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1.0  Examples of UWB Pulses

Perhaps the simplest UWB communication waveform is the monopulse, an example of which is
plotted in Figure 1.1.  Although it is described as an idealized waveform, it does serve to illus-
trate the important distinction that must be made between transmitted and received carrierless
UWB waveforms, a distinction that is necessary because the effect of the transmitting and
receiving antennas on the shape of the waveform as a function of time is very noticeable, unlike
the case of longer duration waveforms using carriers.  Without getting into the details of the
physical generation of UWB waveforms, it is sufficient to note in this regard that the
transmitting antenna has the general effect of differentiating the time waveform presented to it.
As a consequence the transmitted pulse does not have a DC (direct current) value-the integral of
the waveform over its duration must equal zero.  The waveform in Fig. 1.1 satisfies this
condition and therefore is a plausible model for a UWB waveform; it is ideal in the sense that, in
addition to having no DC value, it has even symmetry about the peak value.  In general, such
symmetry is not achieved in practice, which we will illustrate in what follows with examples of
actual waveforms taken from the literature.
 A clear example of how the antennas affect the UWB waveform is given in Figure 1.2, in
which an impulse-like pulse is differentiated a number of times before being received.  Also
shown in the figure is the reception of multipath components, a characteristic feature of received
UWB signals.  Another example of an UWB signal measurement is shown in Figure 1.3, which
also indicates the bandwidth occupied by the waveform when the basic pulse is used to generate
a communications signal with a baud rate of 850 Kbps.  A simplified "doublet" model of a
differentiated monopulse is shown in Figure 1.4.

Figure 1.1  Monopulse UWB waveform (from [1]).
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Figure 1.2  Example of the effect of antennas on the UWB pulse shape (from [2])

Figure 1.3  Time capture and modulated spectrum of a working UWB communication system
(from [3]).
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Figure 1.4  Doublet model of an UWB pulse shape (from [4]).

2.0  Mathematical Models of UWB Pulses

For analysis purposes, various idealized models and generalizations of the elemental UWB pulse
waveforms have been developed.  Here we consider several models: -cycle sinusoids withR
various envelopes, a sinusoid with a Gaussian envelope, and a family of pulse shapes based on
Hermite polynomials.

2.1  -cycle Sinusoid ModelsR

2.1.1  -cycle Sinusoid with Rectangular EnvelopeR

One analytical model is a "polycycle" waveform consisting of  cycles of a sinusoid:R
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This gated waveform and its power spectral density (the squared magnitude of ) are shownWa b=
in Figure 2.1 for integer values of .  Note that the spectrum is centered at the frequency of theR
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Figure 2.1  Polycycle waveform and power spectral density.

sinusoidal burst and that the bandwidth of the signal is inversely proportional to the number of
cycles in the burst, .  The signal transitions from UWB to a conventional signal in terms ofR
bandwidth when  is greater than four [5].  These characteristics give some freedom to positionR
the waveform in the spectrum and could be the basis for the generation of multiple UWB
frequency-division multiplex (FDM) channels as in conventional communication systems [6].
The equivalent rectangular (noise) bandwidth of the bandpass signal, denoted (in Hz), equalsF
that of the envelope (modulation), which in this case is a rectangular function, which has a
sinc  spectrum.  Using formula 3.821.9 of [7],  is found to be#a b= 1RXÎ# F
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The noise bandwidth is illustrated in Figure 2.2 for , , and .  It is interesting that the 3-R œ # % '
dB bandwidth, denoted , is found to beF$
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F$ is smaller than the noise bandwidth, which in this case equals the 3.9-dB bandwidth.
 The autocorrelation function for the polycycle model, plotted in Figure 2.3,  is given by
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Figure 2.2  Illustration of noise bandwidth.

Figure 2.3  Polycycle autocorrelation function.
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2.1.2  -cycle Sinusoid with Triangular EnvelopeR

Instead of a simple gated-on, gated-off sinusoidal model, one involving a linear-increase and a
linear-decrease can be used.  Because the tapered envelope guarantees that the waveform is
continuous, it is possible to consider both a coherent model, for which the envelope timing is
exactly related to that of the sinusoid, and a noncoherent model, for which the phase and
frequency of the sinusoid are not necessarily related to the envelope.

