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General and mathematically transparent models of urban growth have so far suffered from a
lack in microscopic realism. Physical models that have been used for this purpose, i.e. Diffusion-
limited Aggregation (DLA), Dielectric Breakdown Models (DBM) and Correlated Percolation all
have microscopic dynamics for which analogies with urban growth appear stretched. Based on a
Markov Random Field (MRF) formulation we have developed a model that is capable of reproducing
a variety of important characteristic urban morphologies and that has realistic microscopic dynamics.
The results presented in this paper are particularly important in relation to “urban sprawl”, an
important aspect of which is aggressively spreading low-density land uses. This type of growth is
increasingly causing environmental, social and economical problems around the world. The micro
dynamics of our model, or its “first principles”, can be mapped to human decisions and motivations
and thus potentially also to policies and regulations. We measure statistical properties of macrostates
generated by the urban growth mechanism that we propose, and we compare these to empirical
measurements as well as to results from other models. To showcase the open-ended-ness of the
model and to thereby relate our work to applied urban planning we have also included a simulated
city consisting of a large number of land use classes in which also topographical data have been
used.
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I. INTRODUCTION

Since the dynamics of city growth is governed by mechanisms that to a large extent take place on a scale in time and
space that is in the range of casual human perception, it is a naturally occurring complex dynamical system that many
people have a strong connection to in their day-to-day life. The urban system is an integral and important part of our
lives, and the problems that follow from rapid urban growth affect not only those living in the cities. For researchers
it is a system that is challenging and relevant in a variety of aspects: Physicists study abstract models with theoretical
understanding in almost exclusive focus [28,39,25,26,8,44,45,5] while, on the other end of the spectrum, other urban
researchers (geographers etc.) are designing tuned predictive models with deployment for actual use in urban planning
as the primary goal [41,42,17,14,13,10,15,33,7]. In the latter case, little understanding of the underlaying dynamics
can generally be derived. (The goal is generally to embed knowledge rather than do derive it.) We choose to use the
term “First-principles” since the interactions in our model are intended to depict human actions and decisions, which
is what ultimately drives the process of urban growth. It is also on that level of description that an understanding of
urban dynamics is the most portable to its areas of application. The microscopic formulation of our model is highly
macroscopic compared to the level of description that is traditionally used in statistical physics, from which we have
borrowed much of the formulation. The use of concepts from physical models that are ontologically similar to the
target system in some respect, has to be viewed in the light of this and in the light of that there are no rigorous
methods for selecting the fundamental objects for the model.
The human intellect conceptualizes the world hierarchically with different concepts on different levels. To see this we

do not need to look further than to the concepts of meronyms and and holonyms in human language: neighborhood,
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block, city part, city, country, nation and continent. This mode of simplification is borrowed into our model to reduce
the computational complexity of maintaining lattice-wide site interactions through meanfield approximations. The
concept of using a hierarchy of scales for describing urbanization is well-established in geography through Central
Place Theory [11,37,36], and re-normalization is a standard method in statistical physics. Spatial interaction models
have been used extensively in the past for social modelling and introduced the concept of using interactions between
activities on a lattice in models of urban growth and transportation [40,4,20,35,34,22,31,43,1]. Also see TRANSIMS at
URL http://transims.tsasa.lanl.gov/. These are in a sense similar to the approach developed here – for example, both
assume that spatial structure and spatial interaction are mutually determined. However, the emphasis was primarily
on predicting inter-zonal flows rather than achieving an understanding of spatial structure.
The problems caused by the modern phenomenon that is commonly referred to as “sprawl” provides ample reasons

for understanding the fundamental factors behind urban growth. Urban sprawl is the culprit of many urban miseries
such as biotope fragmentation, long transportation times, smog, traffic congestion, destruction of fertile farmland
and other environmental issues. Because of this, it also attracts much attention from researchers and policy makers
[19,29,30]. The question of how to shift development towards “smart growth” instead of sprawl is hard to address
if the underlaying dynamics remain a mystery. The “Unwilling Neighbor” (UN) rule that we present within our
framework in this paper is arrived at by extracting the simplified essence out of economic factors governing a common
mode of development. It is based on the assumption that there (i) is a benefit in being a part of the infrastructure
network and (ii) land price is generally inversely related to development density. We motivate our rule in more detail
in section IIIA 1 and discuss the validation process in section IIIA 3.

