of Kean and Smith [2006]

addresses many of the salient aspects of flow over natural

surfaces, it does not address the flow effects of surface
irregularity. Natural topography is almost always irregular,
and often the surface roughness and irregularity is most
pronounced along the banks of the channel. Common
irregularities in bank topography include undulations pro-
duced by the slumping of bank material and protrusions
associated with vegetation, such as root balls and clumps of
grass sod. A wide variety of factors, such as flow, soil
cohesion, and vegetation, influence the geometry of these
bank topographic features. As a result, there is considerable
variability in the size and shape of nearby topographic
features. The form drag produced by flow over this spec-
trum of different sized roughness elements can have a
significant effect on the velocity and boundary shear stress.
These effects are especially important near the banks of
channels, because they control the rates of sediment trans-
port at the base of the bank, which, in turn, controls the rate
of lateral erosion. Quantifying the roughness of natural
surfaces, however, is particularly difficult due to its com-
plexity. For this reason, the roughness of irregular surfaces
is frequently parameterized in terms of an empirically
adjusted roughness coefficient. Limitations of this empirical
approach are that it requires calibration, that the roughness
of the surface cannot be easily tied to the geometry of the
surface, and that the form drag on the topographic elements
of the surface cannot be removed to obtain the shear stress
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on the actual (irregular) surface as required to carry out
accurate sediment transport and erosion calculations.
[4] The purpose of this paper is to generalize the method

of Kean and Smith [2006] to accommodate the irregular
sequences of topographic elements characteristic of natural
streams and rivers. The general model is then applied to
assess the relative importance of size, shape, and sequence
of topographic elements on a boundary using elements that
are modeled after ones on the banks of the Rio Puerco near
Belen, NM. A method to simplify the topography of
irregular surfaces into an equivalently rough surface of
regularly spaced, identical topographic elements also is
presented. The results of that analysis are then used to
provide a generalized model for the geometry of a boundary
in terms of the geometrical statistics of an irregular surface.

[5] The approach of Kean and Smith [2006] and of this
paper is to first identify distinct topographic features along
an irregular surface, then approximate each feature as a two-
dimensional Gaussian-shaped element, and finally calculate
the form drag on each of the individual elements. Drag is a
nonlinear process governed by the Navier-Stokes or
Reynolds equations. Owing to this nonlinearity the ways
in which form drag can be computed are tightly constrained.
Moreover, form drag is an integral fluid mechanical variable
and must be computed on entire objects or large segments
thereof. Both the nonlinearity of the drag process and the
integral nature of form drag make it impossible to compute
drag on and sum the contributions of drag from individual
harmonic components.
[6] Drag arises from the pressure field generated around

an object inserted into a flow. As such, it requires that there
be a protrusion from a background surface when applied to
the topographic elements on a flow boundary. The back-
ground surface cannot be the mean surface. We employ a
low wave number background surface constructed by con-
necting the troughs of the topographic elements. If, as in the
next section, a Fourier analysis of the topographic variabil-
ity is employed, it has to have a distinct spectral peak and all
of the topographic variance has to be placed in a single
sinusoid before the drag on that surface can be calculated. In
addition, the surface around which the sinusoid oscillates
cannot be used as the background surface; rather the form
drag on the sinusoidal topography has to be calculated from
a smooth surface that goes through all the troughs of the
sinusoid.

2. Variability of Natural Topographic Features

2.1. Rio Puerco, New Mexico

[7] An example of the variability of natural surfaces can
be seen from the streamwise profile of bank topography
measured in the inset channel of the Rio Puerco arroyo near
Belen, New Mexico (Figure 1). These measurements were
made as part of a larger study of the Rio Puerco, and will be
used here to (1) demonstrate that Gaussian curves provide
good approximations to the shape of natural topographic
elements [see also Kean and Smith, 2005, 2006], and
(2) provide a realistic scale for topographic elements that
will be used in later calculations in this paper.
[8] The roughness of the Rio Puerco banks at Belen is

produced by both the topographic irregularities resulting
from scour and mass movement of bank material and from
the tamarisk trees, which, as shown in Figure 1a, have been
removed so that the geometry of the irregularities beneath
could be measured. The effect of the vegetation on the flow
in this channel is discussed by Kean and Smith [2004] and
Griffin et al. [2005]. The roughness measurements were
made by placing a 9-m straight edge along the bank and
determining the distance from the straight edge to the bank
at 5-cm intervals. This approach provided a good sample of
the amplitude and spacing of the topographic irregularities.
The set of measurements shown in Figure 1b contain four
large, roughly symmetric bumps (topographic features) that
are spaced close together: a tall bump, a broad bump, a
steep bump, and an intermediate bump, which will each
have a different effect on the flow. A best fit Gaussian shape
for each bump was determined by regression, and the results

Figure 1. Characterization of the small-scale bank rough-
ness. (a) Bank of the inset channel of the Rio Puerco near
Belen, NewMexico. A 9-m straight edge is used as a reference
for measurements of the amplitude of the topographic
elements at 5-cm intervals. The amplitude of the elements
increases from bottom to top of the bank. (b) Measurements
and Gaussian fit of the topographic elements near the top of
the bank and bump numbers (Table 1).
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are listed in Table 1. As is seen in Figure 1b, the Gaussian
shapes provide good approximations to the variations of the
surface. Table 1 also contains an estimate of the drag
coefficient (CD) for each bump determined using the
expression by Kean and Smith [2006], which is

CD ¼ 1:79 exp �0:77
s
H

� �
ð1Þ

where s is the streamwise length scale for the element, and
H is the protrusion height of the element. For the flows of
interest in this study (Fr < 1, 1 � 103 < Re < 5 � 105) CD is
nearly independent of the Reynolds and Froude numbers.
[9] The product of the element’s drag coefficient and

height provides some indication of the relative effects these
bumps will have on the flow. This product scales the drag
on the element, as well as the velocity deficit of its wake,
which, in turn, affects the drag on elements located down-
stream. Using this simple measure, it appears that the
steepest bump (bump 3) will have the highest drag and
the greatest effect on reducing the drag on the elements
downstream. In addition, it also will transmit considerable
stress to the boundary, because of its short span. Conversely,
the product CD H shows that the large-scale shape of bump
2 can be neglected in favor of determining the drag on the
smaller-scale features covering this bump.
[10] The geometric characteristics of these smaller-scale

features were determined from a Fourier analysis of the
deviations from the Gaussian fit of the four bumps. The
deviations and their power spectrum are shown in Figure 2.
The well-defined peak in the power spectrum shows that
these features have a single characteristic spacing
corresponding to about 70 cm, and can be approximated
by a single sine wave with this wavelength. In order to
preserve the variance of the features, the amplitude, H, of
this sine wave was set such that the average squared height
of the sine wave over one wavelength, (1/l)

