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Abstract— The original PI-method is a non-exact method for 3D-
reconstruction using cone-beam projections acquired from a helical
source trajectory. In the new PI-FAST method, our aim is to reduce
the artifacts while keeping the algorithmic simplicity. The detector is
still bounded by the Tam-window, which makes the data capture com-
plete and non-redundant. Also, the filtering step still consists of 1D
ramp-filtering but comprises the following novelty. Using the princi-
ples of fast backprojection we are able to do the backprojection in two
steps interleaved with by rampfiltering. This unusual order is shown
to be advantageous by exploiting frequency-distance coherence in pro-
jection data. The first backprojection step lumps together projection
data over shorter angular intervals along directions which correspond
to various velocities in projection space. By rampfiltering these data
instead of the original projection data we obtain less unwanted inter-
action in the z-direction of the volume and a substantial improvement
in image quality.

I. TWO-STEP FILTERED BACKPROJECTION USING LINKS

Filtered backprojection of 2D parallel data, p(�; t), can
be expressed as filtering with the ramp-filter g(t)

~p(�; t) = p(�; t) � g(t) (1)

followed by backprojection

f(x; y) =

N��1X
i=0

~p(�i; y cos �i � x sin �i) (2)

over a projection angle interval of length �N� � �0 = �.
It has been shown to be efficient to perform the backpro-

jection summation (2) recursively [1], [2] in log2N� steps.
In [3] the process is descibed as iterative summing of fil-
tered projection values along a sinusoid in the sinogram.
We will utilize a simplified version of this fast backpro-
jection technique that performs the calculations in two
steps. First, small intermediate summations along lin-
ear segments approximating the sinusoid are calculated
and stored. We call the linear segments links. In the sec-
ond step the values of the links are combined in build-
ing over � a sinusoid to yield the final result. The rea-
son for the computational gain is that the value of a link
will be used for several pixel values in the second step.
It should be noted, however, that this potential speedup is
not our main reason for using the two-step backprojection.
More interestingly we will show that we may postpone
the ramp filtering till the first step of the backprojection
has been performed.

Figure 1 shows an arbitrary link from (�iA ; tA) to
(�iB ; tB) where iB = iA + n and tB = tA + d. The link
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Fig. 1. The link value is a summation of projection values along the link.

value ~I(�iA ; tA; d) is calculated as

~I(�iA ; tA; d) =

iA+n�1X
i=iA

~p(�i; tA + d
i� iA
n

) (3)

The tilde on ~I indicates that the link value is a summa-
tion of filtered projection data. Although the end points
(�iA ; tA) and (�iB ; tB) preferably are choosen as sample
points in the sinogram, the intermediate values along the
link require an implicit 1D-interpolation each in (3). The
link length n is constant in the algorithm. It has to be short
enough for the line elements not to deviate significantly
from the true curved sinusoid. A reasonable choice [3] is
n � pN�.

The endpoints of a link corresponds to a ray each in
the image domain. The intersection (x; y) of the two rays
(�iA ; tA) and (�iB ; tB) is given by
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x
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�
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�� sin �iA cos �iA
� sin �iB cos �iB
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�1�

tA
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�
(4)

A pixel value is computed by summing the values of the
links that build up the sinusoid of the pixel. See Figure 2.
For each step l along the �-axis, we use values of the four
links surrounding the sinusoid segment to interpolate the
contribution to the pixel value. For notational simplicity
we denote the four link-values ~Jl, ~Kl, ~Ll, and ~Ml. The
pixel value is obtained as

f(x; y) =

N�=nX
l=1

(wl

�
wl+1 ~Jl + (1� wl+1) ~Kl

�
+

(1� wl)
�
wl+1 ~Ll + (1� wl+1) ~Ml

�
) (5)
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Fig. 2. A pixel value is the sum of interpolations between groups of four
links.

where the interpolation weights wl depend on the t-
distance between the sinusoid and the link starting point.

By combining equations (1) and (3), the link value can
be written as

~I(�iA ; tA; d) =

iA+n�1X
i=iA

�
p(�i; tA + d

i� iA
n

) � g(t)
�

=

 
iA+n�1X
i=iA

p(�i; tA + d
i� iA
n

)

!
� g(t) = I(�iA ; tA; d) � g(t)

(6)

where I(�iA ; tA; d) naturally denotes the link value calcu-
lated from unfiltered projection data. The change of or-
der between summation and convolution is possible since
the links are linear and equidistantly spaced along the t-
axis. Equation (6) tells us that we may indeed switch the
order between rampfiltering and the first backprojection
step, the link computation. The right hand side convo-
lution should be seen as a one-dimensional convolution
along the t-axis where all links of constant �iA and d par-
ticipate in one filtering event.