II. MODEL DEFINITION

Each model component corresponds to elements of the real world urban system of which we are representing the
dynamics. In each of the following sections we argue for the basic structure of our framework.

A. Basic Dynamics

Formally, our simulation framework consists of a modified 2-D MRF representation of the site-to-site interactions
using a recursive meanfield approach to take into account interactions from not only neighboring sites, but from all
lattice sites. The state transitions at the individual sites are determined by a global (probabilistic) selection criterion,
as in evolutionary selection, and not by a local selection criterion as in the classical MRF.
If we think of undeveloped lattice points as being in the empty state, only addition is modelled in this paper. Since

modern cities grow rapidly, both from an increasing population and as a result of a larger fraction of the population
living in cities, removal is also relatively uncommon in cities of appreciable sizes. Basically, the model employs an
evolutionary dynamics with allocation of new urbanization at the most “fit” locations.

B. Lattice and Land use

We represent land by a two-dimensional grid consisting of N square cells of equal size. Each cell corresponds to
an area and its (discrete) state represents what is on it – its land use. This means that we divide all possible uses
of land into classes which are assumed to be homogenous within each cell. In the simplest case, only two classes are
considered: Built and rural. However, this setup can accommodate any resolution of land use since there is no limit
to how many states a cell can take.

C. Markov Random Field

A classical MRF [23] representation of a 2-D land use dynamics may be defined as follows: From a set of c land
uses, consider two different land uses a, b ∈ {1, 2, ..., c} = C. The maximum radius of land use to land use influence
is R. The potential (“energy”) of land use class a at a given location x is

Ea(x) = (
∑

d≤R

∑

b∈C

wab(d)) (1)
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where wab(d) is the positive or negative influence (“energy contribution”) from land use class b on land use class a at
distance d.
We want to translate potential energies into probabilities and be able to continuously tune the model’s sensitivity

to the state. A reasonable way of realizing this is to use the Gibbs weight function which gives us the probability of
finding a site at position x in state a as

pa(x) =
F (Ea(x))

∑

b∈C F (Eb(x))
(2)

where F is a Boltzmann transformation

F (Ea(x)) = e−βEa(x) (3)

where β is a free parameter which corresponds to 1
T
where T can be viewed as a temperature of the system. Please

see sections IV and IIIA 3 for discussion about interpretations of temperature for this system. Equations (1) through
(3) define a Gibbs Random Field (or Spin Glass).
Although the fundamental idea behind our approach is as described above our model differs in two significant ways:

(i) We take the entire geographic region into account in the interaction rather than just a small radius neighborhood
and (ii) the state transition probabilities are defined globally and not locally. This is described in the following section.

D. Extended MRF for Simulation of Urban Growth

1. Modifications

In an effort to make the model as simple as possible (but not simpler than that) we have extended the MRF model
to use transition intensities (demand model) that are defined externally rather than internally. The reason for this
is that the supply and demand cycle of urban economics is too complicated to be captured by a simple model using
only pair-wise site interactions. We will in the following paragraphs give a background to modifications and choices
that have been made.
In a MRF model, the action of making a transition is decided from the viewpoint of the lattice point in which

it takes place. For a number of reasons, generation of urban morphology is better viewed as a process of regional
allocation: (i) Information can be assumed to travel over the lattice at timescales far shorter than that of a lattice
update, so in each choice of development site every lattice point is a candidate. (ii) We simulate only a small part of
a larger system, so there will be a background that drives the model. (iii) If no regional resource market is introduced
in the energy function (which could be done by, e.g. using multi cell interaction), the simulations are highly unstable.
The problem of simulating growth using internally generated growth intensities is currently being investigated by the
authors.
The incorporation of long-range interactions (with some metric) is intuitively a sound addition for simulating

urban growth. Correlations in cities are clearly longer than nearest-neighbor and the system is not changing on a
time-scale that would allow longer-range interactions to emerge from the dynamics. (Note that information in a
nearest-neighbor CA travels via state transitions) The use of meanfields is motivated by a combination of reasons: (i)
Intuitively, hierarchical scales are used by humans for conceptualizing successively larger areas. (ii) Its applicability in
the urban growth context is indicated by central-place theory [11,37,36] in which this conceptualization is formalized.
(iii) It is a well established mathematical modelling technique.