R l
0
[H sin(2px/

l)]2dx, was equal to the variance of the measured devia-
tions. Although the sine wave provides a good approxima-
tion to the typical shape of the small-scale features, it does
not provide a measure of the flow resistance of these
features, because the drag coefficient of a sine-shaped bump
is not known. For this reason, the sine wave was approx-
imated by a sequence of Gaussian bumps determined by
regression. The fit parameters and estimated drag coefficient
for these bumps are listed in Table 1. As seen in Figure 2c,
the sequence of Gaussian bumps is a good approximation to
the sine wave.
[11] It should be noted here that while Fourier analysis

was used to identify the size of the small-scale features,
form drag could not be calculated on each of the individual
harmonics and then summed. Instead, all of the variance had
to be placed into a single sinusoid, the reference surface had
to be transformed to the troughs of the sinusoid, and the

Table 1. Gaussian Fit for Measured Rio Puerco Bumps

Bump H, m s, m s/H CD CD H, m

1 0.63 0.85 1.35 0.63 0.40
2 0.23 1.14 4.96 0.04 0.01
3 0.49 0.29 0.59 1.13 0.55
4 0.40 0.41 1.03 0.81 0.32
Deviations 0.15 0.14 0.93 0.87 0.14

Figure 2. Characterization of the finer scale of bank
roughness. (a) Deviations from the fit of the topographic
elements shown in Figure 1b (note the change in the vertical
scale between Figures 1 and 2). (b) Power spectrum of the
deviations. The peak in the spectrum corresponds to a
wavelength of 70 cm. (c) Approximation of the deviations
using a sine wave (dotted line) and Gaussian curves (solid
line). The wavelength of the sine curve is 70 cm.
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sinusoidal features had to be approximated as Gaussian
ones. This is because Fourier analysis cannot be used in
conjunction with nonlinear operators such as form drag.
[12] The well-defined peak in the power spectrum sug-

gests that the geometry of the smaller scale of roughness is
shaped by an underlying physical process. This process is
probably related to deposition of fine-grained sediment on
the banks of the Rio Puerco, which has been documented by
Friedman et al. [2005]. Floods in the Rio Puerco typically
have very high suspended sediment concentrations. The
reduced flow velocities near the bank caused by drag on
the vegetation and topographic features, leads to rapid
deposition of the suspended sediment on the banks. The
bank angles cannot support the continual supply of sedi-
ment, and the excess is transported down the bank by mass
movement. It is likely that this continual sloughing process
sets the geometry of the small-scale roughness. This process
also affects the shape of the large-scale features, but their
geometry is complicated by the trunks of the tamarisk trees,
which retard the sloughing. Calculations of drag on rough-
ness elements having a similar geometry as that of the
small-scale roughness on the banks of the Rio Puerco near
Belen will be presented later in this paper.

2.2. Statistical Properties

[13] Additional insight into the variability of natural bank
surfaces can be obtained by analyzing the statistical prop-
erties of the surface topography. This is done here using
three sets of bank roughness measurements that were made
near U.S. Geological Survey (USGS) streamflow gauging
stations. The stations are 12323840, Lost Creek near Ana-
conda, MT; 07146995, Rock Creek near Potwin, KS; and
07147070, Whitewater River at Towanda, KS. These sites
span a wide range in channel size and have banks composed
of different materials and shaped by different mechanisms.
Despite these differences, the topographic features at these
sites, like the Rio Puerco, are well approximated by shapes
with Gaussian cross sections [see Kean and Smith, 2006]. In
addition to having bank features that are Gaussian in shape,
the bank topography at the sites also has several important
statistical properties in common, as will be discussed below.
[14] Figure 3 shows histograms of the size distributions of

H, s, and l at each of the sites. The parameters were
obtained from the best fit Gaussian curve to each topo-
graphic feature identified in the measurements. For irregular
sequences of features such as these, l for an individual
feature is defined to be the distance between the intersec-
tions of its Gaussian curve with the Gaussian curves of the
upstream and downstream features. The sizes of each of the
parameters are binned in equal logarithmic increments. As
seen in Figure 3, the average size of the sampled topo-
graphic features at each of the sites varies considerably. For
example, the median s varies from 5.2 cm at Lost Creek to
82 cm at Whitewater River. Note that the breadth scale is
2s. Variations in the average geometry of the features at the
sites are due to differences in both the size of the channel
and the environmental factors that control the shape of the
features.
[15] A chi-square goodness of fit test was performed on

all of the parameters to test the hypothesis that they are
lognormally distributed. The probability (P) of obtaining a
chi-square value greater than the value computed for each

distribution is shown in Figure 3 for each parameter. Greater
values of P mean the data more closely fit the assumed
distribution. If P is greater than 0.10, the hypothesis that the
distribution is lognormal cannot be rejected at the 10%
significance level. On the basis of this statistical test, the
size distributions of H, s, and l at all of the sites can be
considered lognormal.
[16] Additional histograms of important combinations of

H, s, and l are shown in Figure 4. These combinations are:
s/H, the primary measure of the shape of the feature; l/s,
the ratio of the two streamwise length scales; and the
product, CD H, a measure of the intensity of the wake
produced by flow past the feature. Many, but not all, of
these variables can be considered lognormally distributed
based on the statistical test described above. Like the
primary geometric parameters (H, s, and l), these param-
eters also vary considerably between sites. For example, the
median shape, (s/H)50, of the features varies from ‘‘sharp’’
(0.9 at Lost Creek) to ‘‘broad’’ (4.6 at Whitewater River).
[17] In addition to having similar statistical distributions,

there are several other important similarities between the
statistics of the bank features at the sites. Some of these
similarities can be seen from Table 2, which lists the mean
(m) and standard deviation (u) of the natural logarithm of H,
s, and l. Despite substantial differences in the means for
each variable, the standard deviation of each parameter falls
within a fairly narrow range. The same is true for the
standard deviations of the logarithms of the ratios s/H,
l/s, and l/H, which are given in Table 3 together with the
correlation between the two variables defining each ratio.
Table 3 shows that the two streamwise length scales s and l
are strongly correlated at all sites. The sites also have
comparable, but weaker, s-H and l-H correlations.