2.1.2.1  Coherent Model

A coherent model for a sinusoidal burst with  cycles and a triangular envelope may beR
formulated as follows:
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as shown for  and  in Figure 2.4.  Note that the waveform has a central peakR œ & R œ %Þ&
when , where  is an integer.  For  taking integer values, the Fourier transformR œ Q  Q R"
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When  is an integer (giving a whole number of cycles under the envelope), the FourierR
transform becomes

         R œ & R œ %Þ&

Figure 2.4  Example -cycle sinusoidal bursts with triangular pulse shaping.R
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  e sin ,  an even integer
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For an odd number of half-cycles ( 1/2), giving a waveform peak at its center point,R œ Q 
the Fourier transform of the waveform is given by

  (2.5c)
e sin

œ †W
)

RX

" "  Î  # Î R XÎ#

"  Î
a b a b a b a b a b ‘

 ‘a b=
= = = = =

= = =

4 RXÎ# Q #
< <

<
#

<
# #

=

Plots of the power spectra based on (2.5b) and (2.5c) are shown in Figure 2.5.
 A general expression for the autocorrelation function of the waveform is given in Section
A.1 of the Appendix.  For reference, the autocorrelation function for  taking integer values isR
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This function is plotted in Figure 2.7 for  to .R œ "Þ& $Þ&
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Figure 2.5  Power spectra for sinusoidal bursts with triangular pulse shaping.

.
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Figure 2.6  Autocorrelation function for sinusoidal bursts with triangular pulse shaping ÐR œ "ß
#ß $and  cycles).

Figure 2.7  Autocorrelation function for sinusoidal bursts with triangular pulse shaping
ÐR œ "Þ&ß #Þ&ß $Þ&and  cycles)
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2.1.2.2  Noncoherent Model

A noncoherent model for a sinusoidal burst with  cycles and a triangular envelope may beR
formulated as follows:
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where  is a random phase, uniformly distributed between  and .  For this case, we may: 1! #
calculate the autocorrelation function for the signal as an expected value/average:
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As shown in Figure 2.8, the autocorrelation function for the noncoherent model of the sinusoid
with a triangular envelope is very similar to that for the coherent model as shown previously.

Figure 2.8  Autocorrelation function for noncoherent sinusoid with triangular envelope



12

The spectrum corresponding to the autocorrelation function in (2.9a) is given by its Fourier
transform:

  F R sinc sinc (2.10a)œ œ RX  RXW
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Examples of this spectrum are shown in Figure 2.9.  The equivalent rectangular (noise) band-
width of the bandpass signal, denoted (in Hz), equals that of the envelope (modulation), whichF
in this case is a triangular function, which has a sinc  spectrum.  Using formula%a b= 1RXÎ%
3.827.7 of [7],  is found to beF
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It is interesting to note that the 3-dB signal bandwidth, denoted  (in Hz), is given byF$
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F$ in this case is slightly smaller than the noise bandwidth, which equals the 3.3-dB bandwidth.

Figure 2.9  Spectra of noncoherent sinusoid with triangular envelope
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2.1.3  -cycle Sinusoid with Rectified Cosine EnvelopeR

Another sinusoidal model, one involving "rectified cosine" envelope, has been proposed for
UWB signals ([8], [9], [10]).  Because the envelope guarantees that the waveform is continuous,
it is possible to consider both a coherent model, for which the envelope timing is exactly related
to that of the sinusoid, and a noncoherent model, for which the phase and frequency of the
sinusoid are not necessarily related to the envelope.

