Searches for New Phenomena at the Tevatron

Richard Partridge Brown University

(for the CDF and DØ Collaborations)

A·S·P·E·N Center for Anysico

At the Frontiers of Particle Physics January 19-25, 2003

Searching for New Phenomena

New Phenomena at the Tevatron can take many forms:

- Observation of unseen particles predicted by SM (Higgs)
- Discovery of particles not in the SM (SUSY, leptoquarks)
- Identification of new gauge interactions (W'/Z', technicolor)
- Unexpected complexities beyond the SM (compositeness)
- Fundamental changes to modern physics (extra dimensions)

A thorough discussion of the possibilities for discovering new phenomena at the Tevatron is a logical impossibility

A thorough discussion of the CDF and DØ searches for new phenomena in 25' is merely a human impossibility

This talk will utilize CDF and DØ Run II results to illustrate the progress and prospects in searches for new phenomena *Richard Partridge*

The Upgraded CDF Detector

- New central drift chamber and silicon tracker
- New forward calorimeters ("plug") $(1 < |\eta| < 3)$
- New TOF, extended muon coverage, improved triggers, ...

The Upgraded DØ Detector

- First time charged particle tracking added to a major "non-magnetic" detector!
 - » 2T solenoid
 - » >100K scintillating fibers
 - » >700K silicon strips
- Major improvements to muon spectrometer, trigger/DAQ, ...

Searching for SUSY at the Tevatron

- One of the major features of SUSY it "protects" the SM against large radiative corrections from a high mass scale
 - » Fermion/Boson symmetry cancels loop divergences
- "The Case for a 500 GeV e⁺e⁻ Linear Collider^{*}" argues that the lightest chargino is likely to have a mass below 250 GeV
- Basic idea: if SUSY particles are heavy, radiative corrections again become large and require fine-tuning of parameters
- Chargino limits at right from ALCWG report*

Authors	$\mathbf{m}(\widetilde{\chi}_1^+)$
Barbieri-Giudice	<110
Ross-Roberts	<110
de Carlos-Casas	<250
Anderson-Castano	<270
Chan-Chattopadhyay-Nath	<250
Giusti-Romanino-Strumia	<500
Feng-Matchev-Moroi	<240/340

*American Linear Collider Working Group, prepared for Snowmass 2001. *Richard Partridge*

Searching for SUSY at the Tevatron

Some Caveats:

- "Naturalness" approach to estimating SUSY mass scales is neither rigorous nor unique in its predictions
- Even if the lightest chargino mass is below 250 GeV, there is no guarantee that it will be visible at the Tevatron

- Allowed Region

- LEP constraints already exclude SUGRA at the "95% CL"
 - » e.g. Strumia, Hep/PH9904247.
 - Tevatron can also search for squark, gluino, and slepton production

DØ Tri-lepton Search in eee, eeµ

- Sensitive to chargino+neutralino production
- SM backgrounds are small, one of the cleanest SUSY signatures

DØ Run II Preliminary (5.2 pb⁻¹)

	<i>eee</i>	eeµ
SM Background	0.9 +- 0.2	0.13 +- 0.08
EM Fakes	1.0 +- 0.3	0.6 +- 0.2
Cosmics		0.145 +- 0.014
Total	1.9 +- 0.4	0.9 +- 0.2
Data	2	1

eee Events

Flum 143440 Event 11104009 Tue Fab 12 10.16 16 2002

Prospects for SUSY Tri-lepton Search

DØ Search for GM SUSY in $\gamma\gamma$ + MET

GM SUSY

- Light Gravitino (<<eV) is LSP, NLSP can be neutralino or slepton
- If neutralino NLSP:

 $\widetilde{\chi}_1^0 \to \gamma \widetilde{G}$

 \Rightarrow Search for $\gamma\gamma E_T + X$

	$MET > 25 \; GeV$	$MET > 30 \; GeV$	$MET > 35 \; GeV$
Data	2	1	0
Expected background	1.0 ± 0.3	0.7 ± 0.2	0.34 ± 0.20
95~% CL limit, pb	1.6	1.3	0.9

CDF Search for "CHAMPS"

- CHArged Massive Particles that are sufficiently longlived to leave the detector (*e.g.* sleptons)
- Makes use of new CDF TOF detectors to identify slow particles at high p_T
- Low p_T samples used to estimate BG for high p_T signal region
- Test method: $20 < p_T < 30$ sample used to predict BG for $30 < p_T < 40$ sample

30 < Pt < 40 GeV/c (background-dominated region)

Did CDF Catch a Slepton Decay?