3. Model Development for an Irregular Sequence
of Topographic Features

[18] The flow over an irregular sequence of topographic
features, such as the one shown in Figure 1b, is similar to
the flow over a regular sequence of elements, which is
described in the companion paper [Kean and Smith, 2006].
In both cases, determination of the flow field over the
sequence requires calculating the form drag on the individ-
ual elements. For irregular sequences, this calculation is
complicated by the fact that the form drag on each element
is unique as a result of its size, shape, and location relative
to the other elements in the array. This section (1) provides a
brief overview of the model for the regular sequence and its
relation to the present model, (2) outlines important dis-
tinctions in the definition of certain variables between the
two models, and (3) describes the additional model compo-
nents that are required to generalize the method of Kean and
Smith [2006] to include the effects of topographic variability
on the flow field. The reader is referred to the companion
paper for a description of equations that form the core of the
model for the irregular sequence.
[19] The drag (F) on an individual element is given by the

equation

F ¼ 1

2
rCDHBu

2
ref ð2Þ
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where r is the density of water, B is the length of the
element in the direction perpendicular to the x and z axis,
and uref is an appropriately determined reference velocity.
The square of the reference velocity is defined to be the
average of the square of the velocity that would be present if
the element were removed from the flow. A robust estimate
of uref can be made by averaging the square of the velocity
over the volume the element occupies (see Figure 2 of Kean
and Smith [2006]). The velocity in this area primarily is

affected by three interdependent regions each having
turbulent processes which scale differently. They are an
internal boundary layer region, a wake region, and an outer
boundary layer region. The model of Kean and Smith
[2006] describes the velocity in each region separately and
joins them together using appropriate matching conditions.
The three interdependent regions also are present in flows
over irregular sequences of topographic elements and can be
described using same equations with relatively minor

Figure 3. Histograms of H, s, and l (in units of centimeters) for measured bank topographic features
near three USGS streamflow gauging stations. The number (n) of topographic features in each sample is
listed for each site. A continuous lognormal distribution defined by the mean (m) and standard deviation
(n) of the natural logarithm for each variable is shown for comparison (dotted line). A statistical measure
(P) of how well the data follow a lognormal distribution also is given for each variable. For reference, the
approximate bankfull discharges for Lost Creek, Rock Creek, and Whitewater River are 5, 20, and
150 m3/s, respectively.
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modification that will be outlined later. For irregular
sequences, the reference velocity is particular sensitive to
the relative location of the element within the array. For
example, the reference velocity (and drag) on a small bump
downstream from a large one is relatively low, because it is
well inside the wake of the large bump upstream. Conversely,
the reference velocity on a large bump downstream from a
small one is hardly affected by the wake of the small bump
upstream, because much of the large bump is above the wake
of the small bump. In both cases, the reference velocity also
depends on the geometry of the bumps further upstream. The
momentum deficit produced by drag on these upstream
bumps causes momentum to diffuse in toward the boundary

and creates an evolving outer velocity profile, which, in turn,
scales the wake of each bump. Thus the flow and boundary
shear stress over an irregular boundary depend on a
complicated interaction of the various elements.

Table 2. Statistics of Geometric Parameters of Measured Bank

Topographic Features

Site n

H s l

m n m n m n

Lost C. 25 1.96 0.74 1.69 0.66 3.29 0.63
Rock C. 151 1.30 0.67 2.03 0.66 3.52 0.66
Whitewater R. 98 2.89 0.83 4.34 0.79 6.13 0.85

Figure 4. Histograms of s/H, l/s, and CD H for the same measured bank topographic features shown in
Figure 3. The percentiles for CD H are given in units of centimeters. A continuous lognormal distribution
defined by m and n for each variable is shown for comparison (dotted line).
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[20] Several important distinctions in the meaning of
some of the variables defined by Kean and Smith [2006]
must be made in order to generalize the equations to apply
to the case of an irregular sequence. First, as mentioned
earlier, l for an individual element in an irregular sequence
is not always equivalent to the spacing between crests as it
was in the regular model. Rather, for the irregular problem,
l for an individual feature is the distance between the
intersections of its Gaussian curve with the Gaussian curves
of the upstream and downstream features. The second
important distinction concerns the application of the empir-
ical equation for b (equation (17) of Kean and Smith
[2006]), which is a constant that sets the eddy viscosity in
the wake. In the Kean and Smith [2006] formulation, the
value of b is adjusted empirically as a function of l and H.
This adjustment accounts for near-field flow effects that are
present for closely spaced sequences, which are not
accounted for in the far-field wake solution employed by
the model [Schlichting, 1979]. Unlike the regular case
addressed in the companion paper, H and l vary for each
element in an irregular sequence. In this situation, a value of
b must be defined for each element in the sequence. For a
given element, the appropriate value of H to be used in the
equation for b is the H for the upstream object producing
the wake, and the corresponding value for l is the distance
between the crests of the two elements.