2. Definition of Modifications

With a reformulation of eq. 2, which is an often-used trick for grid updates in MRF models, we get the probability
q(x) for a given lattice site x to be the next site that is updated.

q(x) =

∑

a∈C e−βEa(x)

∑

x

∑

b∈C e−βEb(x)
(4)

The probability for this lattice point x to both be the next site to be updated, and that the transition will be into
state a is then given by
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qa(x) =
e−βEa(x)

∑

x

∑

b∈C e−βEb(x)
(5)

This can be written as

qa(x) = p̃a(x)I(a) (6)

where

p̃a(x) =
e−βEa(x)

∑

x e−βEa(x)
(7)

I(a) =

∑

x e−βEa(x)

∑

x

∑

b∈C e−βEa(x)
(8)

Here, p̃a(x) is the allocation sub-model and defines the relative (to other sites) intensity of change of lattice site x
into land use class (state) a in the next update. The intensity function I(a) is the demand sub-model, and a global
intensity for the development events that result in land use a. In this paper we have used an externally defined
constant, I(a) = ka, a ∈ C, in the simulations since the assumptions we would have to make to embed a model
of endogenously defined intensities (a market model) would only add unnecessary detail. This demonstrates the
modifications that we have made from the original MRF formulation.

3. Meanfields

The fundamental lattice with N lattice points is referred to as the level-0 grid and it is the grid with the highest
resolution. Grids at higher levels l of aggregation have cells that are meanfields (aggregates) of progressively larger
concentric portions of the level-0 grid. Thus, an l-level cell has contributions from 32 times as many level-0 cells as a
(l− 1)-level cell. Starting from the most coarse grained, or aggregated, level L where the whole lattice is aggregated,
32 new sub-grids are generated for each recursion and thus N = (32)L and L = 1

2 log3N . This indicates that
1
2 log3N

recursive lattice averaging operations are needed for the update of each site. L then defines the depth of the lattice.

Starting at level 0 we define c
(0)
a (i, j) as the cell count of activity a at location (i, j). At level 0, each lattice site has

one state, s, which indicates the land use class to which the site belongs. Hence, for level 0 lattice sites, one activity,
a = s, will be unity and all other activities, a 6= s, zero. Then

c(1)a (i, j) =

1
∑

k=−1

1
∑

m=−1

c(0)a (i+ k, j +m) (9)

defines the cell count of activity a at level 1 and by induction it is seen that

c(l)a (i, j) =

1
∑

k=−1

1
∑

m=−1

c(l−1)
a (i+ k3l−1, j +m3l−1) (10)

expresses the number of cells that carry activity a at level l defined from the cells at level l − 1. The algorithm we
use for updating the grid has a time complexity in O(N logN).

E. Activity Interactions

The value of the energy function depends on the number of built cells in the neighborhood and the interaction
function. By changing the energy function we can have detailed control over the micro dynamics. The growth
rule that we use in this paper can be described in simple terms as edge growth in addition to mutual inhibition or
stimulation. In reality, this corresponds to the advantage of hooking into existing infrastructure, see section IIIA 1.
The amount of penalty received for developing away from an edge is tuned with a parameter and thus in the special
case where no penalty is given, edge growth is not preferred. Under the “Unwilling Neighbor” (UN) rule, two distinctly
different types of interactions are modelled: one for nearest-neighbor interactions and one for all distances beyond.