2.1.3.1  Coherent Model

As illustrated in Figure 2.10, a coherent model for a sinusoidal burst with  cycles and a recti-R
fied cosine envelope may be formulated as follows:
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is given by
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Examples of the spectrum related to  are shown in Figure 2.1 .W "a b=

Figure 2.10  Sinusoid with cosine envelope.
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Figure 2.1   Spectra of coherent sinusoid with rectified cosine envelope"

The autocorrelation function for the waveform in (2.11) is found to be
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Examples of this autocorrelation function are shown in Figure 2.1 .#



15

Figure 2.12  Autocorrelation function of sinusoid with rectified cosine envelope.

2.1.3.2  Noncoherent Model

A noncoherent model for a sinusoidal burst with  cycles and a rectified cosine envelope mayR
be formulated as follows:

   cos cos ,    ,    (2.14)œ > >  > Ÿ Î# œ #R= >a b a b a b k k= = : 1 = = =/ < / < /

where  is a random phase, uniformly distributed between  and .  For this case, we may: 1! #
calculate the autocorrelation function for the signal as an expected value/average:
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where V  denotes the envelope.  The envelope autocorrelation function isa b>
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Examples of the autocorrelation function in (2.15a) are shown in Figure 2.13.  For , thereR  "
is very little difference between the autocorrelation functions for the coherent and noncoherent
sinusoids with a rectified cosine envelope.
 The spectrum corresponding to (2.15a) and (2.15b) is found to be
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An example of this spectrum is shown in Figure 2.14.  The equivalent rectangular (noise) band-
width of the bandpass signal, denoted (in Hz), equals that of the envelope (modulation), whichF
in this case is a cosine function with the spectrum in (2.15c).   is found fromF
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The 3-dB signal bandwidth, denoted  (in Hz), is given byF$
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F$ in this case is slightly smaller than the noise bandwidth, which equals the 3.25-dB bandwidth.
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Figure 2.13  Autocorrelation function for noncoherent sinusoid with rectified cosine envelope.

Figure 2.14  Spectrum for noncoherent sinusoid with rectified cosine envelope.



18

2.2  Sinusoid with Gaussian Envelope

Another sinusoidal model, one involving a Gaussian envelope, has been proposed for UWB
signals ([11], [12], [13]).  Because the envelope guarantees that the waveform is continuous, it is
possible to consider both a coherent model, for which the envelope timing is exactly related to
that of the sinusoid, and a noncoherent model, for which the phase and frequency of the sinusoid
are not necessarily related to the envelope.

2.2.1  Coherent Model

A coherent model for a sinusoidal burst with a Gaussian envelope, illustrated in Figure 2.15,
may be formulated as follows:

   e cos (2.17)œ >= >a b a b+>
<

#
=

The autocorrelation function and corresponding spectrum for this signal model are

   R e cos e (2.18)œ 
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Plots of the autocorrelation function and spectrum are shown in Figures 2.16 and 2.17,
respectively.

Figure 2.15  Sinusoid with Gaussian envelope.
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Figure 2.16  Autocorrelation function for coherent sinusoid with Gaussian envelope.

Figure 2.17  Spectra of coherent sinusoid with Gaussian envelope.
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Perhaps the most significant feature of the sinusoid with a Gaussian pulse shape is that the
spectrum has no sidelobes at all.

2.2.2  Noncoherent Model

A noncoherent model for a sinusoidal burst with a Gaussian envelope may be formulated as
follows:

   e cos (2.20)œ > = >a b a b+>
<

#
= :

where  is a random phase, uniformly distributed between  and .  For this case, we may: 1! #
calculate the autocorrelation function for the signal as an expected value/average:
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The spectrum corresponding to this autocorrelation function is

   e e (2.22a)œ W
%+

k ka b ’ “=
1#   Î#+   Î#+a b a b= = = =< <

# #

To the degree of precision reflected in the plots, Figures 2.16 and 2.17, respectively, represent
the autocorrelation function and spectrum in (2.21) and (2.22).  The equivalent rectangular
(noise) bandwidth of the bandpass signal, denoted (in Hz), equals that of the envelopeF
(modulation), which in this case is a Gaussian pulse.   is found fromF
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F$ in this case is slightly smaller than the noise bandwidth, which equals the 3.41-dB bandwidth.
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2.3  Hermite Polynomial Model

Another mathematical model for UWB pulses is based on the resemblance of the so-called
Gaussian pulse shape to a monopulse and the fact that its th derivative has  zero crossings8 8
[14].  The derivatives can be expressed in terms of the original monopulse using Hermite poly-
nomials, as shown in the following equations:

Hermite polynomials [15]:  e e (2.23a)L/ > œ "
.
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8

B Î# B Î#8
8

8
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A model UWB pulse shape based on these concepts is [14]

    e e e (2.24a)œ L/ > œ "= >
.