3.1. Change in Uniform Roughness

[21] Before treating flow over an irregular sequence, it is
useful to first examine the simpler case of an abrupt change in
surface roughness from one uniform set of elements to
another set having a different roughness height due to skin
friction plus form drag (zoT). This problem has received
considerable attention in the atmospheric literature, with
regard to the change of a wind profile from one surface
condition to another, such as from a field to a forest or vice
versa. Diagrams of smooth-to-rough and rough-to-smooth
changes in uniform sets of roughness elements are shown in
the background of Figure 5. As a flow, which is in equilib-
rium with the surface beneath it, encounters a rougher
surface, it decelerates as a consequence of the greater resis-
tance of the new surface. The opposite occurs in a transition to
a smoother surface, where the flow accelerates because the
new surface offers less resistance. These effects are initially
felt only very near the boundary, but diffuse upward to form a
new growing boundary layer. The flow in this layer evolves to
be in equilibrium with the new boundary. The thickness of
this new layer can be described using the same formulation
that was used to describe the growth of the internal boundary
layer downstream from the separation zone behind a rough-
ness element [Miyake, 1965]. In order to distinguish between
the two types of internal boundary layers, the higher internal
boundary layer, associated with the change in roughness, will

be referred to as a disturbance layer. The equation for the
thickness of the disturbance layer (dDL) is given by

dDL
x00

ln
dDL
zoT

� �
� 1

� �
¼ gk ð3Þ

where x00 is the distance downstream from the beginning of
the disturbance layer, zoT is the total roughness height of the
downstream surface, k is von Karman’s constant = 0.408
[Long et al., 1993], and g is a constant = 1.25 [Walmsley,
1989].
[22] Above the disturbance layer, the flow is unaffected

by the roughness change and thus has the same structure it

Table 3. Statistics of Combinations of Geometric Parameters of Bank Topographic Features

Site

s/H l/s l/H

m n Correlation m n Correlation m n Correlation

Lost C. �0.27 0.48 0.66 1.60 0.21 0.97 1.33 0.53 0.71
Rock C. 0.73 0.69 0.51 1.49 0.29 0.93 2.22 0.60 0.60
Whitewater R. 1.44 0.73 0.69 1.80 0.42 0.87 3.24 0.67 0.75

Figure 5. Calculations of the total boundary shear stress
averaged over each bump (symbols) for (a) smooth-to-
rough transition and (b) rough-to-smooth transition. The
boundary shear stress calculated using (4) is shown with the
dashed line and gives the same result for all but the first
element in the change in roughness. The geometry of the
elements is drawn in the background together with the top
of the first part of the wake for each element and the growth
of the disturbance layer (dotted line). The shear velocity of
the upstream flow is 0.17 m/s for Figure 5a and 0.21 m/s for
Figure 5b. In both cases the upstream velocity at z = 2.5 m
is 2 m/s.
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did upstream from the change in bed roughness. Within the
disturbance layer, the flow develops a structure associated
with the new roughness. As a result, there is a distinct slope
change in the velocity profile at the interface between the
two regions. Elliot [1958] assumed that the velocity profile
within the disturbance layer was logarithmic and character-
ized by the roughness height of the new surface. Equating
the upstream and downstream logarithmic profiles at the
height of the disturbance layer gives an expression for the
boundary shear stress as a function of position downstream
(x) from the roughness change

tT2 xð Þ
tT1

¼ 1� ln zoT1=zoT2ð Þ
ln dDL xð Þ=zoT2ð Þ

� �2
ð4Þ

where tT1 and zoT1 are the total boundary shear stress and
total roughness height of the upstream surface, and tT2 and
zoT2 are the same parameters for the downstream surface.
This simple assumption has been shown to be in good
agreement with atmospheric measurements [Kaimal and
Finnigan, 1994].
[23] Assuming the flow near the top of the disturbance

layer has developed a logarithmic structure, the form drag
on all but the first bump downstream from the roughness
change can be determined using the form drag model for
regular sequence of elements [Kean and Smith, 2006], and
the velocity at the top of the disturbance layer, which can be
determined from the upstream profile. For the first bump of
the roughness change, it is assumed the disturbance layer
does not affect the drag, because the flow within the
disturbance layer has not had sufficient time to organize
into a logarithmic profile. The drag on this bump is
produced primarily from the upstream flow, and can be
calculated using the drag equation (2) and a reference
velocity determined from the upstream flow. Specifically,
the reference velocity is calculated by averaging the up-
stream profile over the area of the first bump through the
equation

u2ref ¼
1

A

Z
A

u2 x; yð ÞdA ð5Þ

where A is the plan view area of the element. The
plan view area of a Gaussian shape is given by

Hs
ffiffiffiffiffiffiffiffi
p=2

p
erf xdn�xcffiffi

2
p

s

� �
� erf

xup�xcffiffi
2

p
s

� �h i
, where xup xdn, and xc

are the streamwise positions of the upstream end, down-
stream end, and center (crest) of the element, respectively.
As in the case of the regular sequence, the upstream profile

in this case consists of three flow regions matched together
in the same manner. They are (1) the outer logarithmic
region of the upstream sequence, and (2) the wake and (3)
the internal boundary layer of the last bump of the upstream
sequence. Depending on the protrusion height of the
element, the integral for the uref may include only the
lowest region, the lowest two regions, or all three regions.
[24] These methods were used to determine the boundary

shear stress for a hypothetical flow over the two boundaries
shown in the background of Figure 5. The flow is modeled
as very deep, and consequently, there is no significant
change in the free surface elevation due to the roughness
differences. The roughness elements for the two surfaces
were modeled after the Rio Puerco measurements. The
smoother surface was modeled after the deviation bumps
with l = 0.70 m and the rough surface was modeled after
the fourth bump with l = 2.09 m. The skin friction
roughness height, zoSF, used for both surfaces is 1.0 �
10�4 m. The roughness heights for these two surfaces were
determined to be (zoT)smooth = 1.9 � 10�2 m and (zoT)rough =
4.9 � 10�2 m using the method of Kean and Smith [2006].
Figure 5 shows the total boundary shear stress averaged
over each unit ‘‘cell’’ for both a smooth-to-rough change
and a rough-to-smooth change. The ‘‘cell’’ is the region, of
length l, between the end of the upstream element and the
beginning of the downstream element as shown in Figure 6.
The total boundary shear stress calculated using (4) also is
shown for comparison in Figure 5. With the exception of the
first bump, the two methods are identical. In both cases, the
stress on the boundary of the new surface asymptotically
approaches a new equilibrium value.