4



More generally, the form of equation 13 is used and the parameter ξ can be specified for combinations of land use
classes and distances. For nearest-neighbor influence in the UN rule, the energy function is defined as follows.

h
(1)
1 (c

(1)
1 = 0) = − ln ε (11)

h
(1)
1 (c

(1)
1 > 0) = − ln(1− ε)− ξc

(1)
1

h
(1)
0 (c

(1)
1 = 0) = H − ln ε

h
(1)
0 (c

(1)
1 > 0) = H − ln(1− ε)

Here, ε is the parameter that controls the extent to which developing near other development is beneficial. As discussed
in [2], ε is a number that is typically very small. Note that ε = 0.5 corresponds to no preference for edges and as ε
tends to 0 we get only edge growth. Depending on whether we want the microscopic dynamics to correspond to mutual
inhibition or stimulation of further development we choose ξ > 0 or ξ < 0, respectively. We do not model transitions
from developed land to undeveloped land and assume the energy penalty for such a transition to be sufficiently large,
H →∞.
For long-range interactions on levels 1 < l ≤ L (eq. 10), we let the interaction strength decay exponentially with

distance. This exponential decay d(l) [12,25] is common for all land use classes and is defined as

d(l) = 32l (12)

which exactly accounts for the exponential increase of cells at each recursive level of interaction. We thus define the
energy contribution to the long-range interactions for l > 1 as

h
(l)
1 (c

(l)
1 ) = d(l)ξc

(l)
1 (13)

with 1 < l ≤ L, which corresponds to wba in equation (1). Here, c
(l)
1 is the count of cells in the built state at meanfield

level l.

F. Transitions

Conceptually, the activity addition dynamics is defined through a global selection of cells based on their “fitness”.
We calculate Ea(x) as a sum over the energy contributions h

(l) from all meanfield levels l, as described in equations
12 through 13. The transition probabilities are then obtained using the modified MRF formulation in equations 4
through 8.

III. GROWTH PATTERNS

Because urban growth has a preference for taking place around the edges of already urbanized areas, it has a natural
connection to statistical physics of clustering. For example, diffusion-limited aggregation, di-electric breakdown and
correlated percolation [25] have all contributed to the understanding of urban growth by providing minimal abstract
models that capture important aspects of the target system. As noted by Makse et al in ref. [25], the DLA model
has many shortcomings when adopted to urban systems. Most notably, the components of the model lack intuitive
counterparts in the real system and, as pointed out by Makse et al, it predicts a single cluster. Instead, correlated
percolation was proposed as a model that more realistically depicts the dynamics resulting from how growth attracts
further growth. The results presented by Makse et al are in better agreement with empirical measurements than what
is the case for the simplistic DLA and DBM models. However, the microscopic dynamics are still not consistent with
common knowledge about urban growth; an urban core still has to be defined and the configuration is primed with a
density that decays from the core.
Measurements on simulated and real configurations shows (see figs. 6 and 2) [6,38,28,32] that scaling is present over

some orders of magnitude. This relation would indicate some distributed growth process capable of producing such
characteristics. It has been suggested that the growth mechanisms result in Self-Organized Criticality [3,44,45,28],
but it need also be noted that urban development is planned and executed at all levels, from the building of a new
garage to the restructuring of entire city parts [16], something that is a reflection of a hierarchical structure in the
decision-making system. This is also a credible mechanism by which correlations over many length scales can be
introduced.
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A. Counter-acting Inhibition and Stimulation – Unwilling Neighbors

1. Rationale and Introduction

The UN rule is based on counter-acting inhibition and stimulation on different length scales. The stimulating
influence from proximity to edges comes from the coordination benefits gained by being attached to the rest of the
structure and the inhibiting influence comes from local competition. In the real urban system, these forces correspond
to the benefit of being attached to infrastructure such as roads and utilities, and the disadvantage of high land prices in
highly developed areas. The reason the authors believe this has had an increasing impact on urban growth dynamics
is that means of personal communication have become considerably cheaper and more efficient over the last century
while building infrastructure still is far beyond the budget of any but the largest companies.
The aggregative nature of the urban cluster has been noted earlier, and physical models of aggregation that are

