

Selection of Targets and Assays for High Throughput Screening (HTS)

Co-chairs:

Kate Johnston, Ph.D.

Tim Zacharewski, Ph.D.

Critical Constituents and Targets

What are the critical cellular constituents or pathways that are likely to be linked to an *in vivo* toxic response?

Guiding principals:

- Initial holistic approach:
 - Apical function > pathway > isolated target
 - Function (phenotypic) > cellular pathway > target
- Integrate transcript profiling to guide selection of relevant pathways & targets
- Multi-dose, multi-time point assays required
- Whenever possible, test metabolites & explore cell backgrounds with metabolizing capabilities e.g., MCL5

Critical Constituents and Targets

Guiding Principals

- Select most physiologically-relevant model:
 - Organisms, (worms and fish): feasible for HTS but relevance to mammalian systems is problematic
 - Tissues: not feasible for HTS
 - Co-cultures: intriguing, EXPLORE
 - Primary cultures: technically challenging, but preferred; use both rodent and human when possible, possibly stem or progenitor cells
 - Cell lines: non-transformed, screen both human and rodent

Critical Constituents and Targets

All including:

- Apoptosis
- Proliferation (PCNA, Ki67, centriole number)
- Oxidative stress
- Mitochondrial activity
- Receptor interactions (nuclear and membrane)
- Metabolism
- Signal transduction
- DNA damage
- Cytoskeletal/differentiation
- Lipid metabolism and transport channels
- -Transporters
- Chromatin remodeling
- Necrosis/membrane integrity
- Cytokines
- Cell-cell communication
- Adhesion

Which pathways are the most important to study to understand the pathways leading to cancer?

- Function first: phenotypic assays for cellular proliferation, death and environmental response
- Critical pathways for these functions:
 - Apoptosis
 - Proliferation, cell-cycle control
 - DNA damage and repair
 - Chromatin remodeling
 - Signal transduction modulation
 - SAPKs, MAPKs, Inflammatory response

Apoptosis

- Models
 - Rodent: Rat1, NIH 3T3, primary hepatocytes
 - Human: HepG2, TK6 (p53 WT& its p53-pair), MCL5
 - +/- p53 pair
- Measure both pro-apoptotic & inhibitory activities
- Assays:
 - Early & late markers of apoptosis
 - Multi-dose & multi time points

Apoptosis assays:

- Cytochrome C release
- AIF release
- annexinV binding
- Caspase activity: 3,7,8,9
- Mitochondrial membrane potential
- Nuclear fragmentation

Appropriate Endpoints for Carcinogenesis

Proliferation, Cell-cycle control

- Models
 - Rodent: Primary hepatocytes, MEFs,
 - Human: HepG2, human foreskin fibroblasts, MCL5
- Assays
 - Cell number: cell count, nuclei count
 - DNA content: Hoechst intensity, thymidine or uridine incorporation
 - Cell cycle markers: histone phosphorylation, DNA content (2n, 4n), microtubule stability

DNA Damage

- Models
 - Rodent: L5178Y, CHO
 - Human: HepG2, TK6
- Assays
 - H2AX phosphorylation
 - P53 activation: phosphorylation, translocation
 - Nuclear morphology
 - Micronucleus
 - DNA fragmentation COMET

Chromatin remodeling

- Models
 - Rodent
 - Human
- Assays
 - De-repression of CMV-driven GFP expression
 - Excision repair enzyme activity

Signal Transduction Pathway Modulation

- Models
 - Rodent CHO
 - Human HepG2, U2OS
- Assays
 - Kinase activity SAPKs, MAPKs: phosphorylation (Abs imaging, cell ELISAs)
 - Transcription factor activity (reporters), phosphorylation (Abs imaging, cell ELISAs), translocation and stability (Abs or chimeras imaging)

Toxicology - Wish List

- DNA repair assays
- HTS-compatible lipid metabolism assays
- Differentiation methods for stem cells and a mechanism to identify a population
- Fixable probes for mitochondrial membrane potential, oxygen tension, lipid content
- Assays of more than 48 hrs duration
- HTS-compatible hERG assay (ion channel blocking)

Toxicology - Wish List, continued

Novel assays to measure Toxicologically-significant endpoints in HTS

- Nuclear Receptors
- G-protein Coupled Receptors
- Toll Rc modulation
- TRKs (growth factor rc)
- Cell backgrounds with enhanced metabolizing capability
- Notch signaling assays
- Card-carrying toxicologists responding to the RFA

Assay Development

- Assay Development for High Throughput Molecular Screening (R03/R21)
 Reissue for FY2006 of RFA-RM-05-011
- Mark Scheideler, Program Director for Molecular Libraries Initiative
 - Mark Scheideler
 301 496-1779
- Opportunity to submit mechanism-focused Toxicology assays to MLSCN

Assays in the Queue

- Caspase 3/7, 8 & 9 activation
- pGP
- Cell viability
- Heat Shock Protein 90
- GPCRs: Formyl peptide Rc, 5HT1E
- NfkB pathway
- TNF alpha signaling
- Channels: GIRK, voltage gated K⁺
- Htt protein aggregation and degradation