3.2. Irregular Sequence

[25] The same concept that was used to describe flow
over a single change in roughness can be applied repeatedly
to describe the flow over a boundary having multiple
changes in roughness. At the beginning of each distinct
set of roughness elements, a new disturbance layer is
produced and grows in proportion to the roughness height
for that section according to (3). As before, the velocity
beneath each disturbance layer can be described by a
logarithmic profile. Moving downstream, the disturbance
layers stack on top of each other to form a composite outer
flow region that scales the wakes of the elements on the
boundary. The idea can be further extended to describe the
flow over a completely irregular sequence of elements. In
this framework, every element is the first bump in a change
in roughness problem, and each produces a disturbance

Figure 6. Diagram of multiple disturbance layers (dashed line) produced by different types of
roughness elements. The faster growing disturbance layer produced by the zo3 element envelops the
slower growing layer of the smaller zo2 elements. The top of the first part of the wake for each element is
also shown (solid line). Element types 1–4 are as in Table 4.
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layer that diffuses away from the boundary as shown in
Figure 6. Faster growing disturbance layers envelop slower
growing layers as is seen in Figure 6. The disturbance layer
for each element is distinct from the wake of that element.
Turbulent mixing will blur the well-defined boundaries
between disturbance layers that are described by this model.
Nevertheless, such a model provides a simple way to
include the dominant effects of upstream objects on the
evolving velocity field.
[26] The sequence of bumps controls the rate at which

momentum is lost at the boundary and various sequences
produce different average values of the momentum loss
(that is, different zoT’s). Drag is a very nonlinear process and
the drag on a sequence of bumps divided by the number of
bumps can differ substantially from the drag on a bump of
average height, average width, and average spacing; there-
fore the effective zoT’s can vary substantially with stream-
wise position. A spatially averaged value of zoT over a
domain that is determined by the flow depth (better termed a
spatially filtered value of zoT) controls the value of the
velocity at the surface of a flow no matter what the depth, as
long as the depth is finite and no other fluid mechanical
effects become important. As depth increases it takes longer
for the information on bed or bank roughness to diffuse to
the surface and the surface velocity affected by that part of
the boundary occurs further downstream. In addition, owing
to the diffusive interior of the turbulent flow, the domain
over which the boundary roughness is being averaged,
namely the effective span of the filter, increases with flow
depth.
[27] Provided the effective roughness height of individual

elements is known, the height of the disturbance layer can
be calculated. The drag on each individual bump is deter-
mined in a similar manner that was used to determine the
drag on the first bump in the change in uniform roughness
problem. In the irregular case, the three regions of the
velocity profile used to calculate the reference velocity for
each element are the (1) composite outer flow region
composed of the logarithmic velocity segments within each
disturbance layer, (2) the wake region, and (3) the internal
boundary layer region of the upstream element. The same
matching conditions are applied between both the wake and
the composite outer profile and the wake and the internal
boundary layer. The shear velocity for each segment of the
outer profile is determined in the same manner as was done
for the simple change in roughness problem, by equating the
velocities in the upper and lower logarithmic segments at
the height of the disturbance layer between the two. From
this condition, the shear velocity for the ith disturbance
layer above the jth element may be written as

u*i xj
 �

u*i�1
xj
 � ¼ 1�

ln zoi
zoi�1

� �

ln
dDL xj�xið Þ

zoi

� � ð6Þ

where xi refers to streamwise distance from an arbitrary
upstream datum to the origin of the ith disturbance layer,
and xj refers to distance from this same datum to the center
of the jth element.
[28] The roughness height for the set of five small

elements (zo2) shown in Figure 6 can be determined using
the model for a regular sequence described by Kean and
Smith [2006]. The same method is used to estimate the
roughness heights for individual elements (zo1, zo3, zo4) by
assuming their roughness height is approximately the same
as it would be for a regular sequence of those elements. This
approximation should not lead to significant errors in the
predicted height of the disturbance layers, because the
height of the layer is a weak function of roughness height
(�zo

1/5), as is seen by Elliot’s [1958] explicit expression for
the height of an atmospheric internal boundary layer:

dDL
zo

ffi ao
x

zo

� �4=5

ð7Þ

where ao is a constant. In addition, because there is very
little curvature to the velocity profile in the outer flow
region, the velocity matching conditions between layers will
not be seriously affected by errors in the disturbance layer
height due to the estimate of zo.

3.3. Finite Depth

[29] In a finite depth, steady flow over an irregular
sequence of elements, the accelerations and decelerations
produced by the varying elements can result in changes in
the free surface elevation that affect the boundary shear
stress. These velocity changes are associated with both an
approximately inviscid flow response to the shape of the
object, and a resistance response due to the drag on
the objects. The change in the free surface elevation due
to the approximately inviscid response of the flow is very
small if the Froude number is low, and the protrusion height
of the bed or bank elements is considerably less than the
depth or width of the flow. These conditions are imposed on
the remaining calculations of this paper, and are frequently
met in natural rivers. The effects of the inviscid flow on the
surface elevation could be incorporated iteratively into this
model using Bernoulli’s equation. The free surface elevation
also will be nearly constant if the size of the elements varies
about a mean, such that there is not a systematic trend in the
average resistance of the elements. Given this constraint,
the condition of steady flow can be met by requiring that the
integral of the composite outer profile from the boundary to
the surface equals the discharge per unit width.

4. Application of the Model

[30] Having developed a method to calculate the flow and
boundary shear over an irregular series of roughness ele-
ments, we can now address the importance the relative order
has on the average boundary shear stress. As an example,
this is done by comparing the flow over different config-
urations of a set of four types of elements. The four types of
elements are modeled after the Rio Puerco measurements of
bank topography shown in Figure 1 and have the geometry
characteristics listed in Table 4. Table 4 also lists the total
roughness height for a regular sequence of each element
(zoTreg). The low, broad bump of the measured set has been