.>
8 8

> Î% > Î% > Î#8
8

8
a b a b a b Š ‹# # #

or its parameterized version [4]
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where  is a convenient measure of pulse width.  The recurrence relation in (2.23b) can beX
applied directly to , and it is straightforward to show that the Fourier transform of  is= > = >8 8a b a b
given by
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Examples of  and of power spectra based on  are shown in Figures 2.18 and 2.19,= > W8 8a b a b=
respectively.  Note in Figure 2.18 that increasing  not only increases the number of zero-cross-8
ings (half-cycles by analogy with the polycycle waveforms discussed previously) but also the
duration of the overall waveform.  The apparent periods of the oscillations in Figure 2.18 are
approximately (6.0, 5.6, 4.6, 3.8, 3.2, 2.8) for (0, 1, 2, 3, 4, 5), respectively.  TheX œ 8 œ8

angular frequency in Figure 2.19 is shown without normalization in part (a) of the figure, and in
part (b) it is normalized (scaled) by the apparent angular frequency  in Figure 2.19= 18 8œ # ÎX
for each value of .  Similar to the spectra for polycycle waveforms in Figure 2.1, the normaliza-8
tion in part (b) of Figure 2.19 shows Hermite polynomial-based waveforms' spectra becoming
narrower about the center frequency of ; however, it is clear from this figure that these= =œ 8

waveforms are far from ideal because in addition to the central peaks in the spectra there are
large sidelobes.
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Figure 2.18  Example UWB waveforms based on Hermite polynomials.

 It is shown in Appendix A.2 that the autocorrelation function for  has the following= >8a b
recursion:

    R R (2.11a)R œ #8  "  Î% à 8  8 à 8  "à 8  "= = =
# #a b a b a b a b7 7 7 7

with   e  and   R e (2.11b)R œ # à " œ # "  Î%à != =
 Î)  Î) #a b a bÈ È ˆ ‰7 1 7 1 77 7# #

Plots of the autocorrelation function are shown in Figure 2.20 for  to . 8 œ ! 8 œ %
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(a) Without normalization of the angular frequency

(b) With normalization of the angular frequency by the apparent angular frequency of the
oscillations.

Figure 2.19  Power spectra for UWB pulses based on Hermite polynomials.
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Figure 2.20  Autocorrelation function for Hermite polynomial pulse model.
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APPENDIX

A.1  Autocorrelation Function for the -cycle Sinusoid with Triangular EnvelopeR

For , the autocorrelation function for the -cycle sinusoidal waveform model! Ÿ Ÿ RXÎ# R7
with a triangular envelope is given by

 R sin sinœ .> > >  > > 
%

RX
= < <

# RXÎ#a b a b a b c dŒ  ( a b7 7 = = 7
7

   sin sin .> RX  > >  > > ( a ba b a b c da b
RXÎ#

RXÎ#

< <

7

7 = = 7

   sin sin .> RX  > RX   > > >  Ÿ( a ba b a b c da b
7RXÎ#

RX

< <7 = = 7

 cosœ  
% " RX RX

RX # "# # #
Œ  œ a b– —a b#

<

$ # $

= 7
7 7

  cos cos sin RX 
RX  # "