capable of generating fractal non-compact clusters such as DLA and correlated percolation models have been employed
to generate urban morphology. Using the UN rule in isolation (as the only developed land use class) the results are
very similar to DLA (see fig. 1) and a combination between several classes yield the more compact and realistic
clusters of the correlated percolation used by Makse et al. (see fig. 7). The important difference is that our model is
defined from a microscopic formulation while the models mentioned earlier are motivated by pre-known macroscopic
semblance and a rather loose microscopic similarity in that they are aggregation models. The detailed micro dynamics
are very far from that of real city growth, i.e., there is no correspondence between the random walkers in a DLA and
the mechanism by which development demand is allocated to new lots in the real urban system. Another important
effect of the formulation we use is that seeding is unnecessary for growth to start. In the simplest case, the first
settlement will take place anywhere with equal likelihood if no development is present to break the symmetry. In
more complex setups (see fig. 7) other factors such as topography and roads are present and affects the growth
distribution even when no development is present. The impact that this has on the model validation is discussed
further in section IIIA 3.

2. Dynamics

As was noted in the previous section, configurations produced using our model with the UN rule have a striking
resemblance to configurations generated with DLA models (see fig. 1) until the lattice is crowded, at which point the
characteristics of the growth dynamics changes (see fig. 3). However, the radial fractal dimension (area as a function
of radius) is not sensitive to the value of β (see fig. 1 and 2).
Comparisons between measurements of the radial dimension of DLA and UN configurations confirms the visual

similarity. DLA captures well the short-range attraction by aggregation of development on infrastructure (transition
liquid to solid in DLA) but the dendritic structure that it produces as a result of diffusion-limitation is co-incidental
since no conceivable units in the urban system behaves similar to the random walkers in the DLA model. Apart from
having a seemingly more realistic micro dynamics, the UN rule is formulated in a framework that also allows the
seamless integration of other rules that can ascribe for other growth dynamics (see fig. 7).

3. Validation

The assumptions on which we base the inhibition/stimulation growth rule that we call the UN rule is discussed
earlier in the paper in section IIIA 1. The aim of validating the model’s macroscopic behavior is to provide credibility
to the correctness of the microscopic rule in question. Although the model is capable of combining an arbitrary
number of individually behaving land use classes (see fig. 7) we study the case where the UN rule determines the
growth of the sole growing land use class on a uniform background. An automatic method for comparing macrostates
of an urban model will be blunt compared to similar measures for physical systems since relevant state variables are
hard to formulate and measure; the analogies we use are far from being as powerful as they are for physical systems.
However, despite this fact there are observables that have proven useful for doing this.
So far, in particular one type of observables has proven useful for notorious aggregate systems such as rivers, cities

or crystals and that is scaling relations in their geometry. Just as in the case of Euclidean objects, growing structures
in nature often exhibit a scaling relationship between their dimensions [27]. However, rather than simple relationships
with integer exponents, they exhibit scaling with non-integer exponents – This is called a fractal geometry and urban
clusters are among the systems that have been shown to exhibit this property. Specific discussions about fractal
urban geometry and what causes it can be found in, for example, [21,6,9,38]. We have selected two observables that
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seem particularly meaningful because there is a clear connection between them and important aspects of the growth
dynamics. They have also been used by other groups so there are values in the literature with which we can compare
our results.
The first observable is the scaling relation between area and radius which for a structure on a plane will be between

1 and 2, or, in other words, between a line and a disc. While cities, especially large urban agglomerates, are definitely
multi-centered much growth takes place from a central core and outwards. Actual exponent values turn out to vary too
much between cities to be of intelligible significance, it is rather the fact that all published measurements do exhibit
good scaling properties that is important. The scaling properties of our simulations are robust and independent of
β values, see figure 2 [38] which is also the case for DLA. Note however that this does not mean that configurations
grown with different temperatures are equivalent, in fact the structures easily becomes compact because the side of a
cell is fairly large compared to the entire area that is being simulated.
What this means is, among other possible interpretations, that for a structure in which the builders’ behaviors

are close to the behavior predicted by the UN rule (low temperature) we will see more low-density growth whereas
if factors external to the rule are important (high temperature) we would expect more deviation from it, i.e., dense
structures. Such an interpretation would also make sense intuitively: A city that is centrally planned (typically older
parts of cities) is much more dense than one where individual builders independently can attempt to maximize their
investments.
The other observable that we study is the relation between the perimeter and the inner area of a configuration.