Table 4. Geometry of the Modeled Element Types

Type H, m s, m s/H l, m CD

H
lCD zoTreg, m

1 0.63 0.85 1.35 3.40 0.63 0.12 0.062
2 0.11 0.14 1.27 0.70 0.67 0.11 0.012
3 0.49 0.29 0.59 1.74 1.13 0.32 0.049
4 0.40 0.41 1.02 2.09 0.81 0.16 0.049
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replaced by a sequence of five bumps with geometry similar
to that determined from the Fourier analysis of the small-
scale features (see Figure 6). A smaller height is used for
these five bumps in order to have a greater range in element
sizes in the analysis. The four types of elements are
embedded within a regular sequence of similar sized ele-
ments on the bed of a hypothetical channel having friction-
less banks and the geometry and upstream flow properties
listed in Table 5. The geometry of the regular elements is
the same as type 4 in Table 4. The model also could be
applied to the same elements on a channel bank.
[31] Calculations of the average total boundary shear

stress on individual elements were made for all 24 possible

configurations of the four element types. Figure 7 shows the
calculations for four of these configurations. The results are
presented for individual elements as well as for the average
of the configuration, and hence highlight both the individual
and collective effects of the elements. The four configura-
tions depicted are the measured order 1-2-3-4 (Figure 7a),
the reverse of the measured order 4-3-2-1 (Figure 7b), and
the bounding configurations, 1-4-2-3 and 3-1-4-2, that
produce the highest (Figure 7c) and lowest (Figure 7d)
average stress. For reference, the average boundary shear
stress of the upstream and downstream series also is shown.
In all cases, the drag stress on the elements accounts for
over 90% of the total boundary shear stress in each cell,
which means that the skin friction available to transport
sediment is only 10% of the total stress. Figure 8 shows the
calculated velocity profile at the position of the first element
of the regular downstream sequence. These results show the
logarithmic segments of the disturbance layers that form the
composite outer profile, as well as, the wake profile created
by the upstream element, which is different in each case.
[32] The calculations of boundary shear stress demon-

strate that the drag and resulting stress on an individual

Table 5. Upstream Flow Properties of the Modeled Channel

Property Value

Depth 2.5 m
Unit discharge 3.75 m2/s
Surface velocity 2.0 m/s
tT 43.1 N/m2

zoSF 0.0001 m
zoT 0.049 m
Slope 0.0018

Figure 7. Model calculations of total boundary shear stress (N/m2) averaged over individual elements
(symbols) and the set of variable elements (dashed line) for four different configurations, which are (a) 1-
2-3-4, (b) 4-3-2-1, (c) 1-4-2-3, and (d) 3-1-4-2. The configuration of the elements is drawn in the
background, and the calculated values for each element are labeled by element type. The label ‘‘R’’
denotes the elements that are part of the upstream and downstream regular sequence. The geometry of the
regular elements corresponds to type 4. The average upstream boundary shear stress is shown with the
dotted line. The flow direction is from left to right.
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element is largely dependent on its position in the sequence.
This dependence is primarily controlled by the size and
shape of the next element upstream. For example, the drag
on each element type immediately downstream from the
steepest element (type 3) is noticeably lower than its value
when a smaller or broader element type is in the upstream
position. This result is because these elements are located
within the low-velocity zone created by the wake of the
steep element. In the extreme case, as seen in Figure 7b,
there is almost no drag on the smallest element (type 2)
downstream from the steep element, because most of it is
within the upstream separation zone. The effect of the
largest element (type 1) on elements downstream is not
nearly as pronounced as for the steepest element. Although
it is taller, its greater breadth gives it a lower drag coeffi-
cient and puts more distance between it and the next
element downstream. These factors combine to produce a
smaller velocity deficit in the wake at the position of the
downstream element and, consequently, allow for more drag
on it. When elements are located immediately downstream
from the sequence of small type 2 elements, the stress and
drag on them is higher. The taller elements extend above the
wake of the small upstream elements and further into the

faster outer flow, which also has slightly accelerated be-
cause of the diminished resistance provided by the small
bumps.
[33] The calculations for the configurations that produce

the highest and lowest average shear stress for the set
(Figures 7c and 7d) further demonstrate the effect of
sequence. The lowest stress configuration (3-1-4-2) is one
that minimizes the drag on each of the element types. In this
configuration, the three largest drag producing elements
(3, 1, and 4) are grouped together in such a way that they
shelter each other in wakes with large velocity deficits, and
hence experience less drag. Moving the steepest bump to
the rear of that sequence produces the combination with the
highest average shear stress (1-4-2-3). In this configuration,
drag on all the elements is maximized, because the two
largest drag producing elements, 1 and 3, are separated by
the smaller elements, and hence are not sheltered in wakes
with large velocity deficits.
[34] The most notable feature of these calculations is that,

although the stress on an individual element varies consid-
erably with position, there is relatively little variability in
the average stress over the set. The statistics of this stress for
the 24 configurations are given in Table 6. The standard

Figure 8. Model calculations of velocity at x = 11.8 m, which is the center of the first element of the
regular downstream sequence. The lower portion of the profile shows the wake and internal boundary
layer that would be in that position if the element were removed from the flow. The dotted lines denote
the height of the disturbance layers that form the composite outer profile, and the dashed line denotes the
matching height between the wake and this profile. The entire wake profile has been drawn to show the
top of the wake.
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deviation of the cases is about 7% of the mean. The mean
value of boundary shear stress for all of the configurations
also happens to be very close to the value of the upstream
shear stress. The good agreement is due to a fortuitous
choice for the geometry of the regular sequence and would
not be as good had a regular sequence with a substantially
higher or lower roughness been chosen.
[35] One reason for the low variability in average stress is

because the upstream elements only affect the drag on other
elements located a short distance downstream. This can
most easily be seen by examining the second regular bump
of the downstream sequence (x = 14 m) in Figure 7. For all
four cases shown, the value of the average boundary shear
stress on this bump is nearly the same value regardless of
the element type two positions upstream, which is different
for each case shown. Although, each of the element types in
that position produces a different wake and roughness
disturbance, they only substantially affect the drag on the
element immediately downstream. Their effect on the sec-
ond bump downstream is minor.
[36] In order for the stress on the second regular bump to

be unaffected by the upstream sequence, the velocity that
scales the wake over this element must be nearly the same in
all cases. This is already the case a short distance upstream,
as can be seen from close inspection of four velocity
profiles over the first regular bump near the elevation z =
0.7 m (Figure 8). The velocity is the same at this level
despite the fact that the profiles are made up of logarithmic
segments from different disturbance layers, which are
slightly accelerating or decelerating relative to one another,
as can be seen by the minor kinks in the profile. The main
reason the velocity is the same in all four cases is that each
of the profiles must adjust to convey the same discharge. In
addition, because all four disturbance layers are present at
this position, the small accelerations and decelerations
within each of the disturbance layers result in the same
velocity near bottom of the profile.