% #
a b a b a b” •= = 7 = 7

7

= =
< < <

< <
# $

  cos cos sin (A.1.1) RX RX   RX 
% %

" a b c d c d” •a b a b= = 7 = 7
7

= =
< < <

< <
# $

For , the autocorrelation function is found to beRXÎ# Ÿ Ÿ RX7

 R sin sinœ .> RX  > >  > > 
%

RX
= < <

# RXa b a ba b a b c dŒ  Ÿ( a b7 7 = = 7
7

 cosœ   
% " RX RX RX

RX # ' # # '
Œ  œ a b– —a b a b#

<

$ # # $

= 7
7 7 7

  cos cos sin (A.1.2) RX RX   RX 
RX  "

% %
a b c d c d” •a b a b= = 7 = 7

7

= =
< < <

< <
# $

A.2  Autocorrelation Function for the Hermite Polynomial Model [17]

Using the notation  for convenience, the autocorrelation function for the Hermite poly-( 7œ Î#
nomial waveform model is given by

  R œ .> = > = >  œ .> = >  = > à 8= 8 8 8 8
_ _

_ _a b a b a b a b a b( (7 7 ( (
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  e eœ .> L/ >  L/ > ( a b a b
_

_
 > Î%  > Î%

8 8
a b a b( (# #

( (

  e eœ .> L/ >  L/ >  Î# > Î#

_

_

8 8
(# #( a b a b( (

  e E (A.2.1)œ # L/ >  L/ > È e fa b a b1 ( ( Î#
> 8 8

(#

where E  denotes expectation as if  is a zero-mean, unit-variance Gaussian random variable.> >
For  to , we obtain by direct calculation8 œ ! %

  e E e (A.2.3)R œ # " œ #à != >
 Î#  Î#a b e fÈ È7 1 1( (# #

  e E e (A.2.4)R œ # >  œ # " à "= >
 Î# # #  Î# #a b È È˜ ™ ˆ ‰7 1 ( 1 (( (# #

  e E (A.2.5a)R œ # >  #>  "   #  "à #= >
 Î# % # # % #a b È ˜ ™ˆ ‰7 1 ( ( ((#

  e (A.2.5b)œ # #  % È ˆ ‰1 ( ( Î# # %(#

  e ER œ # >  $ >  #  $ >  $à $= >
 Î# ' % # # %a b È ˜ ˆ ‰ ˆ ‰7 1 ( ((#

      (A.2.6a)  '  * ™( ( (' % #

  e (A.2.6b)œ # '  ")  * È ˆ ‰1 ( ( ( Î# # % '(#

  e ER œ # >  %>  $  '>  #  (à %= >
 Î# ) ' # % % #a b È ˜ ˆ ‰ ˆ ‰7 1 ( ( ((#

   (A.2.7a)™ˆ ‰ %>  $  *  *   "#  %#  $'  *# ' % # ) ' % #( ( ( ( ( ( (

  e (A.2.7b)œ # #%  *'  (#  "' È ˆ ‰1 ( ( ( ( Î# # % ' )(#

By inspection, the general form for these correlation functions is

  e (A.2.8a)R œ # "à 8
8x 8

5x 5
=

 Î# #5

5œ!

8
5a b a bÈ " Š ‹7 1 ((#

  e  e  F (A.2.8b)œ # 8x œ # 8x 8à "à
5x "

 8È È" a ba b ˆ ‰1 1 (
( Î#  Î# #

8œ!

_ #5
5

5
" "

( (# #

where  F  denotes the confluent hypergeometric function and  is" " 5a b a b a b a b+à ,à B + œ +  5 Î +> >
Pochhammer's symbol.  We may use Kummer's transformation [16, §13.1.27] to write

    e  F (A.2.9a) F œ 8  "à "à 8à "à" " " "
# #ˆ ‰ a b( ((#

in order to apply a recursion formula for the hypergeometric function [16, §13.4.1] to obtain

      F 1 F œ #8  "  8  à "à 8  " 8  #à "à a b a b a bˆ ‰" " " "
# # #( ( (

         F (A.2.9b) 8 8à "à " "
#a b(
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Applying this recursion to the autocorrelation function in (A.2.8), we obtain the recursion

   R R (A.2.10)R œ #8  "  à 8  8 à 8  "à 8  "= = =
# #a b a b a b a b7 ( 7 7
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