- CDF recorded one event in Run I in the "e"e+γγ+MET channel
- All we can say with certainty is that searches for related signatures have all been negative
 - » CDF and DØ $\gamma\gamma$ + missing E_T
 - » $D \emptyset \gamma + jets + missing E_T$
 - » LEP

Event: $2e+2\gamma+E$

£1=53 GeV

- Feynman: "On the way over here, I saw a car with license plate 7203234! What's the probability of that?"
 - » Random coincidence, unlikely to happen again?
 - » Someone was following Feynman, likely to be seen repeatedly?
 - » Feynman wrote down the wrong number, license plate doesn't exist?

DØ Extra Dimensions, Leptoquark Hunts

CDF Z' Search

- CDF has studied Drell-Yan events to look for new gauge bosons or evidence of extra dimensions
- Limits on Z'
 - » $M_{Z'} > 450 \text{ GeV}$ (ee)
 - » $M_{Z'} > 270 \text{ GeV} (\mu\mu)$
 - » Run 1: $M_{Z'} > 690 \text{ GeV} (ee + \mu\mu)$
 - » Run 2 Expectation: $M_{Z'} > 1$ TeV
- Limits on mass scale for extra dimensions (Randall-Sundrum, k/M_{Pl} > 0.1)
 - » $M_G > 340 \text{ GeV}$ (ee)
 - » $M_G > 255 \text{ GeV} (\mu\mu)$

High E_T Jet Production

- Deviations from QCD predictions are potential signal for new physics (*e.g.* quark compositeness)
- Run II's increased energy, luminosity will increase sensitivity to new physics
- CDF Run II event has the largest jet E_T recorded!

Jet Yields Bin 1 - 0.1 < |y| < 0.7

Dijet Mass = 1146 GeV (corr)

Richard Partridge

Standard Model Higgs

- Higgs mass constrained by direct and indirect measurements
 - » $M_{\rm H}$ > 114.4 GeV @ 95% CL (LEP direct search)
 - » $M_H < 193 \text{ GeV} @ 95\% \text{ CL}$ (Electroweak fits)
- Primary Tevatron channels: $WH \rightarrow b\bar{b}$, $ZH \rightarrow b\bar{b}$, $H \rightarrow WW^{(*)}$

SM Higgs Prospects

- SUSY/Higgs WG demonstrated Tevatron Higgs sensitivity
- Current focus is on putting together the essential ingredients
 - » Good jet energy resolution
 - » Efficient b tagging, lepton identification, and triggering
 - » Optimization of S/B

SUSY Higgs Production at the Tevatron

CDF and DØ Run IIb Projects

- CDF and DØ detectors were designed to withstand ~2-4 fb⁻¹ with an average of ~2-3 interactions per crossing
 - » Integrated luminosity limited by radiation damage to silicon tracker
 - » Instantaneous luminosity limited by trigger rejection
- Tevatron goals for Run II are to accumulate 10-15 fb⁻¹ with an average of ~5 interactions per crossing
- CDF and DØ have developed further detector upgrades needed to meet these goals
 - » Both experiments will replace silicon trackers, upgrade parts of the trigger
 - » CDF will replace central preshower detector, add EM calorimeter timing
- Projects have received DOE CD-3(a) approval, major procurements will begin in early 2003
- Run IIb to begin in 2006 following ~7 month shutdown

Run IIb Silicon Tracker Upgrade

- Overall geometry/capabilities similar for CDF and DØ designs
- 6 layers, good coverage for $|\eta| < 2$
- Rad-hard sensors and readout will survive > 15 fb⁻¹
- All critical elements have been prototyped, sensor procurement will begin in early 2003

DØ simulation studies show ~67% increase in double b-tag efficiency for Run IIb silicon tracker

Conclusions

- Run II at the Tevatron has outstanding opportunities to discover new phenomena
- CDF and DØ detectors have undergone significant upgrades that enhance their ability to make sensitive searches for new phenomena
- The detectors are working well and are beginning to produce physics results
- For many analyses, Run I results are currently the "competition" we are trying to beat – that will change soon!
- Recorded data samples are much larger than the 5-10 pb⁻¹ presented here, expect many new results in the near future
- Run IIb upgrades needed to achieve full potential of the Tevatron collider are well underway