5. Characteristic Geometry of an Irregular
Sequence of Topographic Features

[37] The same spatially averaged velocity profile pro-
duced by flow over an irregular boundary also can be
produced by flow over an equivalently rough boundary
composed of identical roughness elements. Simplifying an
irregular boundary into an equivalent regular one is partic-
ularly useful in modeling more complicated flow situations
that can occur near the banks of channels with small-scale

roughness features. Unfortunately, it is not generally possi-
ble to specify the geometry of an equivalent regular se-
quence directly from the measurements of an irregular
surface. This difficulty is due in part to the fact that the
geometry of the equivalent series is not unique; i.e., there
are multiple combinations of H, s, and l that define equally
rough surfaces composed of identical Gaussian elements.
Despite the fact that a general formula for the characteristic
geometry of an equivalent sequence is not available, the
moments of the statistical distributions of H, s, and l can be
used to approximate the characteristic geometry for a wide
range of irregular surfaces. This approximation is similar to
empirical relations for gravel bed roughness, which relate
the bed roughness height to the moments of the grain size
distribution (e.g., zo = 0.1 D84, where D84 is the 84th
percentile of the size distribution of the nominal diameter
[Whiting and Dietrich, 1989]).
[38] The relation between the moments of the H, s, and l

distributions and the characteristic regular geometry is
determined empirically by applying both the irregular and
regular versions of the form drag model. First, the spatially
averaged velocity profiles over different irregular sequences
of topographic elements are determined using the irregular
form drag model described above. The statistical moments
of the shape parameters for these cases are used to set the
geometry of a regular sequence. The regular version of the
form drag model [Kean and Smith, 2006] is then used to
compute the spatially averaged velocity profiles over the
regular surfaces and the results are compared to the results
for the irregular surfaces. A trial and error procedure has
been used to identify which moments of the H, s, and l
distributions define a regular geometry that has equivalent
roughness characteristics as the majority of the irregular
surfaces.
[39] Ten simulated irregular sequences of topographic

features and three field-measured sequences (shown in
Figure 3) are used in the analysis. The simulated surfaces
consist of a series of 1000 Gaussian-shaped topographic
elements. A sample of one of these sequences is shown in
Figure 9. The size and shape of each element is chosen at
random from lognormal distributions of H and s/H. This
sampling retains the weak correlation between s and H
(corr ffi 0.65), which is observed in the measured sequen-
ces. Samples outside of three standard deviations from the
mean were excluded. The value of l for each element in the
simulated sequence is set to be 4.9s, which is typical of
the measured bank features shown in Figure 3. The means
(m) and standard deviations (n) defining the lognormal H
and s/H distributions of each simulated case are varied
systematically in order to generate surfaces having a spec-
trum of different roughnesses. Three values for ms/H are
used to generate sequences having sharp, intermediate, or
broad median shapes, with values of (s/H)50 equal to 0.5,
1.0, and 2.0. Similarly, three values for both ns/H and nH are
used to generate sequences having high, normal, and low
variability in both s/H and H. Normal variability in s/H and

Table 6. Statistics of the Average Boundary Shear Stress on the

Set of Four Element Types for All 24 Possible Configurations

Value

Mean 43.5 N/m2

Standard deviation 2.9
Maximum (Figure 7c) 49.3 N/m2

Minimum (Figure 7d) 39.3 N/m2

Figure 9. First 10 elements in the simulated sequence of case 2 in Table 7. Figure 9 is drawn without
any vertical exaggeration.
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H is defined to be ns/H = 0.65 and nH = 0.75. These two
values are similar to the values observed in measured
topographic sequences (see Tables 2 and 3). All simulated
cases have the same mH, which corresponds to H50 = 10 cm.
The values of ms/H, ns/H, and nH for each of the ten
simulated cases are summarized in Table 7.
[40] The results of the empirical analysis are shown in

Figure 10. Over the range 0.075 < zoT/H50 < 0.40, the
characteristic geometry of an irregular sequence is well
approximated by

Hreg ¼ exp mH þ 1:2nHð Þ ¼ H88

sreg ¼ exp ms þ 1:2nsð Þ ¼ s88

lreg ¼ 6H88 ð8Þ

where Hreg, sreg, and lreg are the shape parameters for
equivalent regular sequence, and H88 and s88 are the 88th
percentiles of the H and s size distributions for the irregular
sequence. The spatially averaged flow over surfaces with
roughness properties outside this range, such as the White-
water River and case 8, need to be calculated using the
irregular model.
[41] The trends in zoT for the simulated sequences shown

in Figure 9 and listed in Table 7 also identify the effects that
specific aspects of topographic variability have on flow
resistance. The effects of median shape on roughness can be
seen by comparing cases 1, 2, and 3. Not surprisingly,
surfaces with steeper median shapes are rougher than
surfaces with broader median shapes. The effects of vari-
ability in size can be seen by comparing cases 2, 4, and 9,
which have the same shape characteristics and median
height, but different degrees of variability in H. This
comparison shows that surfaces having a greater range in
H (high nH) are rougher (higher zoT) than surfaces having a
narrow range of heights. The reason for this trend is that
surface roughness is controlled primarily by the larger
elements. As nH increases from 0.5 to 0.75 to 1.0 in cases
9, 2, and 4, respectively; the size of the larger elements, as
measured by H88, increases correspondingly from 18 to 25
to 33 cm. The effects of variability in shape, which are less
intuitive, can be seen by comparing cases 2, 5, and 10.
These cases are generated from distributions having the
same ms/H and nH, but different values of ns/H. This
comparison shows that surfaces with a greater range of
shapes tend to be less rough than surfaces with less
variability in shape. One reason for this trend is tied to
the relation between CD of an individual element and shape.

On the basis of the laboratory measurements of Hopson
[1999], the drag coefficient is modeled to decrease expo-
nentially as shape broadens (see equation (1)). For the
comparison between cases 2, 5, and 10, the nonlinear trend
in CD means that the average of the individual drag
coefficients for a series of Gaussian elements with high
variability in shape will be lower than the average of the
individual drag coefficients for a series with less variability
in shape. Specifically, as ns/H decreases from 0.90 to 0.65 to
0.40 in cases 5, 2, and 10, respectively, the average of the
individual drag coefficients for elements greater than or
equal to H88 in each series increases correspondingly from
0.75 to 0.76 to 0.79. While other nonlinear effects are at
work, the trend in the average drag coefficients contributes
to making the surfaces progressively rougher.