II. THE ORIGINAL PI-METHOD

The original PI-method [4] is an approximate recon-
struction method for the helical cone-beam geometry in
Figure 3. The source moves along a helical trajectory of
radius R and pitch P around the z-axis. We define the
pitch as the distance, measured in an arbitrary length unit,
between two consecutive turns of the helix. The effective
area of the 2D detector is limited in height to a beam win-
dow between two consecutive turns of the source helix.
See Figure 3(b). The physical construction and geometry
of the detector may vary as long as all measurements are
confined to this window, the PI-window. The cone-beam
projections pC(�; ; s) and the corresponding rays inside
the PI-window are parameterized so that � is the projec-
tion angle,  is the fan-angle, and 2s is the detector height
coordinate on a detector wrapped onto the source trajec-
tory cylinder. The rows of this detector are aligned with
the curved helix. The top boundary of the PI-window is
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Fig. 3. Geometry for helical cone-beam acquisition. (a) Example of focus-
centered detector. (b) A detector on the PI-window. (c) A pseudo-parallel
beam together with the planar virtual detector. (d) Nutating PI-surfaces.

therefore at height s = P=4 and the bottom boundary at
s = �P=4.

The first step of the PI-method is a re-sampling step
from cone-beams to pseudo-parallel beams according to

p(�; t; s) = pC(�; ; s) = pC(� � arcsin
t

R
; arcsin

t

R
; s) (7)

Note that the detector height coordinate s is left un-
changed. The re-sampling can thus be performed row-by-
row and is then identical to the well-known 2D procedure
known as parallel rebinning. We observe that the resulting
beam shown in Figure 3(c) is divergent when seen from
the side, but parallel when seen from along the rotation
axis. Also shown is a virtual planar detector orthogonal
to the projection direction placed on the rotation axis. The
pseudo parallel beam intersects this planar detector on a
perfectly Cartesian grid contained in a rectangle. The hor-
izontal rows of this detector have constant value of s.

The PI-method then proceeds with a pre-weighting
with the cosine of the cone-angle for each ray. This is fol-
lowed by 1D ramp-filtering of data along the horisontal
lines of the virtual planar detector. The voxel values are
finally obtained by 3D backprojection of the filtered data.
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Fig. 4. Point on a PI-surface of a helix of pitch P = 1 as projected onto
the planar virtual detector at different projection angles.

III. APPROXIMATIONS IN SOME PREVIOUS HELICAL
CONE-BEAM ALGORITHMS

In order to track the inexactness of the PI-method, we
will now study the set of object points entering the rect-
angular window of the planar detector at the same time.
These points lie on a surface, which we will call a PI-
surface. It can be shown that each object point belongs
to one and only one PI-surface [5]. The complete set of
PI-surfaces has a nutation around the rotation axis and
fills up the complete volume to be reconstructed. See Fig-
ure 3(d).

We assume that the projection system is rotating up-
wards in which case the points of a PI-surface enter the
rectangular detector window on a perfect line on the up-
per boundary simultaneously. See Figure 4. As the ro-
tation of the projection system continues, the projection
of the PI-surface moves downwards on the detector. Un-
fortunately, it starts immediately to deviate from the line
shape and occupies instead an elongated area with a non-
horizontal mid-line. However, after a rotation of exactly
180Æ, all points on the PI-surface are again lined up hor-
izontally, now along the lower boundary of the window,
and exit the rectangular window simultaneously.

The algorithms found in [6], [7], [4] utilize the observa-
tion that the object points on nutating surfaces are concen-
trated along slanted lines in-between entrance and exit.
The 1D ramp-filtering in these algorithms is performed
along these slanted lines or curves. The filtered data is
then backprojected in two dimensions onto the nutating
surface or in three dimensions into the volume. The fact
that some of the object points on the nutating surface are
projected above such a slanted line and some below is not
handled in the filtering step of these algorithms, but will
be addressed by the new PI-FAST method.

Consider a neighbourhood of points on a PI-surface.
They are projected onto a neighbourhood on the detector.
Furthermore, they have similar velocities in the t-direction
on the detector. Unfortunately, the projection values of
this detector neighbourhood are contaminated by object
points belonging to other PI-surfaces. However, on the de-
tector, the projection of these contaminating points have
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Fig. 5. The links needed for a PI-surface of a helix of pitch P = 1. Note
that the number of links in both �- and t-direction is small compared to a
typical case to simplify the illustration. This makes the links sprawl out
in the s-direction more than in a typical case.

different velocities in the t-direction. Only links of the
same slope d

n have the same projected t-velocity [8]. By
not filtering links of different slopes together, PI-FAST
aims to decrease unwanted interaction between neigh-
bouring PI-surfaces during the filtering event.