This is related to the former measure but is aimed at the state of the growth rather than at the state of the
cluster. We compare the time evolution of our simulations with that of real urban regions: Sioux Falls, USA and
Washington/Baltimore, USA. This is a scaling relation that has been verified from empirical data [6] and is repeated
in our measurements. The presence of scaling is also found in our simulations and the exponent is similar to that of
the real regions (see fig. 6) for which we have made measurements. It should be noted that this is true despite the
fact that an actual urban footprint incorporates all growth mechanisms that are active while the compared output
from our model only employs the rather idealized UN rule.

FIG. 1. The images shown above have been used for calculating the scaling relationship between radius and area of the
agglomerate. This measure is often referred to as the radial fractal dimension. The effects of increasing the degree of randomness
in the mapping, by varying the inverse temperature β, can bee seen in the density of the structures. However, it is evident (see
fig. 2) that the fractal dimension does not change. To visualize the growth dynamics the color of added cells in the figure is grey
up to a certain point in time after which they are white. This serves to visualize how new sites are selected given knowledge
about the present state and how the β parameter affects this dynamics. The parameters used are ξ = 1, ε = 10−9.
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FIG. 2. A double logarithmic (ln) plot of area as a function of distance for the images in fig. 1 shows that the scaling relation
is independent of β. From top to bottom (triangles), β values of 4 and 12 are plotted respectively. The scaling relation between
area and radius is often referred to as the radial fractal dimension and provides us with a measure on the density of the cluster.
To be able to conveniently measure this property we have here used configuration grown from a central seed, even though our
model is capable of tuning the probability for addition away from the cluster. Plotted as a reference is a line with a slope of 1.815
indicating that the fractal dimension of the sets is close to this value. It can further be noted that the same measure applied to
an unbiased DLA yields very similar results.
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FIG. 3. When the lattice gets crowded, the growth dynamics changes from one where growth takes place from a central core
and outwards to one where the lattice is successively filled uniformly over the whole lattice. The first image that is the least filled
is similar to a DLA while the following gradually deviates from that to approach a two-dimensional pattern. The parameters
used are β = 16, ξ = 1, ε = 10−9, N = 415× 415
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FIG. 4. Shown here is the urban extent of the Washington/Baltimore area over time [18]. These images along with others in
the same series was used to obtain the area/perimeter scaling relationship of the growth of the urban agglomeration. See figure
6. Note that an actual urban footprint, such as those shown here (and in fig. 5), result from very complicated growth dynamics.
This is in contrast to the rather simplistic UN rule and more complex rules are needed to generate urban patterns that also
visually look like a complete city. Compare with figure 7 for a realistic (and complex) example of simulated urban growth.

FIG. 5. As a real life comparison to the model for measuring the scaling relationship between area and perimeter in the
growth of a city, we here show the growth of Sioux Falls between 1 900 and 1976. See figure 6. (The data used is courtesy of
N. Goldstein, Dept. of Geography, UCSB)
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FIG. 6. A comparison between how developed area increases as a function of the perimeter. The curves belong, from the
topmost downwards, to measurements from: Sioux Falls USA, simulation with UN rule and Washington/Baltimore USA. Area
is here defined as the number of cells that are in the developed state and the perimeter is all non-developed cells that are adjacent
to developed cells. Along the lines of our model, perimeter constitutes the cells that are the primary growth zone. This is because
they do not receive a penalty from the ε-rule according to equation (12) and [2]. A scaling exponent that is not trivial (such as
an expanding disc) requires a distributed mechanism that makes the structure sparse. We have used data from the growth of
Sioux Falls and Washington/Baltimore to study how cities grow in this fashion. The parameters used for the model are β = 4,
ξ = 1, ε = 10−9, N = 315× 315. On the X axis is the size of the perimeter and on the Y axis is the size of the developed area.
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FIG. 7. The framework is capable of incorporating a wide range of additional information such as topographical maps and
statical land use classes that are static throughout the simulation such as the limited-access highways in this example. The
dynamics of the above configuration can be explained by investigating each land use and the interaction functions that are used.
In particular, eq. 13 is generalized such that ξ can be separately defined for each meanfield level and land use pair. Some of
the land uses used in this image are stimulating to other land use classes on some distances and inhibiting on other, a detailed
account of this is beyond the scope of this article and this image in only used as a visualization of the open-endedness of the
model. Legend: Orange is residential, grey is central business district, blue is commercial, black is industry, white is highways
and green/shaded relief is undeveloped land.