6. Field Applications

[42] The methods described in this paper for calculating
the form drag on small-scale topographic features were
developed originally to help (1) address problems of bank
erosion and (2) quantify channel flow resistance for the
purposes of determining accurate theoretical stage-discharge
relations (rating curves). To date, testing the accuracy of
these methods has been carried out in the context of the
latter objective. These tests, which are described by Kean
and Smith [2005], were made at two USGS streamflow
gauging stations mentioned earlier in this paper (Rock
Creek and Whitewater River). The two channels are rela-
tively narrow and, consequently, the bank roughness is an

Table 7. Lognormal Distribution Parameters and Roughness

Height for 10 Random Sequences of 1000 Topographic Elementsa

Case nH ms/H ns/H zoT, m

1 0.75 0.69 0.65 0.008
2 0.75 0 0.65 0.025
3 0.75 �0.69 0.65 0.041
4 1 0 0.65 0.053
5 0.75 0 0.90 0.019
6 1 0 0.90 0.033
7 1 0.69 0.65 0.011
8 1 �0.69 0.65 0.083
9 0.5 0 0.65 0.016
10 0.75 0 0.40 0.030
aAll cases have mH = 2.3 (H50 = 10 cm) and l/s = 4.9 for every element

in the distribution.

Figure 10. Comparison of the spatially averaged total
roughness height for irregular sequences of topographic
elements calculated using (1) the model for irregular
sequences of elements and (2) the model for regular
sequences of identical roughness elements with geometry
specified from equation (8). The dashed lines indicate the
domain where equation (8) applies. Both measured and
simulated sequences are shown. The dotted line is the line
of perfect agreement.
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important contribution to overall flow resistance in these
channels. The form drag model described in this paper was
applied to field measurements of bank topography, which
are shown in Figure 3 (see also Figure 1 of Kean and Smith
[2006]). A representative roughness height, zoT, for the
banks was determined by the model based on multiple
samples of bank topography that were made at different
elevations above the bed and at different positions along the
reach. Additional field measurements were made to deter-
mine the roughness height of the bed and the size and
spacing of bank and floodplain vegetation. Those parame-
ters along with the roughness height of the bank and a
topographic survey of the reach were used by a specially
designed channel flow model to calculate a theoretical
rating curve. Other than specifying the bed roughness height
using a single low flow discharge measurement, no empir-
ical adjustments were made in the calculation. The calcu-
lated theoretical rating curves for the two sites were shown
to be in good agreement with discharge measurements made
at the sites [Kean and Smith, 2005]. While such compar-
isons, which are designed to assess the overall ability to
quantify channel flow resistance as a function of stage, only
indirectly test the roughness algorithms outlined in this
paper, they nonetheless demonstrate that the method is
sufficiently accurate for the purposes of determining dis-
charge in narrow channels. Although the contribution of
bank roughness to the total flow resistance of channels with
width-to-depth ratios greater than 10 can be very small,
bank roughness affects the near-bank flow regardless of
the width-to-depth ratio. Given the importance of the near-
bank flow in controlling lateral erosion, additional field
testing of the methods described in this paper needs to be
conducted.
[43] Two additional comments should be made regarding

the field application of this model. First, it needs to be
emphasized that one of the goals of this work has been to
develop a relatively simple tool that can convert basic
measurements of complex topography into estimates of
surface roughness. For this reason, this work has focused
on capturing the essential physics of the problem and has
not attempted to address the higher-order effects that are
present in flows over complex topography. Second, when
modeling flow and sediment transport in rivers a hydrostatic
base model usually is employed for computational efficiency.
Implicit in taking such an approach is the expectation that
all abrupt topographic features, which inevitably produce
non hydrostatic pressure fields, are treated as roughness
elements. For this reason proper fluid mechanical treat-
ment of such topographic features in a predictive manner
is an essential part of modeling flow, sediment transport,
and geomorphic adjustment in streams and rivers. More-
over, the ability to separate the effects of form drag from
the stress on the actual boundary is required for calculating
accurate sediment transport fields and patterns of erosion
and deposition in river mechanics and river restoration
problems.

7. Summary and Conclusions

[44] This paper presents a method to characterize the
roughness properties of irregular fluvial surfaces character-
istic of the banks of natural streams and rivers. Field

measurements of bank topography show that (1) the shape
of topographic bank features is well approximated by a
Gaussian curve, which is specified in terms of three param-
eters, H, s, and l; and (2) the statistical distributions of
these parameters along a bank are approximately lognormal.
A model for calculating the flow and boundary shear stress
over irregular boundaries composed of Gaussian-shaped
topographic elements was developed by generalizing the
method of Kean and Smith [this issue]. This generalization
was accomplished by diffusing the resistance effects of the
various features away from the boundary to form an
evolving outer profile that scales the wakes of each feature.
The model was then used to determine the relative impor-
tance of size, shape, and sequence of the topographic
features. Model calculations show that drag on an individual
topographic feature is primarily controlled by the size and
shape of the element immediately upstream. The model also
shows that for a given set of different sized elements, the
spatial average of the boundary shear stress is only weakly
dependent on the sequence of the elements. Finally, the last
section of this paper shows that the roughness character-
istics of a wide range of irregular sequences of Gaussian-
shaped topographic elements can be well approximated by a
regular sequence of identical elements having a Gaussian
shape defined by H88, s88, and l = 6H88. These relations
makes it possible to use the simpler model described in the
companion paper [Kean and Smith, 2006] to characterize
the roughness and flow field over irregular surfaces. A
notable direction for future work involves extending the
approach to address the flow effects associated with drag on
three-dimensional topographic features.
[45] By extending the method described by Kean and

Smith [2006] to quantify the form drag and roughness of
irregular natural sequences of bank topographic features,
this study provides an essential second step toward the
ability to determine the near-bank flow and boundary shear
stress fields that control lateral erosion, as well as make
accurate predictions of stage discharge relations.
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