IV. THE PI-FAST RECONSTRUCTION METHOD

For each PI-surface let us construct a complete set of
link values I(�; t; d). The links are positioned in the 3D
(�; t; s) projection space. The (�; t)-coordinates of the links
are identical to the 2D case since we may regard the re-
construction as 2D when seen from along the rotation axis.
The s-coordinates require some further analysis.

Given a PI-surface and the values of �iA , tA, �iB , and tB
we use (4) to compute the (x; y)-coordinate of the point
on the PI-surface corresponding to the link. Knowing
(x; y), the z-coordinate of the point is uniquely given by
the equation of the PI-surface. The link endpoint coordi-
nates sA and sB can then be calculated by projecting the
point (x; y; z) onto the virtual planar detector from pro-
jection angles �iA and �iB respectively. Analytical expres-
sions of these geometry calculations are found in [9].

The complete set of links for a PI-surface will approx-
imately follow the projection tracks of the points in the
PI-surface from their movements in the projection space.
See Figure 5. At the entrance projection angle �iin of the PI-
surface, the links will all start at s = P=4 and at the final
projection angle �iin + � the links will all end at s = �P=4.
In-between these two angles, the links will spread out in
the s-direction.

When the end-points of the links have been calculated it
is possible to calculate each link value along the line seg-



ment between the link end point as

I(�iA ; tA; d) =

iA+n�1X
i=iA

p(�i; tA + d
i� iA
n

; sA + (sB � sA)
i� iA
n

)

(8)

The implicit 1D interpolation in the t-direction for the 2D
case in (3) has here become an implicit 2D interpolation
on each (t; s)-plane. If we insert the re-sampling step in
(7) into (8), we may construct the link values directly from
the cone-beam data pC(�; ; s) without the intermediate
re-sampling step in (7). There is furthermore no need to
initially re-sample the original cone-beam data to rows of
constant s since the mapping between the actual physical
detector sampling points and the (�; ; s)-system also can
be inserted into (8). The sampling points of the terms of
the summation in (8) will then not coincide with the pro-
jection data sampling points even in the projection angle
direction. An implicit 3D-interpolation is thus necessary
for each term in (8). To avoid aliasing, it may be necessary
to have a smaller step size in the summation along the �-
direction than the sampling distance step used in (8).

Once the link values of a PI-surface have been com-
puted they may be ramp-filtered as described in the right
hand side of (6). The filtered links are then combined into
pixel values according to (5). This backprojection step is
identical to the 2D case, but will nevertheless perform a
3D backprojection. It does not have to consider the link
positions in the s-direction, since this information is al-
ready taken care of in the first backprojection step in (8).
The pixels on the PI-surfaces are finally interpolated onto
a suitable final 3D sampling grid, such as a cubic grid,
for presentation and analysis. Note that this interpolation
only is performed along the z-direction, since the pixels
on the PI-surfaces already are positioned on a Cartesian
(x; y)-grid.

We summarize the computation steps in the PI-FAST al-
gorithm as

1: Pre-weight the projection data with the cosine of the
cone-angle of each ray.

2: for all PI-surfaces do
3: Compute the link values according to (8) using the

appropriate mappings to the acquisition geometry
of the original data.

4: Ramp-filter the link values as in (6).
5: Compute the pixel values of the PI-surface using (5).
6: end for
7: Resample the pixels of the PI-surfaces in the z-

direction onto a Cartesian grid.

V. EXPERIMENTAL RESULTS

Figure 6 shows the reconstruction results of a phantom
consisting of homogeneous spheres. For comparison the
result of a so called multi-slice method with 2D backpro-
jection [10] found in present 4-row scanners is included.
Noise-free projection data was generated on a 64-row de-
tector with a fan-angle of �30Æ and cone-angle of �7:13Æ.
Further experiments and details are found in [9].

(a) Phantom (b) Multi-slice, � = 0:134

(c) PI-method, � = 0:050 (d) PI-FAST, � = 0:034

Fig. 6. Reconstruction results of the sphere clock phantom [9] together
with the root mean square error. Radius R = 2:0 length units, pitch
P = 1:0 length units, N� = 256 projections per half turn, fan-angle
�30Æ, cone-angle �7:13Æ on a 64 row detector with 255 elements per
row. Slice reconstructed on 256� 256� 1 voxels of side 1

128
length unit.

Greyscale interval [�0:05; 0:05].
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