IV. DISCUSSION

The correspondence between model components and entities of the real world needs to be carefully considered,
especially when models are used over the boundaries of research disciplines. In physical models, model components
are always carefully founded in knowledge about the system that is being modelled; this does not however translate
as easily as one would wish to complex aggregate systems. It is therefore not surprising that a social model would
need to be similar, but not identical, to a physical model that more exactly describes a much simpler system. It also
should be of little surprise that the formulation could be on a level that is intuitively very easy to understand since we
are indeed tuned as biological beings for grasping concepts on the social scale; we can more easily relate to a sibling
situation than to a co-valent bond between two atoms. Along the same lines, we can easily relate to the process of
selecting a place to build a house whereas the process of an electrical discharge requires education to understand.
In the model presented here, we have used analogies from physics for performing basic actions on an appropriate

scale in time and space: Demand for land adaptation is met by allocation according to a measure of goodness by
which candidate sites can be compared. This is done in a fashion that is commensurate with existing theory and
because of this we can also realize the meaning of details of the model in its new context. For example, the parameter
β has a meaning in the Boltzmann transformation when applied to physical systems and should have a meaningful
interpretation also in an urban system if we use it there. Due to obvious differences between models, the connection
to thermodynamic definitions of temperature is hard to make and it lies closer to the interpretation of temperature
as a characterization of information deficiency. This would translate into saying that temperature (noise) accounts
for the parts of the system for which we do not have a model.
A concrete example in the context of urbanization would be the following: Consider two sites whose energy turns

out to be identical under the energy function of the model and that are located some distance apart. Now, in a real
scenario, picture a family evaluating candidate sites for building or buying a house and that the two mentioned sites
are at the top of their list. If we further assume that they happen to work at a third site that is closer to either of the
two under consideration - they would probably select that site. What this means is that the model we use to measure
the suitability of sites is an approximation of their internal model; each agent has detailed criteria that are unique to
them. The application of temperature corresponds to the concept of a maximum-entropy model formulation [40].
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It should also be noted that the fact that the temperature is non-zero is absolutely essential for bringing about
interesting dynamics. A zero temperature would mean that the site that is the most suitable according to the model
would be selected with probability 1, or 1/n if there are n equally suitable places. In the case of a the “unwilling
neighbor” rule it is easy to see that this would result in growing straight lines since the edge pixels are those that are
furthest from the rest of the structure. Actually, the transition from D > 1 to D = 1 growth for DLA does not take
place in the limit of no randomness but rather much earlier [24].
A further benefit from the compartmental approach we have used to define the model is that a generalization to

other types of colonies is conceivable. The dual inhibition/stimulation of a common framework is universal to many
situations in nature where limited resources have to be co-utilized by many individuals. Sprawling forms of colonies
are abundant in nature. Colonies of sessile marine animals like corals and barnacles are obvious examples, but so also
bird colonies and grazing herds may be examples where a counter-acting inhibition/stimulation on different length
scales exists.

V. CONCLUSION

The presented model reproduces realistic macroscopic characteristics of real cities, similar to earlier published results
based on aggregation models. However, rather than being based on potentially co-incidental macroscopic similarity,
the presented model is built from the bottom-up based on a microscopic formulation. It thereby serves to validate
the hypothesis that frustrations caused by a combination of stimulation and inhibition, resulting from an interplay
of development intensity and distance, might be in part responsible for the growth of urban sprawl. The model can
provide an urban growth simulation framework that is configurable, scalable and capable of rich dynamics while still
being mathematically transparent in its formulation.
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